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BACHET EQUATIONS AND CUBIC RESOLVENTS

Sung Sik Woo

Abstract. A Bachet equation Y
2 = X

3+k will have a rational solution
if and only if there is b ∈ Q for which X

3
− b

2
X

2 + k is reducible. In this
paper we show that such cubics arise as a cubic resolvent of a biquadratic
polynomial. And we prove various properties of cubic resolvents.

1. Introduction

We will call the equation of the form

(1) Y 2 = X3 + k (k ∈ Z)

a Bachet equation ([2] Chapter 17). If the equation (1) has a rational solution
(a, ab) then, by replacing Y = bX , the cubic polynomial

(2) h(X) = X3 − b2X2 + k

will have a rational root a and conversely. Hence to find a Bachet equation (1)
having a rational solution we need to find the cubic polynomial of the form (2)
having a rational root. We will call a cubic of the form (2) with b, k ∈ Q a cubic

of Bachet type. It is well known that a cubic resolvent of an irreducible quartic
has a rational root if and only if its Galois group is isomorphic to a subgroup
of D4 [1, 4]. Motivated by this fact we try to realize the cubic of a Bachet type
as a cubic resolvent of a rational quartic whose Galois group is isomorphic to
a subgroup of D4. Guided by the computations of cubic resolvents, we will
define a bijective map between certain classes of cubics which will play the
fundamental role in proving our main result.

In §2, we recall definitions of two cubic resolvents of quartics, one due to
Ferrari [1] and the other one given by van der Waerden [4]. We prove various
properties of resolvents and give relations between the two resolvents. Moti-
vated by computations of cubic resolvents in the previous section, we define in
§3 certain classes of polynomials and a function between them (Theorem 3.4).
Using the function, we find a necessary and sufficient condition for a cubic of
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Bachet type to have a rational root. Also we show that the cubics of Bachet
type come from a resolvent of a quartic.

2. Cubic resolvents of quartics

There are two kinds of cubic resolvents for a quartic which we introduce both
of them. The first one is due to Ferrari [1] and the second one is introduced by
van der Waerden [4]. Let

(3) f(X) = X4 + aX3 + bX2 + cX + d

be a quartic. If r1, r2, r3, r4 are the roots of f(X), then the Ferrari’s resolvent

RF (f) of f(X) is defined by a cubic having the roots

η1 = r1r2 + r3r4, η2 = r1r3 + r2r4, η3 = r1r4 + r2r3

and it is given by [1]

(4) RF (f) = X3 − bX2 + (ac− 4d)X − (a2d+ c2 − 4bd).

There is another resolvent which we call van der Waerden’s resolvent having
roots

θ1 = (r1 + r2)(r3 + r4), θ2 = (r1 + r3)(r2 + r4), θ3 = (r1 + r4)(r2 + r3)

which is given in [4]

(5) RW (f) = X3 − 2bX2 + (b2 + ac− 4d)X + (a2d+ c2 − abc).

If the coefficient of X3 of f is 0, then the roots θ1, θ2, θ3 of RW (f) and the
roots r1, r2, r3, r4 of f satisfy the relations [4]:

2r1 =
√

−θ1 +
√

−θ2 +
√

−θ3,
2r2 =

√

−θ1 −
√

−θ2 −
√

−θ3,
2r3 = −

√

−θ1 +
√

−θ2 −
√

−θ3,
2r4 = −

√

−θ1 −
√

−θ2 +
√

−θ3.

(6)

Proposition 2.1. Let f(X) = X4+ bX2+d and let fβ(X) = f(X+β). Then

RF (f
β) = RF (f)− 6β2X2 + 4β2(b+ 3β2)X + 4β2(4d− bβ2 − 2β4),

RW (fβ) = RW (f) + 12β2X2 + (−4bβ2 + 48β4)X + b2 − 4d+ 32β4 + 64β6.

