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ON PERMUTING n-DERIVATIONS IN NEAR-RINGS

Mohammad Ashraf and Mohammad Aslam Siddeeque

Abstract. In this paper, we introduce the notion of permuting n-deri-
vations in near-ring N and investigate commutativity of addition and
multiplication of N . Further, under certain constrants on a n!-torsion
free prime near-ring N , it is shown that a permuting n-additive mapping
D on N is zero if the trace d of D is zero. Finally, some more related
results are also obtained.

1. Introduction

Throughout this paper N will denote a zero-symmetric left near ring. A
near ring N is called zero symmetric if 0x = 0 for all x ∈ N (recall that in a
left near ring x0 = 0 for all x ∈ N). N is called prime if xNy = {0} implies
x = 0 or y = 0. It is called semi prime if xNx = {0} implies x = 0. Near-ring
N is called n-torsion free if nx = 0 implies x = 0. The symbol Z will represent
the multiplicative center of N , that is, Z = {x ∈ N | xy = yx for all y ∈ N}.
As usual, for x, y ∈ N, [x, y] will denote the commutator xy − yx, while (x, y)
will indicate the additive group commutator x+ y− x− y. The symbol C will
represent the set of all additive commutators of near ring N . For terminologies
concerning near-rings we refer to G. Pilz [10].

An additive map f : N −→ N is called a derivation if f(xy) = f(x)y+xf(y)
holds for all x, y ∈ N . The concepts of symmetric bi-derivation, permuting tri-
derivation and permuting n-derivation have already been introduced in rings
by G. Maksa, M. A. Öztürk and K. H. Park in [4, 5, 6], and [8], respectively.
These concepts of symmetric bi-derivations and permuting tri-derivations have
been studied in near-rings by M. A. Öztürk and K. H. Park in [7] and [9],
respectively. In the present paper, motivated by these concepts, we define
permuting n-derivations in near-rings and study some properties involved there.
Some relations between permuting n-derivations and C, the set of all additive
commutators in near-ring N have also been studied.
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A map D : N ×N × · · · ×N
︸ ︷︷ ︸

n-times

−→ N is said to be permuting if the equation

D(x1, x2, . . . , xn) = D(xπ(1), xπ(2), . . . , xπ(n)) holds for all x1, x2, . . . , xn ∈ N

and for every permutation π ∈ Sn, where Sn is the permutation group on
{1, 2, . . . , n}. A map d : N → N defined by d(x) = D(x, x, . . . , x) for all
x ∈ N where D : N ×N × · · · ×N

︸ ︷︷ ︸

n-times

→ N is a permuting map, is called

the trace of D. A permuting n-additive (i.e., additive in each argument)
mapping D : N×N×· · ·×N

︸ ︷︷ ︸

n-times

−→ N is called a permuting n-derivation if

D(x1x
′

1, x2, . . . , xn) = D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn) holds for all

x1, x
′

1, . . . , xn ∈ N . Of course, a permuting 1-derivation is a derivation and per-
muting 2-derivation is a symmetric bi-derivation. For an example of permuting
n-derivation let n ≥ 1 be a fixed positive integer, N a commutative near-ring.
Then R =

{(
a b
0 0

)
| a, b, 0 ∈ N

}
is a non-commutative near-ring with regard

to matrix addition and matrix multiplication. Define D : R ×R× . . .×R
︸ ︷︷ ︸

n-times

−→

R such that

D

((
a1 b1
0 0

)

,

(
a2 b2
0 0

)

, . . . ,

(
an bn
0 0

))

=

(
0 a1a2 · · · an
0 0

)

.

It is easy to see that D is a permuting n-derivation of R.
Now let D be a permuting n-derivation of a near-ring N . Then it can be

easily seen that D(0, x2, . . . , xn) = D(0 + 0, x2, . . . , xn) = D(0, x2, . . . , xn) +
D(0, x2, . . . , xn). Therefore D(0, x2, . . . , xn) = 0 for all x2, . . . , xn ∈ N . We
also observe that D(−x1, x2, . . . , xn) = −D(x1, x2, . . . , xn) for all xi ∈ N ; i =
1, 2, . . . , n.

