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AN ELEMENTARY PROOF OF SFORZA-SANTALÓ

RELATION FOR SPHERICAL AND HYPERBOLIC

POLYHEDRA

Yunhi Cho

Abstract. We defined and studied a naturally extended hyperbolic space
(see [1] and [2]). In this study, we describe Sforza’s formula [7] and San-
taló’s formula [6], which were rediscovered and later discussed by many
mathematicians (Milnor [4], Suárez-Peiró [8], J. Murakami and Ushijima
[5], and Mednykh [3]) in the spherical space in an elementary way. There-
after, using the extended hyperbolic space, we apply the same method to
prove their results in the hyperbolic space.

1. Introduction

The spherical space and hyperbolic space are both spaces of constant sec-
tional curvature ±1. It is well known that these two spaces have many similar
properties and similar formulae. Despite these similarities, there is a major
difference between them: The spherical space is a finite space whereas the
hyperbolic space is infinite.

Even though the hyperbolic space is infinite, we can further extend the
hyperbolic space beyond infinity using the following approach. If we look at the
hyperbolic space as a unit disk in the Kleinian model, then using an analytic
continuation method (exactly ǫ-approximation technique), we can construct
an extended hyperbolic space that unifies the hyperbolic space and Lorentzian
component as the subspaces of the unit sphere (see [2]). Thus, we can analyze
geometric objects lying across the ideal boundary by a finitely additive measure
theory and limit integral type volume integration. We describe this in brief.

We deform the Kleinian metric (on R
n) into an ǫ-Kleinian metric,

ds2K =

(

Σxjdxj

1− |x|2

)2

+
Σdx2

j

1− |x|2
→ ds2K,ǫ =

(

Σxjdxj

d2ǫ − |x|2

)2

+
Σdx2

j

d2ǫ − |x|2
,
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where dǫ = 1 − ǫi, and ǫ > 0. Next, we can derive the corresponding Kleinian
volume form and the Kleinian ǫ-volume form using the above metrics.

dVK =
dx1 ∧ · · · ∧ dxn

(1− |x|2)
n+1

2

→ dVK,ǫ =
dǫdx1 ∧ · · · ∧ dxn

(d2ǫ − |x|2)
n+1

2

.

In the new space, we define the volume of a region U as the limit of the integral
of the above ǫ-volume form.

vol(U) =

∫

U

dVK → volH(U) = lim
ǫ→0

∫

U

dVK,ǫ.

If region U is located inside the hyperbolic space, then the new volume satis-
fies the canonical property vol(U) = volH(U). Also, if the region U is lying
across the ideal boundary, we can calculate the volume volH(U) under natural
conditions, although vol(U) does not exist.

Notice that if we choose dǫ = 1 + ǫi instead of dǫ = 1 − ǫi, then we have
a slightly different geometry that exactly corresponds to a contour integration
with counterclockwise orientation around the point z = 1.

There exists another description of the extended hyperbolic space. We assign
the ǫ-Kleinian metric to {±1} × R

n ⊂ R
n+1 to obtain the pull-back metric on

the Euclidean sphere {x = (x0, x1, . . . , xn) | x
2
0 + x2

1 + · · ·+ x2
n = 1} by radial

projection with respect to the origin; this space is called the hyperbolic sphere
S
n
H , and the volume in S

n
H is similarly calculated using the limit integration

method. The extended hyperbolic space S
n
H is topologically the same as the

spherical space Sn and has many properties that resemble those of the spherical
space (see [2] and [1]).

As a powerful application of the extended hyperbolic space, we show that
the several results of Sforza [7], Santaló [6], Milnor [4], Suárez-Peiró [8], and
Murakami-Ushijima [5] regarding spherical or hyperbolic polyhedra are simply
restated in a unified and comprehensive form. We prove their results using an
elementary method that (importantly) uses Euler characteristic.

2. Sforza-Santaló relation in the spherical space and in the

extended hyperbolic space

On the standard sphere S
2 = {(x, y, z) | x2 + y2 + z2 = 1}, we consider a

convex spherical triangle △(1, 2, 3) (such that the three angles are larger than
0 and smaller than π) with three vertices 1, 2, 3, and make a dual triangle
△(1′, 2′, 3′), where the three vertices 1′, 2′, 3′ are located π

2 (outward direction

with respect to △(1, 2, 3)) from the three edges 23, 13, 12 of △(1, 2, 3), respec-
tively.