Proof. Let r1, r2, r3, r4 be the roots of f(X) = X4 + bX2 + d so that we have

r1 + r2 + r3 + r4 = 0,

r1r2 + r3r4 + r1r3 + r2r4 + r1r4 + r2r3 = b,




(r1r2 + r3r4)(r1r3 + r2r4)+
(r1r2 + r3r4)(r1r4 + r2r3)+
(r1r3 + r2r4)(r1r4 + r2r3)



 = ac− 4d = −4d.
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For RF (f
β), note that if f(r) = 0, then fβ(r − β) = 0. Hence

RF (f
β) = (X − [(r1 − β)(r2 − β) + (r3 − β)(r4 − β)])

× (X − [(r1 − β)(r3 − β) + (r2 − β)(r4 − β)])

× (X − [(r1 − β)(r4 − β) + (r2 − β)(r3 − β)])

= RF (f)− 2β2





(X − r1r2 + r3r4)(X − r1r3 + r2r4)
+(X − r1r2 + r3r4)(X − r1r4 + r2r3)
+(X − r1r3 + r2r4)(X − r1r4 + r2r3)





+ 4β4(3X − (r1r2 + r3r4 + r1r3 + r2r4 + r1r4 + r2r3))− 8β6

= RF (f)− 2β2(3X2 − 2bX − 4d) + 4β4(3X − b)− 8β6

= RF (f)− 6β2X2 + 4β2(b + 3β2)X + 4β2(4d− bβ2 − 2β4),

since




(X − r1r2 + r3r4)(X − r1r3 + r2r4)
+(X − r1r2 + r3r4)(X − r1r4 + r2r3)
+(X − r1r3 + r2r4)(X − r1r4 + r2r3)



 = 3X2 − 2bX − 4d.

Now, for RW (fβ), we compute

RW (fβ) =





(X − (r1 + r2 − 2β)(r3 + r4 − 2β))
×(X − (r1 + r3 − 2β)(r2 + r4 − 2β))
×(X − (r1 + r4 − 2β)(r2 + r3 − 2β))





=





(X − (r1 + r2)(r3 + r4) + 4β2)
×(X − (r1 + r3)(r2 + r4) + 4β2)
×(X − (r1 + r4)(r2 + r3) + 4β2)





=RW (f) + 4β2





(X − (r1 + r2)(r3 + r4))(X − (r1 + r3)(r2 + r4))
×(X − (r1 + r3)(r2 + r4))(X − (r1 + r4)(r2 + r3))
×(X − (r1 + r3)(r2 + r4))(X − (r1 + r4)(r2 + r3))





+ 16β4[(X − (r1 + r2)(r3 + r4)) + (X − (r1 + r3)(r2 + r4))

+ (X − (r1 + r4)(r2 + r3))] + 64β6

=RW (f) + 4β2(3X2 − 4bX + (b2 − 4d)) + 16β4(3X + 2b) + 64β6

=RW (f) + 12β2X2 + (−4bβ2 + 48β4)X + b2 − 4d+ 32β4 + 64β6. �

Now we want to find the relation between RF (f) and RW (f).

Proposition 2.2. Let RF (f) = X3 + αX2 + βX + γ. Then the van der

Waerden’s resolvent is given by

RW (f) = X3 + 2αX2 + (α2 + β)X + αβ − γ.

Let RW (f) = X3 + λX2 + µX + ν. Then the Ferrari resolvent is given by

RF (f) = X3 +
λ

2
X2 +

1

4
(−λ2 + 4µ)X +

1

8
(−λ3 + 4λµ− 8ν).
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Proof. Let r1, r2, r3, r4 be the roots of (3). And let η1, η2, η3 be the roots of
RF (f) and θ1, θ2, θ3 be the roots of RW (f). Then

θ1 = η2 + η3,

θ2 = η1 + η3,

θ3 = η1 + η2,

η1 =
1

2
(−θ1 + θ2 + θ3),

η2 =
1

2
(θ1 − θ2 + θ3),

η3 =
1

2
(θ1 + θ2 − θ3).