There has been a great deal of work concerning derivations, biderivations
and triderivations in near-rings (see [1, 2, 3, 4, 9] where further references can be
found). In this paper we study the commutativity of addition and multiplica-
tion of near-rings. Many well known results for derivations, bi-derivations and
tri-derivations in near-rings have been generalized for permuting n-derivation.
In fact, our results generalize and complement several well known theorems for
near-rings.

2. Preliminary results

We begin with the following lemmas which are essential for developing the
proofs of our main results . Proofs of Lemmas 2.1 and 2.2 can be seen in [2,
Lemma 3] and [3, Lemma 1.2], respectively.

Lemma 2.1. Let N be a prime near-ring.

(i) If z ∈ Z \ {0}, then z is not a zero divisor.

(ii) If Z \ {0} contains an element z for which z + z ∈ Z, then (N,+) is

abelian.
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Lemma 2.2. Let N be a prime near-ring. If z ∈ Z \ {0} and x is an element

of N such that xz ∈ Z or zx ∈ Z, then x ∈ Z.

Lemma 2.3. Let N be a near-ring. Then D is a permuting n-derivation of N

if and only if D(x1x
′

1, x2, . . . , xn) = x1D(x
′

1, x2, . . . , xn) +D(x1, x2, . . . , xn)x
′

1

for all x1, x1
′, x2, . . . , xn ∈ N .

Proof. We have

D(x1(x
′

1 + x
′

1), x2, . . . , xn)

= D(x1, x2, . . . , xn)(x
′

1 + x
′

1) + x1D(x
′

1 + x
′

1, x2, . . . , xn)

= D(x1, x2, . . . , xn)x
′

1 +D(x1, x2, . . . , xn)x
′

1

+ x1D(x
′

1, x2, . . . , xn) + x1D(x
′

1, x2, . . . , xn)

and
D(x1x

′

1 + x1x
′

1, x2, . . . , xn)

= D(x1x
′

1, x2, . . . , xn) +D(x1x
′

1, x2, . . . , xn)

= D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn)

+D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn).

Combining above two equalities we obtain that

D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn)

= x1D(x
′

1, x2, . . . , xn) +D(x1, x2, . . . , xn)x
′

1.

Therefore, D(x1x
′

1, x2, . . . , xn) = x1D(x
′

1, x2, . . . , xn) +D(x1, x2, . . . , xn)x
′

1.

Converse can be proved in a similar way. �

In a left near-ringN , right distributive law does not hold in general, however,
we can prove the following partial distributive properties in N .

Lemma 2.4. Let N be a near-ring. Let D be a permuting n-derivation of N

and d be the trace of D. Then for every x1, x
′

1, . . . , xn, y ∈ N,

(i) {D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn)}y

= D(x1, x2 . . . , xn)x
′

1y + x1D(x
′

1, x2, . . . , xn)y,

(ii) {x1D(x
′

1, x2, . . . , xn) +D(x1, x2, . . . , xn)x1
′}y

= x1D(x
′

1, x2, . . . , xn)y +D(x1, x2, . . . , xn)x1
′y,

(iii) {d(x)x1 + xD(x, x, . . . , x, x1)}y = d(x)x1y + xD(x, x, . . . , x, x1)y,
(iv) {xD(x, x, . . . , x, x1) + d(x)x1}y = xD(x, x, . . . , x, x1)y + d(x)x1y.

Proof. (i) For all x1, x1
′, x1

′′, x2, . . . , xn ∈ N

D((x1x
′

1)x
′′

1 , x2, . . . , xn)

= D(x1x
′

1, x2, . . . , xn)x
′′

1 + (x1x
′

1)D(x
′′

1 , x2, . . . , xn)

= {D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn)}x
′′

1 + (x1x
′

1)D(x
′′

1 , x2, . . . , xn).
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Also

D(x1(x
′

1x1
′′), x2, . . . , xn)

= D(x1, x2, . . . , xn)x
′

1x1
′′ + x1D(x

′

1x
′′

1 , x2, . . . , xn)

= D(x1, x2, . . . , xn)x
′

1x1
′′ + x1{D(x

′

1, x2, . . . , xn)x
′′

1 + x
′

1D(x
′′

1 , x2, . . . , xn)}

= D(x1, x2, . . . , xn)x
′

1x1
′′ + x1D(x

′

1, x2, . . . , xn)x
′′

1 + x1x
′

1D(x
′′

1 , x2, . . . , xn).

