GENERALIZED PRODUCT TOPOLOGY

Xinxing Wu and Peiyong Zhu

Abstract

Similarly to Tychonoff product, we introduce the concept of generalized product topology which is different from the notion of product of generalized topologies in [Á. Császár, Acta Math. Hungar. 123 (2009), 127-132] for generalized topology and obtain some properties about it. Besides, we prove that connectedness, σ-connectedness and α-connectedness are all preserved under this product.

1. Introduction and preliminaries

In the past years, several weak forms of open sets have been studied. Recently, Á. Császár founded the theory of generalized topology in [1-8], studying the extremely elementary character of these classes. It is well known that $T y-$ chonoff product plays an important role in topological spaces. Motivated by these, we shall investigate into 'generalized product topology' on generalized topological spaces.

Let X be a set, and denote $\exp X$ the power set of X. We call a class $\lambda \subset \exp X$ a generalized topology (briefly GT) [2] on X if $\emptyset \in \lambda$ and any union of elements of λ belongs to λ. A set with a GT is said to be a generalized topological space (briefly GTS) [2]. For a GTS (X, λ), the elements of λ are called λ-open sets and the complements of λ-open sets are called λ-closed sets. For any $x \in X$, put $\mathscr{N}(x)=\{A \in \lambda: x \in A\}$. For $A \subset X$, we denote by $c A$ the intersection of all λ-closed sets containing A and by $i A$ the union of all λ-open sets contained in A. A set $A \subset X$ is said to be λ-semi-open (resp. λ-preopen, λ - α-open, λ - β-open) [4] if $A \subset c i A$ (resp. $A \subset i c A, A \subset i c i A$, $A \subset \operatorname{cic} A$). We denote by $\sigma(\lambda)$ (resp. $\pi(\lambda), \alpha(\lambda), \beta(\lambda))$ the class of all λ -semi-open sets (resp. λ-preopen sets, λ - α-open sets, λ - β-open sets). Obviously $\lambda \subset \alpha(\lambda) \subset \sigma(\lambda) \subset \beta(\lambda)$ and $\alpha(\lambda) \subset \pi(\lambda) \subset \beta(\lambda)$.

[^0]A family $\lambda_{b} \subset \lambda$ is called a base for a $\operatorname{GTS}(X, \lambda)$ if every non-empty λ-open subset of X can be represented as the union of a subfamily of λ_{b}. We denote by $\mathscr{B}(\lambda)$ of all bases of $\operatorname{GTS}(X, \lambda)$.

According to the definition of $c A$, similarly to the proof of $[7$, Proposition 1.1.1], it is not difficult to prove the following conclusion:

Lemma 1.1. For any $A \subset X$, the following conditions are equivalent:
1-1) $x \in c A$;
1-2) For any $B \in \mathscr{N}(x)$, we have $B \cap A \neq \varnothing$;
1-3) There exists some $\lambda_{b} \in \mathscr{B}(\lambda)$ such that for any $B \in \mathscr{N}(x) \cap \lambda_{b}, B \cap A \neq$ Ø.

Let (X, λ) and $\left(Y, \lambda^{\prime}\right)$ be two generalized topological spaces; a map $f: X \longrightarrow$ Y is called continuous (called $\left(\lambda, \lambda^{\prime}\right)$-continuous in [9]) if $f^{-1}(A) \in \lambda$ for any $A \in \lambda^{\prime}$.

A GTS (X, λ) is said to be connected (called γ-connected in [3]) if there are no nonempty disjoint sets $U, V \in \lambda$ such that $U \cup V=X$.

A GTS (X, λ) is called α-connected (resp. σ-connected, π-connected, β connected) [11] if $(X, \alpha(\lambda))$ (resp. $(X, \sigma(\lambda)),(X, \pi(\lambda)),(X, \beta(\lambda)))$ is connected.