We will use the identities

θ1 + θ2 + θ3 = 2(η1 + η2 + η3),

θ1θ2 + θ2θ3 + θ1θ3 = (η2 + η3)(η1 + η3) + (η1 + η3)(η1 + η2)

+ (η2 + η3)(η1 + η2)

= (η1 + η2 + η3)
2 + (η1η2 + η2η3 + η1η3),

θ1θ2θ3 = (η1 + η2)(η1 + η3)(η2 + η3)

= (η1 + η2 + η3)(η1η2 + η2η3 + η1η3)− η1η2η3.

Let

RF (f) = X3 + αX2 + βX + γ = (X − η1)(X − η2)(X − η3).

By the computation above, we have

RW (f) = (X − (η1 + η2))(X − (η1 + η3))(X − (η2 + η3))

= X3 − (η1 + η2 + η1 + η3 + η2 + η3)X
2

+ [η1 + η2)(η1 + η3) + (η1 + η3)(η2 + η3) + (η1 + η2)(η2 + η3)]X

− (η1 + η2)(η1 + η3)(η2 + η3)

= X3 + 2αX2 + (α2 + β)X + αβ − γ.

Now suppose

RW (f) = (X − θ1)(X − θ2)(X − θ3) = X3 + λX2 + µX + ν.

Then

−(θ1 + θ2 + θ3) = λ, θ1θ2 + θ2θ3 + θ1θ3 = µ, −θ1θ2θ3 = ν

and

RF (f) = (X − η1)(X − η2)(X − η3)

= X3 − (η1 + η2 + η3)X
2 + (η1η2 + η2η3 + η1η3)X − η1η2η3

= X3 +
λ

2
X2 +

(

µ−
(

λ

2

)2
)

X +
λ

2

(

µ−
(

λ

2

)2
)

− ν
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= X3 +
λ

2
X2 +

1

4
(−λ2 + 4µ)X +

1

8
(−λ3 + 4λµ− 8ν).

�

Motivated by these facts we define operations on cubic polynomials. Let

g(X) = X3 + αX2 + βX + γ,

h(X) = X3 + λX2 + µX + ν.

We define

gW (X) = X3 + 2αX2 + (α2 + β)X + αβ − γ,

hF (X) = X3 +
λ

2
X2 +

1

4
(−λ2 + 4µ)X +

1

8
(−λ3 + 4λµ− 8ν).

Hence, with these notations, we obtain the following result.

Proposition 2.3. (i) If η1, η2, η3 are the roots of a cubic g(X), then the roots

of gW (X) are θ1 = η2 + η3, θ2 = η1 + η3, θ3 = η1 + η2.
If θ1, θ2, θ3 are roots of a cubic h(X), then the roots of hF (X) are given by

η1 = 1
2
(−θ1 + θ2 + θ3), η2 = 1

2
(θ1 − θ2 + θ3), η3 = 1

2
(θ1 + θ2 − θ3).

(ii) Suppose g, h are monic rational cubics having one (resp. three) rational
root(s). Then gW and hF have one (resp. three) rational root(s).

(iii) We have

(gW )F = g and (hF )W = h.

Proof. (ii) follows from (i). The other results are obvious from the previous
computation. �

We will frequently consider biquadratic polynomial f(X) = X4 + pX2 + r.
The following fact is a special case of [3] Lemma 23, p. 151.

Lemma 2.4. Let K be a field. A biquadratic X4+pX2+r ∈ K[X ] is reducible
if and only if it is either of the form

(X2 + a)(X2 + b) = X4 − (a+ b)X2 + ab

or

(X2 + a)2 − b2X2 = X4 + (2a− b2)X2 + a2

for some a, b ∈ K.

Now we want to recover a quartic f from RW (f) when f is a biquadratic.