Combining the above two relations , we get

{D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn)}x
′′

1

= D(x1, x2, . . . , xn)x
′

1x
′′

1 + x1D(x
′

1, x2, . . . , xn)x
′′

1 .

Putting y in the place of x
′′

1 , we find that

{D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn)}y

= D(x1, x2, . . . , xn)x
′

1y + x1D(x
′

1, x2, . . . , xn)y.

(ii) It can be proved, in a similar, way as above, with the help of Lemma
2.3.

(iii) In the proof (i) above putting x1 = x2 = x3 = · · · = xn = x, we get

{d(x)x
′

1 + xD(x
′

1, x, . . . , x)}y = d(x)x
′

1y + xD(x
′

1, x . . . , x)y.

In particular for x
′

1 = x1 we get

{d(x)x1 + xD(x, x, . . . , x1)}y = d(x)x1y + xD(x, x, . . . , x1)y.

(iv) It can be proved in a similar way as above. �

Lemma 2.5. Let N be prime near-ring and D be a non zero permuting n-

derivation of N ,

(i) If D(N,N, . . . , N)x = {0} where x ∈ N , then x = 0,
(ii) If xD(N,N, . . . , N) = {0} where x ∈ N , then x = 0.

Proof. (i) Given that D(x1x
′

1, x2, . . . , xn)x = 0 for all x1, x
′

1, . . . , xn ∈ N . This

yields that {D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn)}x = 0. By hypothesis
and Lemma 2.4(i) we have D(x1, x2, . . . , xn)Nx = {0}. But since N is a prime
near ring and D 6= 0, we have x = 0.

(ii) It can be proved in a similar way. �

Lemma 2.6. Let D be a nonzero permuting n-derivation of a prime near ring

N. Then D(C,C, . . . , C) 6= {0} where C 6= {0}.

Proof. If possible assume D(C,C, . . . , C) = {0}, then D(c1, c2, . . . , cn) = 0
for all c1, c2, . . . , cn ∈ C. For all r1 ∈ N and c1 ∈ C we get r1c1 ∈ C. Also
D(r1c1, c2, . . . , cn) = 0 implies r1D(c1, c2, . . . , cn) + D(r1, c2, . . . , cn)c1 = 0.
Thus we get

(2.1) D(r1, c2, . . . , cn)c1 = 0.
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Replacing c1 by xc1 in equation (2.1) where x ∈ N we find that

D(r1, c2, . . . , cn)Nc1 = {0}.

Primeness of N yields,

(2.2) D(r1, c2, . . . , cn) = 0.

Now putting r2c2 ∈ C in place of c2 where r2 ∈ N in the equation (2.2) and
proceeding as above we have D(r1, r2, c3, . . . , cn) = 0. Proceeding inductively
we conclude that D(r1, r2, . . . , rn) = 0 for all r1, r2, . . . , rn ∈ N leading to a
contradiction. �

Lemma 2.7. Let N be a m!-torsion free near-ring, where (N,+) is an abelian

group. Suppose y1, y2, . . . , ym ∈ N satisfy αy1 + α2y2 + · · · + αmym = 0 for

α = 1, 2, . . . ,m. Then yi = 0 for all i.

Proof. Let A =





1 1 ··· 1
2 22 ··· 2m

...
...