It is easy to see from the definition that

$$
\beta \text {-connected } \Rightarrow \sigma \text {-connected } \Rightarrow \alpha \text {-connected } \Rightarrow \text { connected }
$$

and

$$
\beta \text {-connected } \Rightarrow \pi \text {-connected } \Rightarrow \alpha \text {-connected. }
$$

In [11], the following result was proved:
Lemma 1.2 ([11]). For a $\operatorname{GTS}(X, \lambda),(X, \lambda)$ is α-connected if and only if (X, λ) is connected.

Suppose we are given a set X, a family $\left\{\left(Y_{s}, \lambda_{s}\right)\right\}_{s \in \Gamma}$ of GTS and a family of maps $\left\{f_{s}\right\}_{s \in \Gamma}$, where f_{s} is a map of X to Y_{s}. It is easy to see that the GT

$$
\begin{equation*}
\lambda=\left\{\cup A: A \subset\left\{f_{s}^{-1}\left(A_{s}\right): A_{s} \in \lambda_{s}, s \in \Gamma\right\}\right\} \tag{1}
\end{equation*}
$$

is the coarsest GT that makes all the f_{s} 's continuous. This GT is called the $G T$ generated by the family $\left\{f_{s}\right\}_{s \in \Gamma}$ of maps.

2. Generalized connectedness under product

Similarly to Tychonoff product which can be found in [10, Section 2.3], now we introduce generalized product for GTS. Suppose we are given a family of GTS $\left\{\left(X_{s}, \lambda_{s}\right)\right\}_{s \in \Gamma}$; consider the Cartesian product $X=\prod_{s \in \Gamma} X_{s}$ and the family of maps p_{s}, where p_{s} assigns to the point $x=\left\{x_{s}\right\} \in \prod_{s \in \Gamma} X_{s}$ its s th coordinate $x_{s} \in X_{s}$. The set $X=\prod_{s \in \Gamma} X_{s}$ with the GT $\prod_{s \in \Gamma} \lambda_{s}$ generated by the family of $\left\{p_{s}\right\}_{s \in \Gamma}$ is called the generalized product topology space (briefly GPTS) and $\prod_{s \in \Gamma} \lambda_{s}$ is called the generalized product topology on $\prod_{s \in \Gamma} X_{s}$ (briefly GPT); The map $p_{s}: \prod_{s \in \Gamma} X_{s} \longrightarrow X_{s}$ is called the projection of $\prod_{s \in \Gamma} X_{s}$ onto X_{s}. Clearly, the GPTS is usually different from the
product of generalized topologies in [8] for generalized topology. Put the set $\mathscr{B}^{*}\left(\prod_{s \in \Gamma} \lambda_{s}\right)=\left\{p_{s}^{-1}\left(B_{s}\right): B_{s} \in \lambda_{s}, s \in \Gamma\right\}$.

Proposition 2.1. For a GPTS $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$,

$$
\mathscr{B}^{*}\left(\prod_{s \in \Gamma} \lambda_{s}\right) \in \mathscr{B}\left(\prod_{s \in \Gamma} \lambda_{s}\right) .
$$

Proof. It is clear that $\mathscr{B}^{*}\left(\prod_{s \in \Gamma} \lambda_{s}\right)=\left\{p_{s}^{-1}\left(B_{s}\right): B_{s} \in \lambda_{s}, s \in \Gamma\right\} \subset \prod_{s \in \Gamma} \lambda_{s}$. Combining this with (1), the proof is completed.

Proposition 2.2. $c\left(\prod_{s \in \Gamma} A_{s}\right)=\prod_{s \in \Gamma} c A_{s}$;

$$
\begin{aligned}
& i\left(\prod_{s \in \Gamma} A_{s}\right) \\
& =\left\{\begin{array}{cl}
\not \subset, & \left|\left\{s \in \Gamma: A_{s} \neq X_{s}\right\}\right| \geq 2, \\
\prod_{s \in\left\{s \in \Gamma: A_{s} \neq X_{s}\right\}} i_{s} \times \prod_{s \in \Gamma-\left\{s \in \Gamma: A_{s} \neq X_{s}\right\}} \\
X_{s \in \Gamma}, & \left|\left\{s \in \Gamma: A_{s} \neq X_{s}\right\}\right|=1, \\
\prod_{s \in}, & \left|\left\{s \in \Gamma: A_{s} \neq X_{s}\right\}\right|=0 .
\end{array}\right.
\end{aligned}
$$