Next, we can divide the sphere S
2 into 8 convex triangles and classify the

triangles in 4 classes, I, II, III, and IV, with respect to successive facial connec-
tivity to △(1, 2, 3) (see Fig. 1(a)). If we denote the angles as A,B,C and the
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edges as a, b, c on the original triangle △(1, 2, 3), then we easily get the dual tri-
angle angles as π−a, π−b, π−c and the dual triangle edges as π−A, π−B, π−C

(the spherical dual principle).
By calculating the area of each triangle in the same class and taking the

sum of the areas, we easily obtain the following two formulae:

(1) vol (I) + vol (III) = vol (II) + vol (IV) = 2π

or equivalently,

(2) vol (I)− vol (II) + vol (III)− vol (IV) = 0.
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Figure 1

Similarly, in the 2-dimensional extended hyperbolic space S
2
H , we can con-

sider a convex hyperbolic triangle and its dual triangle (we need πi
2 instead of π

2

in the construction). We then divide the space S2H into 8 triangles and classify
the triangles into 4 classes, as done previously (see Fig. 1(b)). If we denote the
angles as A,B,C and the edges as a, b, c for the original triangle, then we also
easily find the dual triangle angles as π+ ai, π+ bi, π+ ci and the dual triangle
edges as (π −A)i, (π −B)i, (π − C)i (the hyperbolic dual principle).

In the case of the hyperbolic triangle, we also derive the same formula (2)
and formula (1), replacing 2π with −2π. The spherical (or hyperbolic) convex
polygons still satisfy both formula (2) and the spherical (or the hyperbolic
version of) formula (1).

For convenience, from now on, we will use the Roman number instead of
vol(Roman number) as well as other geometric objects.

We studied 2-dimensional case. From now, we study 3-dimensional case.
First, we consider a spherical tetrahedron or a spherical convex polyhedron P

on the standard 3-sphere S
3. We can make a dual spherical tetrahedron or a

dual polyhedron P ∗ and divide S
3 into several sections of a polyhedron, as in

the 2-dimensional case. In this case, we obtain 5 classes of polyhedra and find
the following Sforza-Santaló relation, similar to formula (2),

(3) I− II + III− IV + V = 0,
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where I = vol (P ), II =
∑

f :face of P vol (Pf ), III =
∑

e:edge of P vol (Pe), IV =
∑

v:vertex of P vol (Pv), and V = vol (P ∗). Here Pf denotes the convex hull
of face f of P and dual vertex f∗ (corresponding to f) of P ∗, Pe denotes
the convex hull of edge e of P and dual edge e∗ of P ∗, and Pv denotes the
convex hull of vertex v of P and dual face v∗ of P ∗. Let us prove the spherical
Sforza-Santaló relation by using elementary geometry.

Theorem 2.1. Any spherical convex polyhedron satisfies the following condi-

tion:

P + III + P ∗ = II + IV = π2 or simply I− II + III− IV + V = 0.

Proof. To prove formula (3), we must show

P + III + P ∗ = π2 =
vol (S3)

2
or II + IV = π2.

All polyhedra in class III are tetrahedra with four π
2 long edges and two

opposite edges a, a∗ in length. Note that the tetrahedron with two opposite
edge lengths a and a∗ has two opposite dihedral angles, a∗ and a (see Fig.
2(a)). Any dihedron with angle θ has a volume vol (S3)× θ

2π . Therefore, each
tetrahedron in class III, which has two opposite dihedral angles a and a∗, has
a volume vol (S3)× a

2π × a∗

2π = aa∗

2 by the symmetry of space S
3.

a
a

π
2

a
a

π
2

π
2

π
2

*
* a

a

π
2

π
2

π
2

π
2

*
*-ai

-a i

i

ii

i

i

(a) spherical case (b) hyperbolic case

Figure 2

Therefore, we have III =
∑

a:edge of P
aa∗

2 , and the formula P +III+P ∗ = π2

becomes (the already well known) formula (see [3], [4], [6], and [7])

(4) P +
∑

a:edge of P

aa∗

2
+ P ∗ = π2.

