BACHET EQUATIONS AND CUBIC RESOLVENTS

Sung Sik Woo

Abstract

A Bachet equation $Y^{2}=X^{3}+k$ will have a rational solution if and only if there is $b \in \mathbb{Q}$ for which $X^{3}-b^{2} X^{2}+k$ is reducible. In this paper we show that such cubics arise as a cubic resolvent of a biquadratic polynomial. And we prove various properties of cubic resolvents.

1. Introduction

We will call the equation of the form

$$
\begin{equation*}
Y^{2}=X^{3}+k(k \in \mathbb{Z}) \tag{1}
\end{equation*}
$$

a Bachet equation ([2] Chapter 17). If the equation (1) has a rational solution ($a, a b$) then, by replacing $Y=b X$, the cubic polynomial

$$
\begin{equation*}
h(X)=X^{3}-b^{2} X^{2}+k \tag{2}
\end{equation*}
$$

will have a rational root a and conversely. Hence to find a Bachet equation (1) having a rational solution we need to find the cubic polynomial of the form (2) having a rational root. We will call a cubic of the form (2) with $b, k \in \mathbb{Q}$ a cubic of Bachet type. It is well known that a cubic resolvent of an irreducible quartic has a rational root if and only if its Galois group is isomorphic to a subgroup of $D_{4}[1,4]$. Motivated by this fact we try to realize the cubic of a Bachet type as a cubic resolvent of a rational quartic whose Galois group is isomorphic to a subgroup of D_{4}. Guided by the computations of cubic resolvents, we will define a bijective map between certain classes of cubics which will play the fundamental role in proving our main result.

In $\S 2$, we recall definitions of two cubic resolvents of quartics, one due to Ferrari [1] and the other one given by van der Waerden [4]. We prove various properties of resolvents and give relations between the two resolvents. Motivated by computations of cubic resolvents in the previous section, we define in $\S 3$ certain classes of polynomials and a function between them (Theorem 3.4). Using the function, we find a necessary and sufficient condition for a cubic of

[^0]Bachet type to have a rational root. Also we show that the cubics of Bachet type come from a resolvent of a quartic.

2. Cubic resolvents of quartics

There are two kinds of cubic resolvents for a quartic which we introduce both of them. The first one is due to Ferrari [1] and the second one is introduced by van der Waerden [4]. Let

$$
\begin{equation*}
f(X)=X^{4}+a X^{3}+b X^{2}+c X+d \tag{3}
\end{equation*}
$$

be a quartic. If $r_{1}, r_{2}, r_{3}, r_{4}$ are the roots of $f(X)$, then the Ferrari's resolvent $R_{F}(f)$ of $f(X)$ is defined by a cubic having the roots

$$
\eta_{1}=r_{1} r_{2}+r_{3} r_{4}, \eta_{2}=r_{1} r_{3}+r_{2} r_{4}, \eta_{3}=r_{1} r_{4}+r_{2} r_{3}
$$

and it is given by [1]

$$
\begin{equation*}
R_{F}(f)=X^{3}-b X^{2}+(a c-4 d) X-\left(a^{2} d+c^{2}-4 b d\right) \tag{4}
\end{equation*}
$$

There is another resolvent which we call van der Waerden's resolvent having roots

$$
\theta_{1}=\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right), \theta_{2}=\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right), \theta_{3}=\left(r_{1}+r_{4}\right)\left(r_{2}+r_{3}\right)
$$

which is given in [4]

$$
\begin{equation*}
R_{W}(f)=X^{3}-2 b X^{2}+\left(b^{2}+a c-4 d\right) X+\left(a^{2} d+c^{2}-a b c\right) \tag{5}
\end{equation*}
$$

If the coefficient of X^{3} of f is 0 , then the roots $\theta_{1}, \theta_{2}, \theta_{3}$ of $R_{W}(f)$ and the roots $r_{1}, r_{2}, r_{3}, r_{4}$ of f satisfy the relations [4]:

$$
\begin{align*}
& 2 r_{1}=\sqrt{-\theta_{1}}+\sqrt{-\theta_{2}}+\sqrt{-\theta_{3}}, \\
& 2 r_{2}=\sqrt{-\theta_{1}}-\sqrt{-\theta_{2}}-\sqrt{-\theta_{3}}, \\
& 2 r_{3}=-\sqrt{-\theta_{1}}+\sqrt{-\theta_{2}}-\sqrt{-\theta_{3}}, \tag{6}\\
& 2 r_{4}=-\sqrt{-\theta_{1}}-\sqrt{-\theta_{2}}+\sqrt{-\theta_{3}} .
\end{align*}
$$

Proposition 2.1. Let $f(X)=X^{4}+b X^{2}+d$ and let $f^{\beta}(X)=f(X+\beta)$. Then

$$
\begin{aligned}
R_{F}\left(f^{\beta}\right) & =R_{F}(f)-6 \beta^{2} X^{2}+4 \beta^{2}\left(b+3 \beta^{2}\right) X+4 \beta^{2}\left(4 d-b \beta^{2}-2 \beta^{4}\right) \\
R_{W}\left(f^{\beta}\right) & =R_{W}(f)+12 \beta^{2} X^{2}+\left(-4 b \beta^{2}+48 \beta^{4}\right) X+b^{2}-4 d+32 \beta^{4}+64 \beta^{6}
\end{aligned}
$$