...
...

m m2
··· mm



 be any m×m matrix. Then by our assump-

tionA





y1

y2

...
ym



=

( 0
0
...
0

)

. Now pre multiplying by Adj A yields DetA





y1

y2

...
ym





=

( 0
0
...
0

)

. Since DetA, as a Vondermonde determinant, is equal to a product

of positive integers, each of which is less than or equal to m and as N is a
m!-torsion free near-ring, it follows immediately that yi = 0 for all i. �

3. Main results

Recently M. A. Öztürk and Y. B. Jun [7, Lemma 3.1] proved that in a 2-
torsion free near-ring which admits a symmetric bi-additive mapping D if the
trace d of D is zero, then D = 0. Further, this result was generalized by K.
H. Park and Y. S. Jung [9, Lemma 2.2] for permuting tri-additive mapping
in 3!-torsion free near-ring in the year 2010. We have extended this result, as
below, for permuting n-additive mapping in a n!-torsion free prime near-ring
under some constraints.

Theorem 3.1. Let N be n!-torsion free prime near-ring and D be a permuting

n-additive mapping of N such that D(N,N, . . . , N) ⊆ Z. If d(x) = 0 for all

x ∈ N , then D = 0.

Proof. IfD = 0, then we have nothing to do, if not thenD is a non zero permut-
ing n-additive mapping of prime near-ring N such that D(N,N, . . . , N) ⊆ Z.

Hence there exist x1, x2, . . . , xn ∈ N, all nonzero such that D(x1, x2, . . . , xn) 6=
0 and D(x1, x2, . . . , xn) ∈ Z. Since D(x1+x1, x2, . . . , xn) = D(x1, x2, . . . , xn)+
D(x1, x2, . . . , xn) ∈ Z, by Lemma 2.1(ii), (N,+) is an abelian group. Hence



702 MOHAMMAD ASHRAF AND MOHAMMAD ASLAM SIDDEEQUE

the trace d(x) = D(x, x, . . . , x) of permuting n-additive mapping D can be
expressed as;

(3.1) d(x+ y) = d(x) + d(y) +

n−1∑

k=1

(
n

k

)

hk(x, y),

where x, y ∈ N and hk(x, y) = D(x, x, . . . , x
︸ ︷︷ ︸

(n−k)-times

, y, y, . . . , y
︸ ︷︷ ︸

k-times

). In particular by our

hypothesis d(µx + xn) = 0 where 1 ≤ µ ≤ n− 1. With the help of equation
(3.1) we get

0 = d(µx) + d(xn) +

n−1∑

k=1

(
n

k

)

hk(µx, xn)

=

n−1∑

k=1

(
n

k

)

hk(µx, xn).

This yields that

µy1 + µ2y2 + · · ·+ µn−2yn−2 + µn−1nD(x, x, . . . , x, xn) = 0,

where y1, y2, . . . , yn−2 ∈ N. By our hypothesis and Lemma 2.7, we deduce that

(3.2) D(x, x, . . . , x, xn) = 0

for all x, xn ∈ N. Let ν(1 ≤ ν ≤ n− 2) be any integer. By equation (3.2) we
find that

D(νx + xn−1, νx+ xn−1, . . . , νx+ xn−1, xn) = 0.

Expanding the above relation and using equation (3.2) again we obtain

νz1 + ν2z2 + . . .+ νn−3zn−3 + νn−2

(
n

2

)

D(x, x, . . . , x, xn−1, xn) = 0,

where z1, z2, . . . , zn−3 ∈ N. By our hypothesis and Lemma 2.7, we conclude
that D(x, x, . . . , x, xn−1, xn) = 0 for all x, xn−1, xn ∈ N. Now if we continue the
above process inductively, then we finally arrive at D(x1, x2, . . . , xn−1, xn) = 0.
This gives that D = 0, a contradiction. �

In the year 1987 H. E. Bell [3, Theorem 2] proved that if a 2-torsion free
zero symmetric prime near-ring N admits a non zero derivation D for which
D(N) ⊆ Z , then N is a commutative ring. Further, this result was generalized
by K. H. Park [5, Theorem 3.1] in the year 2010 for permuting tri-derivation,
who showed that if 3!-torsion free zero symmetric prime near-ring N admits a
non zero permuting tri-derivation D for which D(N,N,N) ⊆ Z, then N is a
commutative ring. The following result shows that 2-torsion free and 3!-torsion
free restrictions in the above results used by Bell and Park are superfluous. In
fact, for permuting n-derivation in a prime near-ring N we have obtained the
following:
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Theorem 3.2. Let D be a non zero permuting n-derivation of prime near-ring

N such that D(N,N, . . . , N) ⊆ Z. Then N is a commutative ring.