Proposition 2.5. Let BQ be the set of all monic biquadratic polynomials over

a field and let B0 be the set of monic cubics of the form h(X) = X3+αX2+βX.

If f ∈ BQ, then RW (f) ∈ B0. And if we let

R−(h) = X4 − α

2
X2 +

(

α2

16
− β

4

)

,

then RW (R−(h)) = h and RW : BQ→ B0 is a bijection with the inverse R−.

Further R−(h) is reducible if and only if β is a square or t4 − αt2 + β = 0
has a rational root t.
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Proof. The first statement is straight forward to check. Next we have to prove
the statement about reducibility of f . By Lemma 2.4 we see that f is irreducible
if and only if the corresponding quadratic has discriminant which is a square
or it is of the second type. The discriminant of the corresponding quadratic is

(α
2
)2 − 4(α

2

16
− β

4
) = β is a square.

Now consider the possibility of f being the second type of Lemma 2.4. Note

that f is of the second type if and only if b2 − 2a = α
2
, a2 = α2

16
− β

4
has a

rational solution in a, b. And this is equivalent to α = 2b2− 4a, α2− 4β = 16a2

has a rational solution. That is b4 − αb2 + β = 0 has a rational root. �

3. Bachet equations and cubic resolvents

If a Bachet equation Y 2 = X3 + k (k ∈ Z) has a rational solution (a, ab),
then the cubic polynomial

h(X) = X3 − b2X2 + k

will have a rational root a and conversely. Hence to find a Bachet equation
having a rational solution we need to find the cubic polynomial of Bachet type
having a rational root with the integer constant term.

If a biquadratic polynomial is irreducible, then the splitting field will be of
degree that divides 8. And if the Galois group of a rational quartic f has order
that divides 8, then the Galois group of f is isomorphic to either D4 or Z/4 or
Z/2×Z/2. Also in this case, it is well known that the cubic resolvent of f has
a rational solution [1] (Ferrari’s resolvent was used in [1], but by Proposition
2.3, the result can be also stated in terms of Waerden’s resolvent). Therefore
we want to find conditions of a quartic that becomes biquadratic by a change
of a variable whose cubic resolvent is a cubic of Bachet type.

Consider a rational quartic

f(X) = X4 + aX3 + bX2 + cX + d ∈ Q[X ].

We make a change of variable X 7→ X − a
4
to make the coefficient of X3 to be

zero and we denote the resulting quartic by f+. Then the equation becomes

f+(X) = f(X − a

4
) = X4 + pX2 + qX + r

and its resovents becomes

RF (f
+) = X3 − pX2 − 4rX − (q2 + 4pr),

RW (f+) = X3 − 2pX2 + (p2 − 4r)X + (q2 − 4pr),

where

p =
1

8
(−3a2 + 8b),

q =
1

8
(a3 − 4ab+ 8c),

r =
1

256
(−3a4 + 16a2b− 64ac+ 256d).
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We have the following elementary fact.

Lemma 3.1. Let f(X) = X4+pX2+r ∈ Q[X ]. Then the resolvents RF (f) and
RW (f) of the biquadratic polynomial f has a rational root p and 0, respectively.

Proof. Let r1, r2, r3, r4 be the roots of f . Let f̄(t) = t2+pt+r and a±
√
b (a, b ∈

Q) be the roots of f̄ . Then we can choose r1 =
√

a+
√
b , r2 =

√

a−√
b , r3 =

−
√

a+
√
b , r4 =

√

a−√
b . Then η1 = r1r3 + r2r4 = −2a = p which is a

root of RF (f). On the other hand, θ2 = (r1 + r3)(r2 + r4) = 0 is a root of
RW (f). �

By Lemma 3.1, resolvent cubics of a rational biquadratic polynomial has a
rational root. Motivated by this fact we choose the coefficients of the quartic
in the following way.

(1) To make the coefficient of X2 in the resolvent to be b2 we replace b→ b2

for RF (resp. b→ b2

2
for RW ).