Proof. Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the roots of $f(X)=X^{4}+b X^{2}+d$ so that we have

$$
\begin{aligned}
& r_{1}+r_{2}+r_{3}+r_{4}=0 \\
& r_{1} r_{2}+r_{3} r_{4}+r_{1} r_{3}+r_{2} r_{4}+r_{1} r_{4}+r_{2} r_{3}=b, \\
& \left(\begin{array}{c}
\left(r_{1} r_{2}+r_{3} r_{4}\right)\left(r_{1} r_{3}+r_{2} r_{4}\right)+ \\
\left(r_{1} r_{2}+r_{3} r_{4}\right)\left(r_{1} r_{4}+r_{2} r_{3}\right)+ \\
\left(r_{1} r_{3}+r_{2} r_{4}\right)\left(r_{1} r_{4}+r_{2} r_{3}\right)
\end{array}\right)=a c-4 d=-4 d .
\end{aligned}
$$

For $R_{F}\left(f^{\beta}\right)$, note that if $f(r)=0$, then $f^{\beta}(r-\beta)=0$. Hence

$$
\begin{aligned}
R_{F}\left(f^{\beta}\right)= & \left(X-\left[\left(r_{1}-\beta\right)\left(r_{2}-\beta\right)+\left(r_{3}-\beta\right)\left(r_{4}-\beta\right)\right]\right) \\
& \times\left(X-\left[\left(r_{1}-\beta\right)\left(r_{3}-\beta\right)+\left(r_{2}-\beta\right)\left(r_{4}-\beta\right)\right]\right) \\
& \times\left(X-\left[\left(r_{1}-\beta\right)\left(r_{4}-\beta\right)+\left(r_{2}-\beta\right)\left(r_{3}-\beta\right)\right]\right) \\
= & R_{F}(f)-2 \beta^{2}\left(\begin{array}{c}
\left(X-r_{1} r_{2}+r_{3} r_{4}\right)\left(X-r_{1} r_{3}+r_{2} r_{4}\right) \\
+\left(X-r_{1} r_{2}+r_{3} r_{4}\right)\left(X-r_{1} r_{4}+r_{2} r_{3}\right) \\
+\left(X-r_{1} r_{3}+r_{2} r_{4}\right)\left(X-r_{1} r_{4}+r_{2} r_{3}\right)
\end{array}\right) \\
& +4 \beta^{4}\left(3 X-\left(r_{1} r_{2}+r_{3} r_{4}+r_{1} r_{3}+r_{2} r_{4}+r_{1} r_{4}+r_{2} r_{3}\right)\right)-8 \beta^{6} \\
= & R_{F}(f)-2 \beta^{2}\left(3 X^{2}-2 b X-4 d\right)+4 \beta^{4}(3 X-b)-8 \beta^{6} \\
= & R_{F}(f)-6 \beta^{2} X^{2}+4 \beta^{2}\left(b+3 \beta^{2}\right) X+4 \beta^{2}\left(4 d-b \beta^{2}-2 \beta^{4}\right),
\end{aligned}
$$

since

$$
\left(\begin{array}{c}
\left(X-r_{1} r_{2}+r_{3} r_{4}\right)\left(X-r_{1} r_{3}+r_{2} r_{4}\right) \\
+\left(X-r_{1} r_{2}+r_{3} r_{4}\right)\left(X-r_{1} r_{4}+r_{2} r_{3}\right) \\
+\left(X-r_{1} r_{3}+r_{2} r_{4}\right)\left(X-r_{1} r_{4}+r_{2} r_{3}\right)
\end{array}\right)=3 X^{2}-2 b X-4 d .
$$

Now, for $R_{W}\left(f^{\beta}\right)$, we compute

$$
\begin{aligned}
R_{W}\left(f^{\beta}\right)= & {\left[\begin{array}{c}
\left(X-\left(r_{1}+r_{2}-2 \beta\right)\left(r_{3}+r_{4}-2 \beta\right)\right) \\
\times\left(X-\left(r_{1}+r_{3}-2 \beta\right)\left(r_{2}+r_{4}-2 \beta\right)\right) \\
\times\left(X-\left(r_{1}+r_{4}-2 \beta\right)\left(r_{2}+r_{3}-2 \beta\right)\right)
\end{array}\right] } \\
= & {\left[\begin{array}{c}
\left(X-\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right)+4 \beta^{2}\right) \\
\times\left(X-\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right)+4 \beta^{2}\right) \\
\times\left(X-\left(r_{1}+r_{4}\right)\left(r_{2}+r_{3}\right)+4 \beta^{2}\right)
\end{array}\right] } \\
= & R_{W}(f)+4 \beta^{2}\left(\begin{array}{c}
\left(X-\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right)\right)\left(X-\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right)\right) \\
\times\left(X-\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right)\right)\left(X-\left(r_{1}+r_{4}\right)\left(r_{2}+r_{3}\right)\right) \\
\times\left(X-\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right)\right)\left(X-\left(r_{1}+r_{4}\right)\left(r_{2}+r_{3}\right)\right)
\end{array}\right) \\
& +16 \beta^{4}\left[\left(X-\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right)\right)+\left(X-\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right)\right)\right. \\
& \left.+\left(X-\left(r_{1}+r_{4}\right)\left(r_{2}+r_{3}\right)\right)\right]+64 \beta^{6} \\
= & R_{W}(f)+4 \beta^{2}\left(3 X^{2}-4 b X+\left(b^{2}-4 d\right)\right)+16 \beta^{4}(3 X+2 b)+64 \beta^{6} \\
= & R_{W}(f)+12 \beta^{2} X^{2}+\left(-4 b \beta^{2}+48 \beta^{4}\right) X+b^{2}-4 d+32 \beta^{4}+64 \beta^{6} .
\end{aligned}
$$