Proof. For all x1, x
′

1, . . . , xn ∈ N, we have

(3.3) D(x1x
′

1, x2, . . . , xn) = D(x1, x2, . . . , xn)x
′

1 + x1D(x
′

1, x2, . . . , xn) ∈ Z.

Hence x
′

1{D(x1, x2, . . . , xn)x
′

1+x1D(x
′

1, x2, . . . , xn)} = {D(x1, x2, . . . , xn)x
′

1+

x1D(x
′

1, x2, . . . , xn)}x
′

1. Using the hypothesis and Lemma 2.4(i) we get x
′

1x1

D(x
′

1, x2, . . . , xn) = x1x
′

1D(x
′

1, x2, . . . , xn). This yields that D(x
′

1, x2, . . . , xn)

(x1
′x1 − x1x

′

1) = 0. Since Z has no zero divisors, for each fixed x
′

1 ∈ N ei-

ther (x
′

1x1 − x1x
′

1) = 0 or D(x
′

1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ N.

If first holds, then x
′

1 ∈ Z if not, i.e., D(x
′

1, x2, . . . , xn) = 0, then equa-

tion(3.3) reduces to D(x1x
′

1, x2, . . . , xn) = D(x1, x2, . . . , xn)x
′

1. Since D 6= 0

and D(x1, x2, . . . , xn) ∈ Z, by Lemma 2.2 x
′

1 ∈ Z. Hence we conclude that
N ⊆ Z. Thus we obtain that N = Z, i.e., N is a commutative near-ring. If
N = {0}, then N is trivially a commutative ring. If N 6= {0}, then there exists
0 6= x ∈ N and hence x + x ∈ N = Z. Now by Lemma 2.1(ii), we conclude
that N is a commutative ring. �

Theorem 3.3. Let N be a prime near-ring and D1 and D2 be any two non zero

permuting n-derivations of N . If [D1(N,N, . . . , N), D2(N,N, . . . , N)] = {0},
then (N,+) is an abelian group.

Proof. If both z and z + z commute element wise with D2(N,N, . . . , N), then
zD2(x1, x2, . . . , xn) = D2(x1, x2, . . . , xn)z and (z + z)D2(x1, x2, . . . , xn) = D2

(x1, x2, . . . , xn)(z + z) for all x1, x2, . . . , xn ∈ N. In particular, (z + z)D2(x1 +

x
′

1, x2, . . . , xn) = D2(x1 + x
′

1, x2, . . . , xn)(z + z) for all x1, x
′

1, . . . , xn ∈ N.

From the previous equalities we get zD2(x1 + x
′

1 − x1 − x
′

1, x2, . . . , xn) =

0, i.e., zD2((x1, x
′

1), x2, . . . , xn) = 0. Putting z = D1(y1, y2, . . . , yn) we get

D1(y1, y2, . . . , yn)D2((x1, x
′

1), x2, . . . , xn) = 0. By Lemma 2.5(i) we conclude

that D2((x1, x
′

1), x2, . . . , xn) = 0. Putting w(x1, x
′

1) in place of additive com-

mutator (x1, x
′

1) where w ∈ N we have D2(w(x1, x
′

1), x2, . . . , xn) = 0, i.e.,

D2(w, x2, . . . , xn)(x1, x
′

1) + wD2((x1, x
′

1), x2, . . . , xn) = 0. Previous equality

yields D2(w, x2, . . . , xn)(x1, x
′

1) = 0. By Lemma 2.5(i) again we conclude that

(x1, x
′

1) = 0. Hence (N,+) is an abelian group. �

Theorem 3.4. Let N be a prime near-ring with non zero permuting n-deriva-

tions D1 and D2 such that

D1(x1, x2, . . . , xn)D2(y1, y2, . . . , yn) = −D2(x1, x2, . . . , xn)D1(y1, y2, . . . , yn)

for all x1, x2, . . . , xn, y1, y2, . . . , yn ∈ N . Then (N,+) is an abelian group.