Proof. Applying Lemma 1.1, we have

$$
\begin{aligned}
& c\left(\prod_{s \in \Gamma} A_{s}\right) \\
= & \left\{x=\left\{x_{s}\right\} \in \prod_{s \in \Gamma} X_{s}: \forall B \in \mathscr{N}(x) \cap \mathscr{B}^{*}\left(\prod_{s \in \Gamma} \lambda_{s}\right), B \cap\left(\prod_{s \in \Gamma} A_{s}\right) \neq \varnothing\right\} \\
= & \left\{x=\left\{x_{s}\right\} \in \prod_{s \in \Gamma} X_{s}: \forall s \in \Gamma, \forall B_{s} \in \mathscr{N}\left(x_{s}\right), B_{s} \cap A_{s} \neq \emptyset\right\} \\
= & \prod_{s \in \Gamma} c A_{s} .
\end{aligned}
$$

The second equation is easy to verify.
It can be verified that

$$
\begin{align*}
& \alpha\left(\prod_{s \in \Gamma} \lambda_{s}\right) \supset \prod_{s \in \Gamma} \alpha\left(\lambda_{s}\right), \quad \sigma\left(\prod_{s \in \Gamma} \lambda_{s}\right) \supset \prod_{s \in \Gamma} \sigma\left(\lambda_{s}\right), \\
& \pi\left(\prod_{s \in \Gamma} \lambda_{s}\right) \supset \prod_{s \in \Gamma} \pi\left(\lambda_{s}\right), \quad \beta\left(\prod_{s \in \Gamma} \lambda_{s}\right) \supset \prod_{s \in \Gamma} \beta\left(\lambda_{s}\right) . \tag{2}
\end{align*}
$$

At the end of this paper, we shall use an example to show that the inclusion of (2) can hold strictly.

Proposition 2.3. For a $\operatorname{GPTS}\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$,

$$
c\left(\cup_{s \in \Gamma} p_{s}^{-1}\left(A_{s}\right)\right)=\prod_{s \in \Gamma} X_{s}
$$

where $\emptyset \neq A_{s} \subset X_{s}$ for $s \in \Gamma$.
Proof. Choose arbitrarily $x=\left\{x_{s}\right\} \in \prod_{s \in \Gamma} X_{s}$. For any $B \in \mathscr{N}(x)$, we have that there exist $s_{0} \in \Gamma$ and $\emptyset \neq B_{s_{0}} \in \lambda_{s_{0}}$ such that $x \in p_{s_{0}}^{-1}\left(B_{s_{0}}\right) \subset B$. So $B \cap\left(\cup_{s \in \Gamma} p_{s}^{-1}\left(A_{s}\right)\right)=\cup_{s \in \Gamma}\left(B \cap p_{s}^{-1}\left(A_{s}\right)\right) \supset \cup_{s \in \Gamma}\left(p_{s_{0}}^{-1}\left(B_{s_{0}}\right) \cap p_{s}^{-1}\left(A_{s}\right)\right) \supset$ $\cup_{s \in \Gamma-\left\{s_{0}\right\}}\left(p_{s_{0}}^{-1}\left(B_{s_{0}}\right) \cap p_{s}^{-1}\left(A_{s}\right)\right) \neq \varnothing$ as each $A_{s} \neq \varnothing$. Combining this with Lemma 1.1, it follows that $x \in c\left(\cup_{s \in \Gamma} p_{s}^{-1}\left(A_{s}\right)\right)$.