Now we want to find the relation between $R_{F}(f)$ and $R_{W}(f)$.
Proposition 2.2. Let $R_{F}(f)=X^{3}+\alpha X^{2}+\beta X+\gamma$. Then the van der Waerden's resolvent is given by

$$
R_{W}(f)=X^{3}+2 \alpha X^{2}+\left(\alpha^{2}+\beta\right) X+\alpha \beta-\gamma .
$$

Let $R_{W}(f)=X^{3}+\lambda X^{2}+\mu X+\nu$. Then the Ferrari resolvent is given by

$$
R_{F}(f)=X^{3}+\frac{\lambda}{2} X^{2}+\frac{1}{4}\left(-\lambda^{2}+4 \mu\right) X+\frac{1}{8}\left(-\lambda^{3}+4 \lambda \mu-8 \nu\right) .
$$

Proof. Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the roots of (3). And let $\eta_{1}, \eta_{2}, \eta_{3}$ be the roots of $R_{F}(f)$ and $\theta_{1}, \theta_{2}, \theta_{3}$ be the roots of $R_{W}(f)$. Then

$$
\begin{aligned}
\theta_{1} & =\eta_{2}+\eta_{3} \\
\theta_{2} & =\eta_{1}+\eta_{3} \\
\theta_{3} & =\eta_{1}+\eta_{2} \\
\eta_{1} & =\frac{1}{2}\left(-\theta_{1}+\theta_{2}+\theta_{3}\right), \\
\eta_{2} & =\frac{1}{2}\left(\theta_{1}-\theta_{2}+\theta_{3}\right), \\
\eta_{3} & =\frac{1}{2}\left(\theta_{1}+\theta_{2}-\theta_{3}\right)
\end{aligned}
$$

We will use the identities

$$
\begin{aligned}
& \theta_{1}+\theta_{2}+\theta_{3}=2\left(\eta_{1}+\eta_{2}+\eta_{3}\right) \\
& \theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{1} \theta_{3}= \\
& \left(\eta_{2}+\eta_{3}\right)\left(\eta_{1}+\eta_{3}\right)+\left(\eta_{1}+\eta_{3}\right)\left(\eta_{1}+\eta_{2}\right) \\
& \\
& \quad+\left(\eta_{2}+\eta_{3}\right)\left(\eta_{1}+\eta_{2}\right) \\
& = \\
& \left(\eta_{1}+\eta_{2}+\eta_{3}\right)^{2}+\left(\eta_{1} \eta_{2}+\eta_{2} \eta_{3}+\eta_{1} \eta_{3}\right) \\
& \begin{aligned}
\theta_{1} \theta_{2} \theta_{3}= & \left(\eta_{1}+\eta_{2}\right)\left(\eta_{1}+\eta_{3}\right)\left(\eta_{2}+\eta_{3}\right) \\
= & \left(\eta_{1}+\eta_{2}+\eta_{3}\right)\left(\eta_{1} \eta_{2}+\eta_{2} \eta_{3}+\eta_{1} \eta_{3}\right)-\eta_{1} \eta_{2} \eta_{3}
\end{aligned}
\end{aligned}
$$

Let

$$
R_{F}(f)=X^{3}+\alpha X^{2}+\beta X+\gamma=\left(X-\eta_{1}\right)\left(X-\eta_{2}\right)\left(X-\eta_{3}\right) .
$$

By the computation above, we have

$$
\begin{aligned}
R_{W}(f)= & \left(X-\left(\eta_{1}+\eta_{2}\right)\right)\left(X-\left(\eta_{1}+\eta_{3}\right)\right)\left(X-\left(\eta_{2}+\eta_{3}\right)\right) \\
= & X^{3}-\left(\eta_{1}+\eta_{2}+\eta_{1}+\eta_{3}+\eta_{2}+\eta_{3}\right) X^{2} \\
& \left.+\left[\eta_{1}+\eta_{2}\right)\left(\eta_{1}+\eta_{3}\right)+\left(\eta_{1}+\eta_{3}\right)\left(\eta_{2}+\eta_{3}\right)+\left(\eta_{1}+\eta_{2}\right)\left(\eta_{2}+\eta_{3}\right)\right] X \\
& -\left(\eta_{1}+\eta_{2}\right)\left(\eta_{1}+\eta_{3}\right)\left(\eta_{2}+\eta_{3}\right) \\
= & X^{3}+2 \alpha X^{2}+\left(\alpha^{2}+\beta\right) X+\alpha \beta-\gamma .
\end{aligned}
$$

Now suppose

$$
R_{W}(f)=\left(X-\theta_{1}\right)\left(X-\theta_{2}\right)\left(X-\theta_{3}\right)=X^{3}+\lambda X^{2}+\mu X+\nu
$$

Then

$$
-\left(\theta_{1}+\theta_{2}+\theta_{3}\right)=\lambda, \theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{1} \theta_{3}=\mu,-\theta_{1} \theta_{2} \theta_{3}=\nu
$$

and

$$
\begin{aligned}
R_{F}(f) & =\left(X-\eta_{1}\right)\left(X-\eta_{2}\right)\left(X-\eta_{3}\right) \\
& =X^{3}-\left(\eta_{1}+\eta_{2}+\eta_{3}\right) X^{2}+\left(\eta_{1} \eta_{2}+\eta_{2} \eta_{3}+\eta_{1} \eta_{3}\right) X-\eta_{1} \eta_{2} \eta_{3} \\
& =X^{3}+\frac{\lambda}{2} X^{2}+\left(\mu-\left(\frac{\lambda}{2}\right)^{2}\right) X+\frac{\lambda}{2}\left(\mu-\left(\frac{\lambda}{2}\right)^{2}\right)-\nu
\end{aligned}
$$

$$
=X^{3}+\frac{\lambda}{2} X^{2}+\frac{1}{4}\left(-\lambda^{2}+4 \mu\right) X+\frac{1}{8}\left(-\lambda^{3}+4 \lambda \mu-8 \nu\right) .
$$