(2) To make the coefficient of X in f+ to be 0 we let q = 0; i.e., c =
a
8
(4b2 − a2) for RF (resp. c = a

8
(2b2 − a2) for RW ).

(3) To make the coefficient of X in R(f) to be 0:

(The coefficient of X in RF (f))=ac− 4d = 0; d = 1
4
ac = a2

32
(4b2 − a2),

(The coefficient of X in RW (f))=b2 + ac− 4d = 0; d = 1
32
(−a4 +2a2b2 +2b4).

Ferrari’s resolvent

If we make the substitution for Ferrari’s resolvent above, then we get:

fF (X) = X4 + aX3 + b2X2 +
a

8
(4b2 − a2)X +

a2

32
(−a2 + 4b2),

f+
F (X) = fF (X − a

4
) = X4 +

1

8
(−3a2 + 8b2)X2 +

a2

28
(−3a2 + 16b2),

(7)

and their Ferrari’s resolvents are

RF (f) =X
3 − b2X2 +

1

26
a2(a2 − 4b2)2,

RF (f
+) =X3 +

1

8
(3a2 − 8b2)X2 +

a2

26
(a2 − 16b2)X

+
a2b2

29
(3a2 − 8b2)(3a2 − 16b2).

(8)

Waerden’s resolvent

If we make the substitution for Waerden’s resolvent above, then we get:

fW (X) = X4 + aX3 +
b2

2
X2 +

a

8
(2b2 − a2)X +

1

32
(−a4 + 2a2b2 + 2b4),

f+
W (X) = fW (X − a

4
) = X4 +

1

8
(−3a2 + 4b2)X2 +

1

28
(−3a4 + 8a2b2 + 16b4)

(9)
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and their Waerden’s resolvents are

RW (f) = X3 − b2X2 +
a4

64
(−a2 + 4b2),

RW (f+) = X3 − 1

4
(−3a2 + 4b2)X2 +

a2

16
(3a2 − 8b2)X.

(10)

Lemma 3.2. Let fF (X) and fW (X) be the quartics given in (7), (9). Then

RF (fF ) has a root −a2

4
+b2 and RW (fW ) has a root a2

4
. In particular, RF (fF )+

RW (fW ) = b2.

Proof. Let r1, r2, r3, r4 be the roots of f+. Then since f+(X) = f(X − a
4
), the

roots of f are ri − a
4
and hence the roots of RF (f) are

(r1 −
a

4
)(r2 −

a

4
) + (r3 −

a

4
)(r4 −

a

4
) = (r1r2 + r3r4) +

a2

8
= s1 +

a2

8
,

(r1 −
a

4
)(r3 −

a

4
) + (r2 −

a

4
)(r4 −

a

4
) = (r1r3 + r2r4) +

a2

8
= s2 +

a2

8
,

(r1 −
a

4
)(r4 −

a

4
) + (r2 −

a

4
)(r3 −

a

4
) = (r1r4 + r2r3) +

a2

8
= s3 +

a2

8
since r1 + r2 + r3 + r4 = 0 as they are the roots of a biquadratic polynomial.
Now since RF (f

+) has a root p = 1
8
(−3a2+8b2) by the previous result, we see

that p+ a2

8
= −3a2

8
+ b2 + a2

8
= −a2

4
+ b2 is a root of RF (f).

Similarly for RW we compute:

[(r3 −
a

2
)(r4 −

a

4
)] = [(r1 + r2)−

a

2
][(r3 + r4)−

a

2
]

= (r1 + r2)(r3 + r4)−
a

2
((r1 + r2 + r3 + r4) +

a2

4

= s1 +
a2

4
.

Now since RW (f+) has a root 0, we have the desired result. �

Example 3.3. Let a = 2, b2 = 25 so that c = 24 (These are chosen so that there
are no X3, X terms in f+ and noX in RF (f). f

+(X) = X4+23.5X2+ 97
16
+24).