Hence $c\left(\cup_{s \in \Gamma} p_{s}^{-1}\left(A_{s}\right)\right)=\prod_{s \in \Gamma} X_{s}$.
Theorem 2.4. The GPTS $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$ is connected if and only if all spaces $\left(X_{s}, \lambda_{s}\right)$ are connected.

Proof. Necessity. Suppose that there exists some $s_{0} \in \Gamma$ such that $\left(X_{s_{0}}, \lambda_{s_{0}}\right)$ is not connected. Then there exist nonempty disjoint subsets $A_{s_{0}}, B_{s_{0}} \in \lambda_{s_{0}}$ such that $A_{s_{0}} \cup B_{s_{0}}=X_{s_{0}}$. This implies that nonempty $\prod_{s \in \Gamma} \lambda_{s}$-open sets $p_{s_{0}}^{-1}\left(A_{s_{0}}\right)$ and $p_{s_{0}}^{-1}\left(B_{s_{0}}\right)$ satisfy $p_{s_{0}}^{-1}\left(A_{s_{0}}\right) \cap p_{s_{0}}^{-1}\left(B_{s_{0}}\right)=\varnothing$ and $p_{s_{0}}^{-1}\left(A_{s_{0}}\right) \cup p_{s_{0}}^{-1}\left(B_{s_{0}}\right)=$ $\prod_{s \in \Gamma} X_{s}$. So $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$ is not connected.

Sufficiency. Suppose that $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$ is not connected. Then there exist nonempty disjoint subsets $A, B \in \prod_{s \in \Gamma} \lambda_{s}$ such that $A \cup B=\prod_{s \in \Gamma} X_{s}$. Without loss of generality, we may assume that $A=\cup_{s \in \Gamma^{\prime} \subset \Gamma} p_{s}^{-1}\left(A_{s}\right)$, where $\emptyset \neq A_{s} \in \lambda_{s}$ for $s \in \Gamma^{\prime}$.

Now we assert that $\left|\Gamma^{\prime}\right|=1$.
Obviously, $\Gamma^{\prime} \neq \emptyset$ as $A \neq \varnothing$. If $\left|\Gamma^{\prime}\right|>1$, we have that there exist $s_{1} \neq s_{2} \in$ Γ^{\prime} such that $p_{s_{1}}^{-1}\left(A_{s_{1}}\right) \cup p_{s_{2}}^{-1}\left(A_{s_{2}}\right) \subset A$. As $A \neq \prod_{s \in \Gamma} X_{s}$ and $A \cup B=\prod_{s \in \Gamma} X_{s}$, then $A_{s_{1}} \neq X_{s_{1}}, A_{s_{2}} \neq X_{s_{2}}$ and $B=\prod_{s \in \Gamma} X_{s}-A \subset \prod_{s \in \Gamma} X_{s}-\left(p_{s_{1}}^{-1}\left(A_{s_{1}}\right) \cup\right.$ $\left.p_{s_{2}}^{-1}\left(A_{s_{2}}\right)\right)=p_{s_{1}}^{-1}\left(X_{s_{1}}-A_{s_{1}}\right) \cap p_{s_{2}}^{-1}\left(X_{s_{2}}-A_{s_{2}}\right)$. Applying Proposition 2.2, it follows that $B=i B \subset i\left(p_{s_{1}}^{-1}\left(X_{s_{1}}-A_{s_{1}}\right) \cap p_{s_{2}}^{-1}\left(X_{s_{2}}-A_{s_{2}}\right)\right)=i\left(A_{s_{1}} \times A_{s_{2}} \times\right.$ $\left.\prod_{s \in \Gamma-\left\{s_{1}, s_{2}\right\}} X_{s}\right)=\emptyset$, which is a contradiction. Therefore $\left|\Gamma^{\prime}\right|=1$.