Motivated by these facts we define operations on cubic polynomials. Let

$$
\begin{aligned}
& g(X)=X^{3}+\alpha X^{2}+\beta X+\gamma \\
& h(X)=X^{3}+\lambda X^{2}+\mu X+\nu
\end{aligned}
$$

We define

$$
\begin{aligned}
g_{W}(X) & =X^{3}+2 \alpha X^{2}+\left(\alpha^{2}+\beta\right) X+\alpha \beta-\gamma, \\
h_{F}(X) & =X^{3}+\frac{\lambda}{2} X^{2}+\frac{1}{4}\left(-\lambda^{2}+4 \mu\right) X+\frac{1}{8}\left(-\lambda^{3}+4 \lambda \mu-8 \nu\right) .
\end{aligned}
$$

Hence, with these notations, we obtain the following result.
Proposition 2.3. (i) If $\eta_{1}, \eta_{2}, \eta_{3}$ are the roots of a cubic $g(X)$, then the roots of $g_{W}(X)$ are $\theta_{1}=\eta_{2}+\eta_{3}, \theta_{2}=\eta_{1}+\eta_{3}, \theta_{3}=\eta_{1}+\eta_{2}$.

If $\theta_{1}, \theta_{2}, \theta_{3}$ are roots of a cubic $h(X)$, then the roots of $h_{F}(X)$ are given by $\eta_{1}=\frac{1}{2}\left(-\theta_{1}+\theta_{2}+\theta_{3}\right), \eta_{2}=\frac{1}{2}\left(\theta_{1}-\theta_{2}+\theta_{3}\right), \eta_{3}=\frac{1}{2}\left(\theta_{1}+\theta_{2}-\theta_{3}\right)$.
(ii) Suppose g, h are monic rational cubics having one (resp. three) rational root(s). Then g_{W} and h_{F} have one (resp. three) rational root(s).
(iii) We have

$$
\left(g_{W}\right)_{F}=g \text { and }\left(h_{F}\right)_{W}=h .
$$

Proof. (ii) follows from (i). The other results are obvious from the previous computation.

We will frequently consider biquadratic polynomial $f(X)=X^{4}+p X^{2}+r$. The following fact is a special case of [3] Lemma 23, p. 151.
Lemma 2.4. Let K be a field. A biquadratic $X^{4}+p X^{2}+r \in K[X]$ is reducible if and only if it is either of the form

$$
\left(X^{2}+a\right)\left(X^{2}+b\right)=X^{4}-(a+b) X^{2}+a b
$$

or

$$
\left(X^{2}+a\right)^{2}-b^{2} X^{2}=X^{4}+\left(2 a-b^{2}\right) X^{2}+a^{2}
$$

for some $a, b \in K$.
Now we want to recover a quartic f from $R_{W}(f)$ when f is a biquadratic.
Proposition 2.5. Let $B Q$ be the set of all monic biquadratic polynomials over a field and let B_{0} be the set of monic cubics of the form $h(X)=X^{3}+\alpha X^{2}+\beta X$. If $f \in B Q$, then $R_{W}(f) \in B_{0}$. And if we let

$$
R^{-}(h)=X^{4}-\frac{\alpha}{2} X^{2}+\left(\frac{\alpha^{2}}{16}-\frac{\beta}{4}\right),
$$

then $R_{W}\left(R^{-}(h)\right)=h$ and $R_{W}: B Q \rightarrow B_{0}$ is a bijection with the inverse R^{-}.
Further $R^{-}(h)$ is reducible if and only if β is a square or $t^{4}-\alpha t^{2}+\beta=0$ has a rational root t.

Proof. The first statement is straight forward to check. Next we have to prove the statement about reducibility of f. By Lemma 2.4 we see that f is irreducible if and only if the corresponding quadratic has discriminant which is a square or it is of the second type. The discriminant of the corresponding quadratic is $\left(\frac{\alpha}{2}\right)^{2}-4\left(\frac{\alpha^{2}}{16}-\frac{\beta}{4}\right)=\beta$ is a square.

Now consider the possibility of f being the second type of Lemma 2.4. Note that f is of the second type if and only if $b^{2}-2 a=\frac{\alpha}{2}, a^{2}=\frac{\alpha^{2}}{16}-\frac{\beta}{4}$ has a rational solution in a, b. And this is equivalent to $\alpha=2 b^{2}-4 a, \alpha^{2}-4 \beta=16 a^{2}$ has a rational solution. That is $b^{4}-\alpha b^{2}+\beta=0$ has a rational root.

3. Bachet equations and cubic resolvents

If a Bachet equation $Y^{2}=X^{3}+k(k \in \mathbb{Z})$ has a rational solution $(a, a b)$, then the cubic polynomial

$$
h(X)=X^{3}-b^{2} X^{2}+k
$$

will have a rational root a and conversely. Hence to find a Bachet equation having a rational solution we need to find the cubic polynomial of Bachet type having a rational root with the integer constant term.