As the classes are non-overlapping, formula II + IV = π2 implies formula
(4). All polyhedra in class II (resp. IV) are polyhedra constructed by geodesic
joining between points of face f (resp. a dual face v∗) in P (resp. P ∗) and the
dual vertex f∗ (resp. the vertex v). If we denote the total area of the faces of P
(resp. P ∗) as S (resp. S∗), the total volume of the polyhedra of type II (resp.



AN ELEMENTARY PROOF OF SFORZA-SANTALÓ RELATION 803

IV) becomes S
vol (S2) × vol (S3)

2 = π
4S (resp. π

4S
∗). Therefore, II + IV = π2

and S + S∗ = 4π are equivalent conditions. Thus, all we must do is prove the
following formula.

(5) S + S∗ = 4π.

If the spherical polyhedron P with a number of faces f has a k-gonal face and

the k-gon has angles θ1, . . . , θk, then the area of the face becomes
∑k

l=1 θl −
(k − 2)π from the spherical triangle area formula A + B + C − π. Taking the
sum of the area of the faces of P , we can obtain the total area of the faces of
P and P ∗,

S =

f
∑

j=1

(

kj
∑

l=1

θj,l − (kj − 2)π) and S∗ =

f
∗

∑

j=1

(

k∗

j
∑

l=1

θ∗j,l − (k∗j − 2)π).

The total number of facial angles θj,l (resp. θ
∗

j,l) of P (resp. P ∗) is double the

total number of edges of P (resp. P ∗), i.e., 2e (resp. 2e∗). Additionally, we
know v = f

∗, e = e
∗, f = v

∗ based on the duality between P and P ∗. Therefore,
the total number of θj,l angles in P is the same as the total number of θ∗j,l
angles in P ∗.
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Figure 3

Now we consider the polyhedron of type IV at a vertex v of P and make a
polyhedron by extending every geodesic arc from v to a point in P with length
π
2 (see Fig. 3(a)). These two polyhedra have two faces that are two spherical
polygons s and s∗ (= a face of P ∗ corresponding to the vertex v) which are
located in a 2-sphere embedded in S

3 with center v. If we denote the facial
angles around v by θ1, θ2, . . ., then the spherical polygon s has edge lengths
θ1, θ2, . . .. The angles of s∗ become π − θ1, π − θ2, . . . by the spherical dual
principle. Note that there is a one-to-one correspondence between the facial
angles (θj) of P and the facial angles (π − θj) of P

∗.
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Denote fk the number of k-gonal faces of P . Thus, we find (trivially) f =
f3 + f4 + f5 + · · · and (easily) 2e = 3f3 + 4f4 + 5f5 + · · · . Then we have

f
∑

j=1

(kj − 2) = f3 + 2f4 + 3f5 + · · · = 2e− 2f and

f
∗

∑

j=1

(k∗j − 2) = f
∗

3 + 2f∗4 + 3f∗5 + · · · = 2e∗ − 2f∗.

Thus we derive

S + S∗ =
∑

θj,l − π

f
∑

j=1

(kj − 2) +
∑

(π − θj,l)− π

f
∗

∑

j=1

(k∗j − 2)

=

2e
∑

1

π − 2π(e− f+ e
∗ − f

∗)

= 2π(f− e+ v) = 4π.

Here, we used the fact that the surface of polyhedron P (homeomorphic to S
2)

has an Euler characteristic of 2. As a result, we have proven the theorem. �

Similarly, in the extended hyperbolic space S
3
H , we can consider a convex

hyperbolic polyhedron and its dual polyhedron. We can divide the space S
3
H

into several polyhedral pieces and 5 classes, just as in the spherical case. Now let
us prove the hyperbolic Sforza-Santaló relation by using elementary geometry.

Theorem 2.2. All hyperbolic convex polyhedra satisfy the following condition

P + III + P ∗ = II + IV = π2i3 or simply I− II + III− IV + V = 0.