The set $\Gamma^{\prime}=\left\{s_{1}\right\}$, then there exists $\emptyset \neq A_{s_{1}} \in \lambda_{s_{1}}$ such that $A=p_{s_{1}}^{-1}\left(A_{s_{1}}\right)$. So $B=\prod_{s \in \Gamma} X_{s}-A=p_{s_{1}}^{-1}\left(X_{s_{1}}-A_{s_{1}}\right) \in \prod_{s \in \Gamma} \lambda_{s}$. This leads with the construction of $\prod_{s \in \Gamma} \lambda_{s}$ to that $\emptyset \neq X_{s_{1}}-A_{s_{1}} \in \lambda_{s_{1}}$. Hence $\left(X_{s_{1}}, \lambda_{s_{1}}\right)$ is not connected.

Theorem 2.5. The GPTS $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$ is σ-connected if and only if all spaces $\left(X_{s}, \lambda_{s}\right)$ are σ-connected.

Proof. Necessity. Suppose that there exists some $s_{0} \in \Gamma$ such that $\left(X_{s_{0}}, \lambda_{s_{0}}\right)$ is not σ-connected. Then there exist nonempty disjoint subsets $A_{s_{0}}, B_{s_{0}} \in \sigma\left(\lambda_{s_{0}}\right)$ such that $A_{s_{0}} \cup B_{s_{0}}=X_{s_{0}}$. This implies that nonempty sets $p_{s_{0}}^{-1}\left(A_{s_{0}}\right)$ and $p_{s_{0}}^{-1}\left(B_{s_{0}}\right)$ satisfy $p_{s_{0}}^{-1}\left(A_{s_{0}}\right) \cap p_{s_{0}}^{-1}\left(B_{s_{0}}\right)=\emptyset$ and $p_{s_{0}}^{-1}\left(A_{s_{0}}\right) \cup p_{s_{0}}^{-1}\left(B_{s_{0}}\right)=\prod_{s \in \Gamma} X_{s}$.

Applying Proposition 2.2, noting the fact that $A_{s_{0}}, B_{s_{0}} \in \sigma\left(\lambda_{s_{0}}\right)$, we have

$$
c i\left(p_{s_{0}}^{-1}\left(A_{s_{0}}\right)\right)=c\left(p_{s_{0}}^{-1}\left(i A_{s_{0}}\right)\right)=p_{s_{0}}^{-1}\left(c i A_{s_{0}}\right) \supset p_{s_{0}}^{-1}\left(A_{s_{0}}\right),
$$

and

$$
c i\left(p_{s_{0}}^{-1}\left(B_{s_{0}}\right)\right)=c\left(p_{s_{0}}^{-1}\left(i B_{s_{0}}\right)\right)=p_{s_{0}}^{-1}\left(c i B_{s_{0}}\right) \supset p_{s_{0}}^{-1}\left(B_{s_{0}}\right) .
$$

So $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$ is not σ-connected.
Sufficiency. Suppose that $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$ is not σ-connected. Then there exist nonempty disjoint subsets $A, B \in \sigma\left(\prod_{s \in \Gamma} \lambda_{s}\right)$ such that $A \cup B=$ $\prod_{s \in \Gamma} X_{s}$. As each $\left(X_{s}, \lambda_{s}\right)$ is σ-connected, we know from [8, Theorem 2.3] that $X_{s}=\cup \lambda_{s} \in \lambda_{s}$. This implies that $\prod_{s \in \Gamma} X_{s} \in \prod_{s \in \Gamma} \lambda_{s}$, i.e., $c \emptyset=\varnothing$. So we have $c i A \supset A \supset i A \neq \varnothing$ and $\operatorname{ci} B \supset B \supset i B \neq \varnothing$. Thus there exist $s_{1} \in \Gamma$ and $\varnothing \neq A_{s_{1}} \in \lambda_{s_{1}}$ such that $A \supset i A \supset p_{s_{1}}^{-1}\left(A_{s_{1}}\right)$. Therefore $B=\prod_{s \in \Gamma} X_{s}-A \subset \prod_{s \in \Gamma} X_{s}-p_{s_{1}}^{-1}\left(A_{s_{1}}\right)=p_{s_{1}}^{-1}\left(X_{s_{1}}-A_{s_{1}}\right)$. Similarly, we have that there exists $\emptyset \neq B_{s_{1}} \in \lambda_{s_{1}}$ such that

$$
p_{s_{1}}^{-1}\left(A_{s_{1}}\right) \subset i A \subset A \subset c i A \subset p_{s_{1}}^{-1}\left(X_{s_{1}}-B_{s_{1}}\right)
$$

and

$$
p_{s_{1}}^{-1}\left(B_{s_{1}}\right) \subset i B \subset B \subset c i B \subset p_{s_{1}}^{-1}\left(X_{s_{1}}-A_{s_{1}}\right)
$$