Proof. By our hypothesis we have,D1(x1, x2, . . . , xn)D2(y1, y2, . . . , yn)+D2(x1,

x2, . . . , xn)D1(y1, y2, . . . , yn) = 0 for all x1, x2, . . . , xn, y1, y2, . . . , yn ∈ N. Re-

placing y1 by y1 + y
′

1 in previous equation we get D1(x1, x2, . . . , xn)D2(y1 +
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y
′

1, y2, . . . , yn) + D2(x1, x2, . . . , xn)D1(y1 + y
′

1, y2, . . . , yn) = 0. Using our hy-

pothesis we get, D1(x1, x2, . . . , xn)D2(y1, y2, . . . , yn)+D1(x1, x2, . . . , xn)D2(y
′

1,

y2, . . . , yn)+D1(x1, x2, . . . , xn)D2(−y1, y2, . . . , yn)+D1(x1, x2, . . . , xn)D2(−y
′

1,

y2, . . . , yn) = 0, i.e., D1(x1, x2, . . . , xn)D2((y1, y
′

1), y2, . . . , yn) = 0. Now using

Lemma 2.5(i) we conclude that D2((y1, y
′

1), y2, . . . , yn) = 0. Putting w(y1, y
′

1)

in place of (y1, y
′

1) where w ∈ N in the previous equality and using Lemma
2.5(i); as used in the previous theorem, we conclude that (N,+) is an abelian
group. �

Corollary 3.1 ([1, Lemma 2.1]). Let N be a prime near-ring with non zero

derivations d1 and d2 such that d1(x)d2(y) = −d2(x)d1(y) for all x, y ∈ N.

Then (N,+) is an abelian group.

Theorem 3.5. LetD be a non zero permuting n-derivation of prime near-ring

N . If D(C,N,N, . . . , N) = {0}, then (N,+) is an abelian group.

Proof. Since D(c, r2, . . . , rn) = 0 for all c ∈ C and for all r2, . . . , rn ∈ N ,
D(wc, r2, . . . , rn) = 0 where w ∈ N , i.e., wD(c, r2, . . . , rn)+D(w, r2, . . . , rn)c =
0. In turn we get D(w, r2, . . . , rn)c = 0 but D 6= 0, and therefore by Lemma
2.5(i); c = 0. Hence (N,+) is an abelian group. �

Theorem 3.6. Let N be a semi prime near-ring and D be a permuting n-

derivation of N . If D(x1, x2, . . . , xn)y1 = x1D(y1, y2, . . . , yn) for all x1, x2,

. . . , xn, y1, y2, . . . , yn ∈ N , then D = 0.

Proof. We have

(3.4) D(x1, x2, . . . , xn)y1 = x1D(y1, y2, . . . , yn).

Putting y1z1 in place of y1 in the above equation; where z1 ∈ N , we get

D(x1, x2, . . . , xn)y1z1 = x1D(y1z1, y2, . . . , yn)

= x1D(y1, y2, . . . , yn)z1 + x1y1D(z1, y2, . . . , yn).

By equation (3.4) we getD(x1, x2, . . . , xn)y1z1 = D(x1, x2, . . . , xn)y1z1+x1y1D

(z1, y2, . . . , yn). This yields that x1y1D(z1, y2, . . . , yn) = 0 . Now replacing
x1 by D(z1, y2, . . . , yn) we get D(z1, y2, . . . , yn)ND(z1, y2, . . . , yn) = {0}. But
since N is a semi prime near-ring, we conclude that D = 0. �

Theorem 3.7. Let N be any prime near-ring and D be any non-zero permuting

n-derivation of N . If K = {a ∈ N | [D(N,N, . . . , N), a] = {0}}, then

(i) a ∈ K implies either a ∈ Z or d(a) = 0,
(ii) d(K) ⊆ Z,

(iii) K is a semigroup under multiplication,

(iv) If there exists an element a ∈ K for which d(a) 6= 0 and D(a2, a, . . . , a)
∈ Z, then (N,+) is an abelian group.
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Proof. (i) We have