Proof. To prove the Sforza-Santaló relation (3), we must prove II + IV =
vol (S3H )

2 = π2i3.

a

z

x

U

α

y
U

Figure 4

All polyhedra in class III are tetrahedra with four πi
2 long edges and two

opposite edges of length a, a∗ and dihedral angles −a∗i,−ai (see Fig. 2(b) and
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the angle definition in [1]). If we consider the given polyhedron in terms of the
Kleinian model, we can express it more simply (see Fig. 4) and the volume is
represented by

lim
ǫ→0

∫

U

dx ∧ dy ∧ dz

(d2ǫ − (x2 + y2 + z2))2
= lim

ǫ→0

∫ z0

0

∫ α

0

∫

∞

0

r

(d2ǫ − (r2 + z2))2
drdθdz,

where z0 is the z-coordinate value corresponding to the edge length a. The
existence of the value is supported by Proposition 3.2 in [2]. Note that we can
calculate the volume of a dihedron (by considering α = 2π in Fig. 4) with
dihedral angle β using Corollary 4.9 in [2], that is, −βπi. Therefore, we can

derive the volume of the polyhedron in Fig. 2(b) as −(−ai)πi × −a∗i
2π = aa∗

2 i

using the rotational symmetry of the volume around the z-axis. Thus, we find
the following formula (the hyperbolic version of formula (4)) in S

3
H :

(6) P +
∑

a:edge of P

aa∗

2
i+ P ∗ = π2i3.

If we consider the model space as the Kleinian model instead of S3H , we have
to replace π2i3 with 0 in (6), since the Kleinian model lose the half volume of
S
3
H . We can also show the hyperbolic dual principle for a convex polyhedron;

we find a∗ = (π−A)i (see Fig. 5). Therefore, the identity (6) can be rewritten
as

(7) P −
∑

a:edge of P

a(π −A)

2
+ P ′ = 0,

where P ′ = P ∗ ∩K3 and A is the corresponding dihedral angle of P at edge a

(see [5], [6], and [8]).
To prove the formula (6), we must show that II + IV = π2i3. Any polyhe-

dron of type II or IV has a volume of
vol (S3H )

2vol (S2
H
)
s = πi

4 s by Theorem 4.1, given

in [2]. By taking the sum of the volumes of type II and type IV polyhedra,
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we find πi
4 (S + S∗) = π2i3. Therefore II + IV = π2i3 and S + S∗ = 4πi2 are

equivalent conditions. Thus all we must do is prove the following formula,

(8) S + S∗ = −4π.

We know that the area of the spherical triangle is A+ B + C − π and that
the area of the triangle on the extended hyperbolic space is π−A−B−C (see
Proposition 4.4 given in [2]), i.e., there is only sign difference between them.
Thus a similar process can applied to the hyperbolic case to derive formula (8).

Notice that if we denote the facial angles around v of P as θ1, θ2, . . ., then the
corresponding polygon s in S

3
H has edge lengths of θ1i, θ2i, . . .. Additionally,

the angles of s∗ become π− θ1, π− θ2, . . . by the hyperbolic dual principle (see
Fig. 3(b)). Therefore we have the same relation between the facial angles (θi)
of P and the facial angles (π − θi) of P ∗ in the spherical space S

3 and in the
extended hyperbolic space S

3
H .

As a result, we can conclude the theorem. �

Remark 2.3. If we choose dǫ = 1 + ǫi instead of dǫ = 1 − ǫi, many geometric
quantities are changed; however, the formulae (6), (7), (8) and Theorem 2.2
are satisfied only change of π2i3 with π2(−i)3.

In this paper, we considered only a hyperbolic convex polygon or a polyhe-
dron. If we draw a general polyhedron lying across the ideal boundary, then we
need precise definitions of the dual polygon and dual polyhedron. Naturally,
we expect that our two theorems will be satisfied for more general cases from
the exact definitions. Additionally, we suspect that Theorems 2.1 and 2.2 could
be easily generalized to the higher dimensional case. We leave these problems
as the object of further research by readers. We suspect that the n-dimensional
version of the formula (3) is the same as Proposition 4.1 in [8].

References

[1] Y. Cho, Trigonometry in extended hyperbolic space and extended de Sitter space, Bull.
Korean Math. Soc. 46 (2009), no. 6, 1099–1133.

[2] Y. Cho and H. Kim, The analytic continuation of hyperbolic space, Geom. Dedicata 161

(2012), no. 1, 129–155.
[3] A. D. Mednykh, Hyperbolic and spherical volume for knots, links and polyhedra, Summer

school and conference on Geometry and Topology of 3-manifolds, Trieste-Italy, 6-24 June
2005.
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