Now we assert that for any $x=\left\{x_{s}\right\} \in i A$, there exists some $A(x) \in \mathscr{N}\left(x_{s_{1}}\right)$ such that $x \in p_{s_{1}}^{-1}(A(x)) \subset A$.

Indeed, if there exists some $x=\left\{x_{s}\right\} \in i A$ such that $p_{s_{1}}^{-1}(D) \nsubseteq A$ holds for any $D \in \mathscr{N}\left(x_{s_{1}}\right)$. Noting that fact that $\left\{p_{s}^{-1}\left(B_{s}\right): B_{s} \in \lambda_{s}, s \in \Gamma\right\} \in$ $\mathscr{B}\left(\prod_{s \in \Gamma} \lambda_{s}\right)$, we have that there exists $s_{1} \neq s_{2} \in \Gamma$ and $A_{s_{2}} \in \lambda_{s_{2}}$ such that $x \in p_{s_{2}}^{-1}\left(A_{s_{2}}\right) \subset A \subset p_{s_{1}}^{-1}\left(X_{s_{1}}-B_{s_{1}}\right)$. So $p_{s_{2}}^{-1}\left(A_{s_{2}}\right) \subset p_{s_{1}}^{-1}\left(X_{s_{1}}-B_{s_{1}}\right)$, which is a contradiction as $s_{1} \neq s_{2}$.

Thus $i A=\cup_{x \in i A} p_{s_{1}}^{-1}(A(x))=p_{s_{1}}^{-1}\left(\cup_{x \in i A} A(x)\right)$.
Similarly, we know that there exist nonempty subsets $\mathcal{A}_{s_{1}}, \mathcal{B}_{s_{1}} \in \lambda_{s_{1}}$ such that $i A=p_{s_{1}}^{-1}\left(\mathcal{A}_{s_{1}}\right)$ and $i B=p_{s_{1}}^{-1}\left(\mathcal{B}_{s_{1}}\right)$. As $\emptyset=A \cap B \supset i A \cap i B=p_{s_{1}}^{-1}\left(\mathcal{A}_{s_{1}} \cap\right.$ $\mathcal{B}_{s_{1}}$, we have $\mathcal{A}_{s_{1}} \subset X_{s_{1}}-\mathcal{B}_{s_{1}}$, then $X_{s_{1}}-c \mathcal{A}_{s_{1}} \supset \mathcal{B}_{s_{1}} \neq \emptyset$. It follows from $A \cup B=\prod_{s \in \Gamma} X_{s}$ and Proposition 2.2 that $c i B=c p_{s_{1}}^{-1}\left(\mathcal{B}_{s_{1}}\right)=p_{s_{1}}^{-1}\left(c \mathcal{B}_{s_{1}}\right) \supset$ $B \supset \prod_{s \in \Gamma} X_{s}-A \supset \prod_{s \in \Gamma} X_{s}-c i A=p_{s_{1}}^{-1}\left(X_{s_{1}}-c \mathcal{A}_{s_{1}}\right)$, so $c \mathcal{B}_{s_{1}} \supset X_{s_{1}}-c \mathcal{A}_{s_{1}}$.