If a biquadratic polynomial is irreducible, then the splitting field will be of degree that divides 8 . And if the Galois group of a rational quartic f has order that divides 8 , then the Galois group of f is isomorphic to either D_{4} or $\mathbb{Z} / 4$ or $\mathbb{Z} / 2 \times \mathbb{Z} / 2$. Also in this case, it is well known that the cubic resolvent of f has a rational solution [1] (Ferrari's resolvent was used in [1], but by Proposition 2.3 , the result can be also stated in terms of Waerden's resolvent). Therefore we want to find conditions of a quartic that becomes biquadratic by a change of a variable whose cubic resolvent is a cubic of Bachet type.

Consider a rational quartic

$$
f(X)=X^{4}+a X^{3}+b X^{2}+c X+d \in \mathbb{Q}[X] .
$$

We make a change of variable $X \mapsto X-\frac{a}{4}$ to make the coefficient of X^{3} to be zero and we denote the resulting quartic by f^{+}. Then the equation becomes

$$
f^{+}(X)=f\left(X-\frac{a}{4}\right)=X^{4}+p X^{2}+q X+r
$$

and its resovents becomes

$$
\begin{aligned}
R_{F}\left(f^{+}\right) & =X^{3}-p X^{2}-4 r X-\left(q^{2}+4 p r\right) \\
R_{W}\left(f^{+}\right) & =X^{3}-2 p X^{2}+\left(p^{2}-4 r\right) X+\left(q^{2}-4 p r\right)
\end{aligned}
$$

where

$$
\begin{aligned}
p & =\frac{1}{8}\left(-3 a^{2}+8 b\right), \\
q & =\frac{1}{8}\left(a^{3}-4 a b+8 c\right), \\
r & =\frac{1}{256}\left(-3 a^{4}+16 a^{2} b-64 a c+256 d\right) .
\end{aligned}
$$

We have the following elementary fact.
Lemma 3.1. Let $f(X)=X^{4}+p X^{2}+r \in \mathbb{Q}[X]$. Then the resolvents $R_{F}(f)$ and $R_{W}(f)$ of the biquadratic polynomial f has a rational root p and 0 , respectively.
Proof. Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the roots of f. Let $\bar{f}(t)=t^{2}+p t+r$ and $a \pm \sqrt{b}(a, b \in$ $\mathbb{Q})$ be the roots of \bar{f}. Then we can choose $r_{1}=\sqrt{a+\sqrt{b}}, r_{2}=\sqrt{a-\sqrt{b}}, r_{3}=$ $-\sqrt{a+\sqrt{b}}, r_{4}=\sqrt{a-\sqrt{b}}$. Then $\eta_{1}=r_{1} r_{3}+r_{2} r_{4}=-2 a=p$ which is a root of $R_{F}(f)$. On the other hand, $\theta_{2}=\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right)=0$ is a root of $R_{W}(f)$.

By Lemma 3.1, resolvent cubics of a rational biquadratic polynomial has a rational root. Motivated by this fact we choose the coefficients of the quartic in the following way.
(1) To make the coefficient of X^{2} in the resolvent to be b^{2} we replace $b \rightarrow b^{2}$ for R_{F} (resp. $b \rightarrow \frac{b^{2}}{2}$ for R_{W}).
(2) To make the coefficient of X in f^{+}to be 0 we let $q=0$; i.e., $c=$ $\frac{a}{8}\left(4 b^{2}-a^{2}\right)$ for R_{F} (resp. $c=\frac{a}{8}\left(2 b^{2}-a^{2}\right)$ for $\left.R_{W}\right)$.
(3) To make the coefficient of X in $R(f)$ to be 0 :
(The coefficient of X in $\left.R_{F}(f)\right)=a c-4 d=0 ; d=\frac{1}{4} a c=\frac{a^{2}}{32}\left(4 b^{2}-a^{2}\right.$), (The coefficient of X in $\left.R_{W}(f)\right)=b^{2}+a c-4 d=0 ; d=\frac{1}{32}\left(-a^{4}+2 a^{2} b^{2}+2 b^{4}\right)$.

Ferrari's resolvent

If we make the substitution for Ferrari's resolvent above, then we get:

$$
\begin{align*}
& f_{F}(X)=X^{4}+a X^{3}+b^{2} X^{2}+\frac{a}{8}\left(4 b^{2}-a^{2}\right) X+\frac{a^{2}}{32}\left(-a^{2}+4 b^{2}\right) \\
& f_{F}^{+}(X)=f_{F}\left(X-\frac{a}{4}\right)=X^{4}+\frac{1}{8}\left(-3 a^{2}+8 b^{2}\right) X^{2}+\frac{a^{2}}{2^{8}}\left(-3 a^{2}+16 b^{2}\right) \tag{7}
\end{align*}
$$

and their Ferrari's resolvents are

$$
\begin{align*}
R_{F}(f)= & X^{3}-b^{2} X^{2}+\frac{1}{2^{6}} a^{2}\left(a^{2}-4 b^{2}\right)^{2}, \\
R_{F}\left(f^{+}\right)= & X^{3}+\frac{1}{8}\left(3 a^{2}-8 b^{2}\right) X^{2}+\frac{a^{2}}{2^{6}}\left(a^{2}-16 b^{2}\right) X \tag{8}\\
& +\frac{a^{2} b^{2}}{2^{9}}\left(3 a^{2}-8 b^{2}\right)\left(3 a^{2}-16 b^{2}\right) .
\end{align*}
$$