Now f(X) = X4 + 2X3 + 25X2 + 24X + 12 which is irreducible since f+ is
irreducible by Lemma 2.4. Its resolvent is RF (f) = X3 − 25X2 + 576 =
(X − 24)(X2 − X − 24). Further k = 1

64
a2(4b − a2)2 = 576 = 242. The

coefficient p of X2 in f+ is p = 1
8
(−3a2+8b) = 23.5 which is a root of RF (f

+),

i.e., RF (f
+)(p) = 0. Hence the rational root of RF (f) is p+

a2

8
= 23.5+ 1

2
= 24.

Hence we conclude that the Bachet equation Y 2 = X3 + 576 has a rational, in
fact an integral solution X = 24, Y = 120.

Motivated by the comparison RW (f) with RW (f+) we define

B = {X3 + θX2 + η ∈ Q[X ] having a rational root},
B+ = {X3 + αX2 + βX ∈ Q[X ] with α2 − 3β is a square in Q}
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so that B contains all RW (f)’s and B+ contains all RW (f+)’s of (10). We
will prove that there is a bijection between them which will be the crux in
determining the Bachet equations having a rational solution.

Theorem 3.4. For the rational cubics

f(X) = X3 + θX2 + η with f(a) = 0, a ∈ Q,

g(X) = X3 + αX2 + βX with α2 − 3β = γ2 (γ ∈ Q, γ < 0),

we define

φ(f) = X3 + (3a+ θ)X2 + a(3a+ 2θ)X,

ψ(g) = X3 + γX2 − 1

27
(α− γ)2(α+ 2γ).

Then φ : B → B+ and ψ : B+ → B are inverses to each other.

Proof. First we check that φ(f) ∈ B+ and ψ(g) ∈ B. For this, we observe that
(3a+ θ)2 − 3a(3a+ 2θ) = θ2 and ψ(g) has a root α−γ

3
. Hence φ(f) ∈ B+ and

ψ(g) ∈ B.
Now we want to show φ and ψ are inverses to each other. Since a is a root

of f(X), we have X3+θX2+η = (X−a)(X2+(θ+a)X+a(θ+a)). Therefore
η = −a2(θ + a). We check:

ψφ(f) = ψ(X3 + (3a+ θ)X2 + a(3a+ 2θ)X)

= X3 + θX2 +
1

27
(−θ + (3a+ θ))2((−3a− θ)− 2θ)

= X3 + θX2 − a2(a+ θ) = f(X).

Next let g be the cubic as above. Then as we noted above, ψ(g) has a root
α− γ

3
. Hence

φψ(g) = φ(X3 + γX2 − 1

27
(α− γ)2(α+ 2γ))

= X3 + (3 · α− γ

3
+ γ)X2 +

α− γ

3
(α− γ + 2γ)

= X3 + αX2 +
1

3
(α2 − γ2) = g(X),

where the last equality follows from α2 − 3β = γ2. �

The following statement is straight forward to check. However we derive it
using Theorem 3.4 to illustrate the theorem. The reason why we choose γ < 0
will become obvious.

Corollary 3.5. The cubic equation Y 2 = X3 + k (k ∈ Q) has a rational

solution if and only if there are a, b ∈ Q such that k = −a2(a − b2). In this

case, the solution is given by (a, ab).
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Proof. First suppose k is of the form k = −a2(a − b2). It is trivial to check
that X3 − b2X2 + k has a root a. Hence there is a rational solution (a, ab) for
Y 2 = X3 + k (k ∈ Q).

Now suppose Y 2 = X3 + k (k ∈ Q) has a solution (a, ab). Then h(X) =
X3 − b2X2 + k has a root a ∈ Q. Then by Theorem 3.4, φ(h) = X3 + (3a −
b2)X2 + a(3a− 2b2)X ∈ B+. And with the notation of Theorem 3.4, we have
γ2 = b4, α = 3a− b2 and choose γ = −b2. Now

ψφ(h) = X3 + γX2 − 1

27
(α− γ)2(α+ 2γ)

= X3 − b2X2 − a2(a− b2) = h.