The set $C=c \mathcal{A}_{s_{1}}$ and $D=X_{s_{1}}-c \mathcal{A}_{s_{1}}$. Clearly $C \cup D=X_{s_{1}}$ and $C \cap D=\emptyset$. Meanwhile, we have $c i C \supset c i \mathcal{A}_{s_{1}}=c \mathcal{A}_{s_{1}}=C$ and $c i D \supset c i \mathcal{B}_{s_{1}}=c \mathcal{B}_{s_{1}} \supset D$. Hence $\left(X_{s_{1}}, \lambda_{s_{1}}\right)$ is not σ-connected as both C and D are nonempty.

Theorem 2.6. Given a family of $G T S\left\{\left(X_{s}, \lambda_{s}\right)\right\}_{s \in \Gamma}$, the following are equivalent:

6-1) $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$ is α-connected;
6-2) $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$ is connected;
6-3) All spaces $\left(X_{s}, \lambda_{s}\right)$ are α-connected;
6-4) All spaces $\left(X_{s}, \lambda_{s}\right)$ are connected.
Proof. Applying Lemma 1.2 and Theorem 2.4, it holds trivially.

Applying Proposition 2.2, it follows that for any $s_{0} \in \Gamma$ and any $A_{s_{0}} \subset X_{s_{0}}$,

$$
i c\left(p_{s_{0}}^{-1}\left(A_{s_{0}}\right)\right)=i\left(p_{s_{0}}^{-1}\left(c A_{s_{0}}\right)\right)=p_{s_{0}}^{-1}\left(i c A_{s_{0}}\right)
$$

and

$$
\operatorname{cic}\left(p_{s_{0}}^{-1}\left(A_{s_{0}}\right)\right)=\operatorname{ci}\left(p_{s_{0}}^{-1}\left(c A_{s_{0}}\right)\right)=c\left(p_{s_{0}}^{-1}\left(i c A_{s_{0}}\right)\right)=p_{s_{0}}^{-1}\left(c i c A_{s_{0}}\right)
$$

Similarly to the proof of Theorem 2.5, the following theorem holds trivially:
Theorem 2.7. All spaces $\left(X_{s}, \lambda_{s}\right)$ are π-connected (resp. β-connected) provided that the GPTS $\left(\prod_{s \in \Gamma} X_{s}, \prod_{s \in \Gamma} \lambda_{s}\right)$ is π-connected (resp. β-connected).

Being the end of this paper, we shall use an example which is similar to the construction of Example 2.5 in [12] to show that
(1) The inverse of Theorem 2.7 is not correct;
(2) The inclusion of (2) can hold strictly.

Example 2.8. Let $X_{1}=X_{2}=\{a, b\}$ and $\lambda_{1}=\lambda_{2}=\{\emptyset,\{a\},\{a, b\}\}$. Clearly the GTP $\left(X_{1}, \lambda_{1}\right)$ and $\left(X_{2}, \lambda_{2}\right)$ are connected and

$$
\lambda_{1} \times \lambda_{2}=\left\{\emptyset,\{(a, a),(a, b)\},\{(a, a),(b, a)\},\{(a, a),(a, b),(b, a)\}, X_{1} \times X_{2}\right\} .
$$

As $c i c\{b\}=c i\{b\}=c \emptyset=\emptyset$, we have $\beta\left(\lambda_{i}\right)=\lambda_{i}$. So $\left(X_{1}, \lambda_{1}\right)$ and $\left(X_{2}, \lambda_{2}\right)$ are β-connected (thus π-connected) and

$$
\sigma\left(\lambda_{1}\right) \times \sigma\left(\lambda_{2}\right)=\pi\left(\lambda_{1}\right) \times \pi\left(\lambda_{2}\right)=\alpha\left(\lambda_{1}\right) \times \alpha\left(\lambda_{2}\right)=\beta\left(\lambda_{1}\right) \times \beta\left(\lambda_{2}\right)=\lambda_{1} \times \lambda_{2}
$$

Take $A=\{(a, a)\}$ and $B=X_{1} \times X_{2}-A=\{(a, b),(b, a),(b, b)\}$. Applying Lemma 1.1 and Proposition 2.3, it is easy to see that $i c A=i c B=X_{1} \times X_{2}$, i.e., $A, B \in \pi\left(\lambda_{1} \times \lambda_{2}\right)$. So the $\operatorname{GPTS}\left(X_{1} \times X_{2}, \lambda_{1} \times \lambda_{2}\right)$ is not π-connected (thus not β-connected).