(3.5) D(x1, x2, . . . , xn)a = aD(x1, x2, . . . , xn)

for all x1, x2, . . . , xn ∈ N. Putting ax1 in place of x1 in the above equation
and using Lemma 2.4(i) we get D(a, x2, . . . , xn)x1a + aD(x1, x2, . . . , xn)a =
aD(a, x2, . . . , xn)x1 + aaD(x1, x2, . . . , xn). Using the equation (3.5), we get
D(a, x2, . . . , xn)x1a = aD(a, x2, . . . , xn)x1. Now putting x1y1 for x1 in the
latter relation and using it again, we have D(a, x2, . . . , xn)x1[y1, a] = 0 where
y1 ∈ N. This gives us D(a, x2, . . . , xn)N [a, y1] = {0}. Since N is a prime
near-ring, either [a, y1] = 0 for all y1 ∈ N or D(a, x2, . . . , xn) = 0 for all
x2, . . . , xn ∈ N. If first holds, then a ∈ Z, if not then D(a, x2, . . . , xn) = 0, and
hence in particular, D(a, a, . . . , a) = 0 or d(a) = 0.

(ii) From the above proof we observe that if a ∈ K, then either a ∈ Z or
d(a) = 0. But d(a) = 0 implies d(a) ∈ Z. If d(a) 6= 0, then we have a ∈ Z. In
this case we have D(xa, a . . . , a) = D(ax, a, . . . , a) for all x ∈ N. This yields
that xD(a, a, . . . , a) +D(x, a, . . . , a)a = D(a, a, . . . , a)x+ aD(x, a, . . . , a). This
reduces to xD(a, a, . . . , a) = D(a, a, . . . , a)x, which shows that d(a) ∈ Z and
thus d(K) ⊆ Z.

(iii) Let a, b ∈ K. Hence abD(r1, r2, . . . , rn) = D(r1, r2, . . . , rn)ab holds triv-
ially. Associativity of N shows that K is a semigroup.

(iv) Consider D(a2, a, . . . , a) = aD(a, a, . . . , a) + D(a, a, . . . , a)a ∈ Z . As
d(a) = D(a, a, . . . , a) 6= 0 implies that a ∈ Z by (i). Hence D(a2, a, . . . , a) =
D(a, a, . . . , a)(a+ a). By above proof (ii) we find that D(a, a, . . . , a) ∈ Z \ {0}
and hence using Lemma 2.2, (a+ a) ∈ Z. By Lemma 2.1(ii) we conclude that
(N,+) is an abelian group. �

Theorem 3.8. Let N be a prime near-ring which admits a non zero permuting

n-derivation D such that D(C,C, . . . , C) ⊆ Z. Then N is a commutative ring

where C 6= {0}.

Proof. For all c1, c
′

1, . . . , cn ∈ C, we get

(3.6) D(c1c
′

1, c2, . . . , cn) = D(c1, c2, . . . , cn)c
′

1 + c1D(c
′

1, c2, . . . , cn) ∈ Z

and commuting this element with c1
′ we arrive at D(c

′

1, c2, . . . , cn)(c
′

1c1 −

c1c
′

1) = 0 for all c1, c
′

1, . . . , cn ∈ C. Now by Lemma 2.1(i), we observe that

for each c
′

1 either c
′

1 centralizes C or D(c
′

1, c2, . . . , cn) = 0. If first case holds
for each element of C, then C becomes commutative with respect to multipli-
cation. On the other hand if second case holds, i.e., D(c

′

1, c2, . . . , cn) = 0, then
equation(3.6) takes the form

(3.7) D(c1c
′

1, c2, . . . , cn) = D(c1, c2, . . . , cn)c
′

1 ∈ Z

for all c1, c2, . . . , cn ∈ C. By Lemmas 2.2 and 2.6, we conclude that c
′

1 ∈ Z.