Waerden's resolvent

If we make the substitution for Waerden's resolvent above, then we get:

$$
\begin{align*}
& f_{W}(X)=X^{4}+a X^{3}+\frac{b^{2}}{2} X^{2}+\frac{a}{8}\left(2 b^{2}-a^{2}\right) X+\frac{1}{32}\left(-a^{4}+2 a^{2} b^{2}+2 b^{4}\right) \tag{9}\\
& f_{W}^{+}(X)=f_{W}\left(X-\frac{a}{4}\right)=X^{4}+\frac{1}{8}\left(-3 a^{2}+4 b^{2}\right) X^{2}+\frac{1}{2^{8}}\left(-3 a^{4}+8 a^{2} b^{2}+16 b^{4}\right)
\end{align*}
$$

and their Waerden's resolvents are

$$
\begin{align*}
R_{W}(f) & =X^{3}-b^{2} X^{2}+\frac{a^{4}}{64}\left(-a^{2}+4 b^{2}\right) \tag{10}\\
R_{W}\left(f^{+}\right) & =X^{3}-\frac{1}{4}\left(-3 a^{2}+4 b^{2}\right) X^{2}+\frac{a^{2}}{16}\left(3 a^{2}-8 b^{2}\right) X
\end{align*}
$$

Lemma 3.2. Let $f_{F}(X)$ and $f_{W}(X)$ be the quartics given in (7), (9). Then $R_{F}\left(f_{F}\right)$ has a root $-\frac{a^{2}}{4}+b^{2}$ and $R_{W}\left(f_{W}\right)$ has a root $\frac{a^{2}}{4}$. In particular, $R_{F}\left(f_{F}\right)+$ $R_{W}\left(f_{W}\right)=b^{2}$.

Proof. Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the roots of f^{+}. Then since $f^{+}(X)=f\left(X-\frac{a}{4}\right)$, the roots of f are $r_{i}-\frac{a}{4}$ and hence the roots of $R_{F}(f)$ are

$$
\begin{aligned}
& \left(r_{1}-\frac{a}{4}\right)\left(r_{2}-\frac{a}{4}\right)+\left(r_{3}-\frac{a}{4}\right)\left(r_{4}-\frac{a}{4}\right)=\left(r_{1} r_{2}+r_{3} r_{4}\right)+\frac{a^{2}}{8}=s_{1}+\frac{a^{2}}{8} \\
& \left(r_{1}-\frac{a}{4}\right)\left(r_{3}-\frac{a}{4}\right)+\left(r_{2}-\frac{a}{4}\right)\left(r_{4}-\frac{a}{4}\right)=\left(r_{1} r_{3}+r_{2} r_{4}\right)+\frac{a^{2}}{8}=s_{2}+\frac{a^{2}}{8} \\
& \left(r_{1}-\frac{a}{4}\right)\left(r_{4}-\frac{a}{4}\right)+\left(r_{2}-\frac{a}{4}\right)\left(r_{3}-\frac{a}{4}\right)=\left(r_{1} r_{4}+r_{2} r_{3}\right)+\frac{a^{2}}{8}=s_{3}+\frac{a^{2}}{8}
\end{aligned}
$$

since $r_{1}+r_{2}+r_{3}+r_{4}=0$ as they are the roots of a biquadratic polynomial. Now since $R_{F}\left(f^{+}\right)$has a root $p=\frac{1}{8}\left(-3 a^{2}+8 b^{2}\right)$ by the previous result, we see that $p+\frac{a^{2}}{8}=\frac{-3 a^{2}}{8}+b^{2}+\frac{a^{2}}{8}=-\frac{a^{2}}{4}+b^{2}$ is a root of $R_{F}(f)$.

Similarly for R_{W} we compute:

$$
\begin{aligned}
{\left[\left(r_{3}-\frac{a}{2}\right)\left(r_{4}-\frac{a}{4}\right)\right] } & =\left[\left(r_{1}+r_{2}\right)-\frac{a}{2}\right]\left[\left(r_{3}+r_{4}\right)-\frac{a}{2}\right] \\
& =\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right)-\frac{a}{2}\left(\left(r_{1}+r_{2}+r_{3}+r_{4}\right)+\frac{a^{2}}{4}\right. \\
& =s_{1}+\frac{a^{2}}{4}
\end{aligned}
$$

Now since $R_{W}\left(f^{+}\right)$has a root 0 , we have the desired result.
Example 3.3. Let $a=2, b^{2}=25$ so that $c=24$ (These are chosen so that there are no X^{3}, X terms in f^{+}and no X in $\left.R_{F}(f) . f^{+}(X)=X^{4}+23.5 X^{2}+\frac{97}{16}+24\right)$. Now $f(X)=X^{4}+2 X^{3}+25 X^{2}+24 X+12$ which is irreducible since f^{+}is irreducible by Lemma 2.4. Its resolvent is $R_{F}(f)=X^{3}-25 X^{2}+576=$ $(X-24)\left(X^{2}-X-24\right)$. Further $k=\frac{1}{64} a^{2}\left(4 b-a^{2}\right)^{2}=576=24^{2}$. The coefficient p of X^{2} in f^{+}is $p=\frac{1}{8}\left(-3 a^{2}+8 b\right)=23.5$ which is a root of $R_{F}\left(f^{+}\right)$, i.e., $R_{F}\left(f^{+}\right)(p)=0$. Hence the rational root of $R_{F}(f)$ is $p+\frac{a^{2}}{8}=23.5+\frac{1}{2}=24$. Hence we conclude that the Bachet equation $Y^{2}=X^{3}+576$ has a rational, in fact an integral solution $X=24, Y=120$.

Motivated by the comparison $R_{W}(f)$ with $R_{W}\left(f^{+}\right)$we define

$$
\begin{aligned}
B & =\left\{X^{3}+\theta X^{2}+\eta \in \mathbb{Q}[X] \text { having a rational root }\right\}, \\
B^{+} & =\left\{X^{3}+\alpha X^{2}+\beta X \in \mathbb{Q}[X] \text { with } \alpha^{2}-3 \beta \text { is a square in } \mathbb{Q}\right\}
\end{aligned}
$$

so that B contains all $R_{W}(f)$'s and B^{+}contains all $R_{W}\left(f^{+}\right)$'s of (10). We will prove that there is a bijection between them which will be the crux in determining the Bachet equations having a rational solution.