Choose $D=\{(a, a),(a, b),(b, a)\}$. We know from Proposition 2.3 that $i c i D=X_{1} \times X_{2} \supset D$. This implies that $D \in \alpha\left(\lambda_{1} \times \lambda_{2}\right)-\alpha\left(\lambda_{1}\right) \times \alpha\left(\lambda_{2}\right)$. Thus $D \in \sigma\left(\lambda_{1} \times \lambda_{2}\right)-\sigma\left(\lambda_{1}\right) \times \sigma\left(\lambda_{2}\right), D \in \pi\left(\lambda_{1} \times \lambda_{2}\right)-\pi\left(\lambda_{1}\right) \times \pi\left(\lambda_{2}\right)$, $D \in \beta\left(\lambda_{1} \times \lambda_{2}\right)-\beta\left(\lambda_{1}\right) \times \beta\left(\lambda_{2}\right)$.

Hence $\alpha\left(\lambda_{1} \times \lambda_{2}\right) \supsetneqq \alpha\left(\lambda_{1}\right) \times \alpha\left(\lambda_{2}\right), \sigma\left(\lambda_{1} \times \lambda_{2}\right) \supsetneqq \sigma\left(\lambda_{1}\right) \times \sigma\left(\lambda_{2}\right), \pi\left(\lambda_{1} \times \lambda_{2}\right) \supsetneqq$ $\pi\left(\lambda_{1}\right) \times \pi\left(\lambda_{2}\right), \beta\left(\lambda_{1} \times \lambda_{2}\right) \supsetneqq \beta\left(\lambda_{1}\right) \times \beta\left(\lambda_{2}\right)$.

References

[1] Á. Császár, Generalized open sets, Acta Math. Hungar. 75 (1997), no. 1-2, 65-87.
[2] \qquad , Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), no. 4, 351-357.
[3] _ , γ-connected sets, Acta Math. Hungar. 101 (2003), no. 4, 273-279.
[4] , Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (2005), no. 1-2, 53-66.
[5] , On generalized neighbourhood systems, Acta Math. Hungar. 121 (2008), no. 4, 395-400.
[6] , Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), no. 1-2, 29-36.
[7],δ - and θ-modifications of generalized topologies, Acta Math. Hungar. 120 (2008), no. 3, 275-279.
[8] , Products of generalized topologies, Acta Math. Hungar. 123 (2009), no. 1-2, 127-132.
[9] C. Cao, B. Wang, and W. Wang, Generalized topologies, generalized neighborhood systems, and generalized interior operators, Acta Math. Hungar. 132 (2011), no. 4, 310315.
[10] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
[11] R. Shen, A note on generalized connectedness, Acta Math. Hungar. 122 (2009), no. 3, 231-235.
[12] , Remarks on products of generalized topologies, Acta Math. Hungar. 124 (2009), no. 4, 363-369.

Xinxing Wu
School of Mathematics
University of Electronic Science and Technology of China
Chengdu, Sichuan, 611731, P. R. China
E-mail address: wuxinxing5201314@163.com
Peiyong Zhu
School of Mathematics
University of Electronic Science and Technology of China
Chengdu, Sichuan, 611731, P. R. China
E-mail address: zpy6940@sina.com.cn

[^0]: Received November 15, 2012; Revised March 4, 2013.
 2010 Mathematics Subject Classification. 54A05, 54D15, 54H20.
 Key words and phrases. generalized product topology (GPT), connectedness, α-connectedness, σ-connectedness, π-connectedness, β-connectedness.

 Project supported by the National Natural Science Foundation of China (No. 10671134); The Scientific Research Fund of Sichuan Provincial Education Department (No. 12ZA098).