Hence k is of the form −a2(a− b2) as required. �

Corollary 3.6. For h(X) = X3 − b2X2 − a2(a− b2), we have

φ(h) = X3 + (3a− b2)X2 + a(3a− 2b2)X = h(X + a).

Further the rational cubic h(X) has three rational roots if and only if D =
(a− b2)(−3a− b2) is a square in Q.

Proof. We only need to check the last part. First we have

h(X) = (X − a)(X2 + (a− b2)X + a(a− b2))

and the quadratic factor has discriminant D = (a− b2)(−3a− b2). Hence the

roots of h are θ1 = a, θ2 = 1
2
(−a+ b2) +

√
D, θ2 = 1

2
(−a+ b2)−

√
D.

On the other hand,

φ(h) = X(X2 + (3a− b2)X + a(3a− 2b2))

and the quadratic factor has the same discriminant D; the roots of φ(h) are

η1 = 0, η2 = 1
2
(−3a− b2) +

√
D, η3 = 1

2
(−3a− b2)−

√
D. �

Let BQ be the set of all rational monic biquadratic polynomials and BQ0

be the monic quartics f for which f+ ∈ BQ, where, as before f+ is the quartic
without X3 term obtained by making a linear change of variable. Also we write
fβ(X) = f(X + β). We have a map ρ : BQ0 → BQ defined by ρ(f) = f+.
Now we have a diagram:

(11)

BQ0 ρ−−−−→ BQ

RW





y





y
RW

B
φ−−−−→ B+

Proposition 3.7. The diagram (11) is commutative.

Proof. Let f ∈ BQ0 and let RW (f) = X3 − b2X2 − a2(a − b2) with roots
{a = θ1, θ2, θ3}. Then φ(RW (f)) has roots {0 = θ1 − a, θ2 − a, θ3 − a}.
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Now ρ(f) = fβ for some β ∈ Q and RW (ρ(f)) = RW (fβ) has roots {0 =
θ1 − 4β2, θ2 − 4β2, θ3 − 4β2}. Since θ1 − a = 0 = θ1 − 4β2, we see that
a = 4β2 and hence φ(RW (f)) and RW (ρ(f)) have the same roots. Therefore
φ(RW (f)) = RW (ρ(f)). �

Next we show that a Bachet type cubic h(X) is a resolvent of a quartic over
a quadratic extension of Q.

Theorem 3.8. Let h(X) = X3−b2X2+k be a cubic with k = −a2(b−b2) (a, b ∈
Q). Then h(X) is a cubic resolvent of a rational quartic which becomes a

biquadratic by a linear change of variable if and only if a is a square in Q.

In this case, if h(X) = X3 − b2X2 − a4(a2 − b2), then the quartic and the

corresponding biquadratic polynomials are given by

f(X) = X4 + 2aX3 +
b2

2
X2 +

a

4
(b2 − 2a2)X +

1

16
(−8a4 + 4a2b2 + b4),

f+(X) = X4 +
1

2
(−3a2 + b2)X2 +

1

24
(−3a4 + 2a2b2 + b4).

Proof. The last statement follows from (9) and (10) by replacing a by 2a.
For the first statement let h(X) = X3 − b2X2 − a2(a − b2) ∈ B. Choose a

quartic f for which RW (f) = h. Let {θ1 = a, θ2, θ3} be the roots of RW (f) as
in Corollary 3.6 and let fβ be the biquadratic. Then as in Lemma 3.2, we see
that RW (fβ) has roots {a− 4β2, θ2 − 4β2, θ3 − 4β2}. Since fβ is biquadratic
RW (fβ) has 0 as a rational root, we have a = 4β2 which is a square of a rational
number 2β. �
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