Theorem 3.4. For the rational cubics

$$
\begin{aligned}
& f(X)=X^{3}+\theta X^{2}+\eta \text { with } f(a)=0, a \in \mathbb{Q} \\
& g(X)=X^{3}+\alpha X^{2}+\beta X \text { with } \alpha^{2}-3 \beta=\gamma^{2}(\gamma \in \mathbb{Q}, \gamma<0)
\end{aligned}
$$

we define

$$
\begin{aligned}
& \phi(f)=X^{3}+(3 a+\theta) X^{2}+a(3 a+2 \theta) X \\
& \psi(g)=X^{3}+\gamma X^{2}-\frac{1}{27}(\alpha-\gamma)^{2}(\alpha+2 \gamma)
\end{aligned}
$$

Then $\phi: B \rightarrow B^{+}$and $\psi: B^{+} \rightarrow B$ are inverses to each other.
Proof. First we check that $\phi(f) \in B^{+}$and $\psi(g) \in B$. For this, we observe that $(3 a+\theta)^{2}-3 a(3 a+2 \theta)=\theta^{2}$ and $\psi(g)$ has a root $\frac{\alpha-\gamma}{3}$. Hence $\phi(f) \in B^{+}$and $\psi(g) \in B$.

Now we want to show ϕ and ψ are inverses to each other. Since a is a root of $f(X)$, we have $X^{3}+\theta X^{2}+\eta=(X-a)\left(X^{2}+(\theta+a) X+a(\theta+a)\right)$. Therefore $\eta=-a^{2}(\theta+a)$. We check:

$$
\begin{aligned}
\psi \phi(f) & =\psi\left(X^{3}+(3 a+\theta) X^{2}+a(3 a+2 \theta) X\right) \\
& =X^{3}+\theta X^{2}+\frac{1}{27}(-\theta+(3 a+\theta))^{2}((-3 a-\theta)-2 \theta) \\
& =X^{3}+\theta X^{2}-a^{2}(a+\theta)=f(X)
\end{aligned}
$$

Next let g be the cubic as above. Then as we noted above, $\psi(g)$ has a root $\frac{\alpha-\gamma}{3}$. Hence

$$
\begin{aligned}
\phi \psi(g) & =\phi\left(X^{3}+\gamma X^{2}-\frac{1}{27}(\alpha-\gamma)^{2}(\alpha+2 \gamma)\right) \\
& =X^{3}+\left(3 \cdot \frac{\alpha-\gamma}{3}+\gamma\right) X^{2}+\frac{\alpha-\gamma}{3}(\alpha-\gamma+2 \gamma) \\
& =X^{3}+\alpha X^{2}+\frac{1}{3}\left(\alpha^{2}-\gamma^{2}\right)=g(X),
\end{aligned}
$$

where the last equality follows from $\alpha^{2}-3 \beta=\gamma^{2}$.
The following statement is straight forward to check. However we derive it using Theorem 3.4 to illustrate the theorem. The reason why we choose $\gamma<0$ will become obvious.

Corollary 3.5. The cubic equation $Y^{2}=X^{3}+k(k \in \mathbb{Q})$ has a rational solution if and only if there are $a, b \in \mathbb{Q}$ such that $k=-a^{2}\left(a-b^{2}\right)$. In this case, the solution is given by ($a, a b$).

Proof. First suppose k is of the form $k=-a^{2}\left(a-b^{2}\right)$. It is trivial to check that $X^{3}-b^{2} X^{2}+k$ has a root a. Hence there is a rational solution $(a, a b)$ for $Y^{2}=X^{3}+k(k \in \mathbb{Q})$.

Now suppose $Y^{2}=X^{3}+k(k \in \mathbb{Q})$ has a solution $(a, a b)$. Then $h(X)=$ $X^{3}-b^{2} X^{2}+k$ has a root $a \in \mathbb{Q}$. Then by Theorem 3.4, $\phi(h)=X^{3}+(3 a-$ $\left.b^{2}\right) X^{2}+a\left(3 a-2 b^{2}\right) X \in B^{+}$. And with the notation of Theorem 3.4, we have $\gamma^{2}=b^{4}, \alpha=3 a-b^{2}$ and choose $\gamma=-b^{2}$. Now

$$
\begin{aligned}
\psi \phi(h) & =X^{3}+\gamma X^{2}-\frac{1}{27}(\alpha-\gamma)^{2}(\alpha+2 \gamma) \\
& =X^{3}-b^{2} X^{2}-a^{2}\left(a-b^{2}\right)=h
\end{aligned}
$$

Hence k is of the form $-a^{2}\left(a-b^{2}\right)$ as required.
Corollary 3.6. For $h(X)=X^{3}-b^{2} X^{2}-a^{2}\left(a-b^{2}\right)$, we have

$$
\phi(h)=X^{3}+\left(3 a-b^{2}\right) X^{2}+a\left(3 a-2 b^{2}\right) X=h(X+a) .
$$

Further the rational cubic $h(X)$ has three rational roots if and only if $D=$ $\left(a-b^{2}\right)\left(-3 a-b^{2}\right)$ is a square in \mathbb{Q}.
Proof. We only need to check the last part. First we have

$$
h(X)=(X-a)\left(X^{2}+\left(a-b^{2}\right) X+a\left(a-b^{2}\right)\right)
$$

and the quadratic factor has discriminant $D=\left(a-b^{2}\right)\left(-3 a-b^{2}\right)$. Hence the roots of h are $\theta_{1}=a, \theta_{2}=\frac{1}{2}\left(-a+b^{2}\right)+\sqrt{D}, \theta_{2}=\frac{1}{2}\left(-a+b^{2}\right)-\sqrt{D}$.