Hence in this case also we conclude that c
′

1 centralizes C. Hence in both cases
we conclude that C is a commutative semi group with respect to multiplication.
Now we separate the proof in two cases:
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Case I: Let C ∩ Z 6= {0}. Then in this case it follows that if C contains a
non zero central element w, then we have wxc = xcw = xwc = wcx for all
c ∈ C and for all x ∈ N . Hence we have w(xc − cx) = 0. By Lemma 2.1(i),
we conclude that c ∈ Z, i.e., C ⊆ Z. For all c ∈ C and for all x, y ∈ N we
have xcy = yxc or cxy = cyx since xc ∈ C. Lastly we get c(xy − yx) = 0. As
C 6= {0}, by Lemma 2.1(i), N becomes a commutative near-ring, i.e., N = Z.
If N = {0}, then N is trivially a commutative ring. If N 6= {0}, then there
exists t ∈ N \ {0}. Hence t + t ∈ N = Z, and by Lemma 2.1(ii) we conclude
that N is a commutative ring.

Case II: Let C ∩ Z = {0}. For this case in the light of equation (3.7) we
claim that D(c1, c2, . . . , cn) 6= 0 for all c1, c2, . . . , ci−1, ci+1, . . . , cn ∈ C and
for all ci ∈ C \ {0}. For each ci ∈ C and for all c1, c2, . . . , ci−1, ci+1, . . . , cn ∈
C,D(c1, c2, . . . , c

2
i , . . . , cn) = D(c1, c2, . . . , ci, . . . , cn)(ci+ci) and hence by Lem-

mas 2.2 and 2.6, 2ci ∈ Z. Suppose that 2ci 6= 0 for all ci ∈ C \{0}. It is obvious
that xC = {xc | c ∈ C} = {0} implies x = 0. This shows that for each
x ∈ N \ {0}, there exists cx ∈ C such that xcx 6= 0. Since xcx being an additive
commutator also belongs to C, we have 2xcx = x(2cx) and by Lemma 2.2 we
conclude that x ∈ Z. Hence N = Z, i.e., N is a commutative near-ring. If
N = {0}, then N is trivially a commutative ring. If N 6= {0}, then there exists
p ∈ N \ {0} such that p + p ∈ N = Z. By Lemma 2.1(ii) we conclude that
N is a commutative ring. The only remaining possibility is that C ∩ Z = {0}
and there exists ci ∈ C \ {0} such that 2ci = 0 and we complete our proof
by showing that this leads to a contradiction. Suppose that ci ∈ C \ {0} and
2ci = 0. We have D(c1, c2, . . . , c

3
i , . . . , cn) = 3c2iD(c1, c2, . . . , ci, . . . , cn) ∈ Z.

Since 2c2iD(c1, c2, . . . , ci, . . . , cn) = 0, we get c2iD(c1, c2, . . . , ci, . . . , cn) ∈ Z.
This implies that c2i ∈ Z by Lemma 2.2. Since C ∩ Z = {0}, c2i = 0. Now
D(c1, c2, . . . , xci, . . . , cn) = xD(c1, c2, . . . , ci, . . . , cn)+D(c1, c2, . . . , x, . . . , cn)ci
∈ Z for all x ∈ N and c1, c2, . . . , cn ∈ C. Hence ci{xD(c1, c2, . . . , ci, . . . , cn) +
D(c1, c2, . . . , x, . . . , cn)ci} = {xD(c1, c2, . . . , ci, . . . , cn)+D(c1, c2, . . . , x, . . . , cn)
ci}ci = xD(c1, c2, . . . , ci, . . . , cn)ci. Left multiplying by ci we get c2i {xD(c1, c2,
. . . , ci, . . . , cn) +D(c1, c2, . . . , x, . . . , cn)ci} = cixD(c1, c2, . . . , ci, . . . , cn)ci. Fi-
nally we get cixD(c1, c2, . . . , ci, . . . , cn)ci = 0. This implies that ciND(c1, c2,
. . . , ci, . . . , cn)ci = {0}, but primeness of N yields that D(c1, c1, . . . , ci, . . . , cn)
ci = 0. Since D(c1, c2, . . . , ci, . . . , cn) ∈ Z \ {0}, by Lemma 2.1(i), we conclude
that ci = 0, a contradiction. �
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