On the other hand,

$$
\phi(h)=X\left(X^{2}+\left(3 a-b^{2}\right) X+a\left(3 a-2 b^{2}\right)\right)
$$

and the quadratic factor has the same discriminant D; the roots of $\phi(h)$ are $\eta_{1}=0, \eta_{2}=\frac{1}{2}\left(-3 a-b^{2}\right)+\sqrt{D}, \eta_{3}=\frac{1}{2}\left(-3 a-b^{2}\right)-\sqrt{D}$.

Let $B Q$ be the set of all rational monic biquadratic polynomials and $B Q^{0}$ be the monic quartics f for which $f^{+} \in B Q$, where, as before f^{+}is the quartic without X^{3} term obtained by making a linear change of variable. Also we write $f^{\beta}(X)=f(X+\beta)$. We have a map $\rho: B Q^{0} \rightarrow B Q$ defined by $\rho(f)=f^{+}$. Now we have a diagram:

Proposition 3.7. The diagram (11) is commutative.
Proof. Let $f \in B Q^{0}$ and let $R_{W}(f)=X^{3}-b^{2} X^{2}-a^{2}\left(a-b^{2}\right)$ with roots $\left\{a=\theta_{1}, \theta_{2}, \theta_{3}\right\}$. Then $\phi\left(R_{W}(f)\right)$ has roots $\left\{0=\theta_{1}-a, \theta_{2}-a, \theta_{3}-a\right\}$.

Now $\rho(f)=f^{\beta}$ for some $\beta \in \mathbb{Q}$ and $R_{W}(\rho(f))=R_{W}\left(f^{\beta}\right)$ has roots $\{0=$ $\left.\theta_{1}-4 \beta^{2}, \theta_{2}-4 \beta^{2}, \theta_{3}-4 \beta^{2}\right\}$. Since $\theta_{1}-a=0=\theta_{1}-4 \beta^{2}$, we see that $a=4 \beta^{2}$ and hence $\phi\left(R_{W}(f)\right)$ and $R_{W}(\rho(f))$ have the same roots. Therefore $\phi\left(R_{W}(f)\right)=R_{W}(\rho(f))$.

Next we show that a Bachet type cubic $h(X)$ is a resolvent of a quartic over a quadratic extension of \mathbb{Q}.

Theorem 3.8. Let $h(X)=X^{3}-b^{2} X^{2}+k$ be a cubic with $k=-a^{2}\left(b-b^{2}\right)(a, b \in$ $\mathbb{Q})$. Then $h(X)$ is a cubic resolvent of a rational quartic which becomes a biquadratic by a linear change of variable if and only if a is a square in \mathbb{Q}.

In this case, if $h(X)=X^{3}-b^{2} X^{2}-a^{4}\left(a^{2}-b^{2}\right)$, then the quartic and the corresponding biquadratic polynomials are given by

$$
\begin{aligned}
f(X) & =X^{4}+2 a X^{3}+\frac{b^{2}}{2} X^{2}+\frac{a}{4}\left(b^{2}-2 a^{2}\right) X+\frac{1}{16}\left(-8 a^{4}+4 a^{2} b^{2}+b^{4}\right) \\
f^{+}(X) & =X^{4}+\frac{1}{2}\left(-3 a^{2}+b^{2}\right) X^{2}+\frac{1}{2^{4}}\left(-3 a^{4}+2 a^{2} b^{2}+b^{4}\right)
\end{aligned}
$$

Proof. The last statement follows from (9) and (10) by replacing a by $2 a$.
For the first statement let $h(X)=X^{3}-b^{2} X^{2}-a^{2}\left(a-b^{2}\right) \in B$. Choose a quartic f for which $R_{W}(f)=h$. Let $\left\{\theta_{1}=a, \theta_{2}, \theta_{3}\right\}$ be the roots of $R_{W}(f)$ as in Corollary 3.6 and let f^{β} be the biquadratic. Then as in Lemma 3.2, we see that $R_{W}\left(f^{\beta}\right)$ has roots $\left\{a-4 \beta^{2}, \theta_{2}-4 \beta^{2}, \theta_{3}-4 \beta^{2}\right\}$. Since f^{β} is biquadratic $R_{W}\left(f^{\beta}\right)$ has 0 as a rational root, we have $a=4 \beta^{2}$ which is a square of a rational number 2β.

References

[1] D. A. Cox, Galois Theory, Wiley-Interscience [John Wiley \& Sons], Hoboken, NJ, 2004.
[2] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Second edition. Graduate Texts in Mathematics, 84. Springer-Verlag, New York, 1990.
[3] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia of mathematics and its applications 77, Cambridge University Press, Cambridge, 2000.
[4] B. L. van der Waerden, Algebra, 4th ed., Frederick Ungar Publishing Co., New York, 1967.

Department of Mathematics
College of Natural Science
Ewha Womans University
Seoul 120-750, Korea
E-mail address: sswoo@ewha.ac.kr

[^0]: Received December 17, 2012; Revised March 20, 2013.
 2010 Mathematics Subject Classification. 14G05, 11D25.
 Key words and phrases. Bachet equation, rational solution, resolvent cubi.

