ON PERMUTING n-DERIVATIONS IN NEAR-RINGS

Mohammad Ashraf and Mohammad Aslam Siddeeque

Abstract

In this paper, we introduce the notion of permuting n-derivations in near-ring N and investigate commutativity of addition and multiplication of N. Further, under certain constrants on a $n!$-torsion free prime near-ring N, it is shown that a permuting n-additive mapping D on N is zero if the trace d of D is zero. Finally, some more related results are also obtained.

1. Introduction

Throughout this paper N will denote a zero-symmetric left near ring. A near ring N is called zero symmetric if $0 x=0$ for all $x \in N$ (recall that in a left near ring $x 0=0$ for all $x \in N)$. N is called prime if $x N y=\{0\}$ implies $x=0$ or $y=0$. It is called semi prime if $x N x=\{0\}$ implies $x=0$. Near-ring N is called n-torsion free if $n x=0$ implies $x=0$. The symbol Z will represent the multiplicative center of N, that is, $Z=\{x \in N \mid x y=y x$ for all $y \in N\}$. As usual, for $x, y \in N,[x, y]$ will denote the commutator $x y-y x$, while (x, y) will indicate the additive group commutator $x+y-x-y$. The symbol C will represent the set of all additive commutators of near ring N. For terminologies concerning near-rings we refer to G. Pilz [10].

An additive map $f: N \longrightarrow N$ is called a derivation if $f(x y)=f(x) y+x f(y)$ holds for all $x, y \in N$. The concepts of symmetric bi-derivation, permuting triderivation and permuting n-derivation have already been introduced in rings by G. Maksa, M. A. Öztürk and K. H. Park in [4, 5, 6], and [8], respectively. These concepts of symmetric bi-derivations and permuting tri-derivations have been studied in near-rings by M. A. Öztürk and K. H. Park in [7] and [9], respectively. In the present paper, motivated by these concepts, we define permuting n-derivations in near-rings and study some properties involved there. Some relations between permuting n-derivations and C, the set of all additive commutators in near-ring N have also been studied.

[^0]A map $D: \underbrace{N \times N \times \cdots \times N}_{n \text {-times }} \longrightarrow N$ is said to be permuting if the equation
$D\left(x_{1}, x_{2}, \ldots, x_{n}\right)=D\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$ holds for all $x_{1}, x_{2}, \ldots, x_{n} \in N$ and for every permutation $\pi \in S_{n}$, where S_{n} is the permutation group on $\{1,2, \ldots, n\}$. A map $d: N \rightarrow N$ defined by $d(x)=D(x, x, \ldots, x)$ for all $x \in N$ where $D: \underbrace{N \times N \times \cdots \times N}_{n \text {-times }} \rightarrow N$ is a permuting map, is called the trace of D. A permuting n-additive (i.e., additive in each argument) mapping $D: \underbrace{N \times N \times \cdots \times N}_{n \text {-times }} \longrightarrow N$ is called a permuting n-derivation if $D\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)$ holds for all $x_{1}, x_{1}^{\prime}, \ldots, x_{n} \in N$. Of course, a permuting 1-derivation is a derivation and permuting 2-derivation is a symmetric bi-derivation. For an example of permuting n-derivation let $n \geq 1$ be a fixed positive integer, N a commutative near-ring. Then $R=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b, 0 \in N\right\}$ is a non-commutative near-ring with regard to matrix addition and matrix multiplication. Define $D: \underbrace{R \times R \times \ldots \times R}_{n \text {-times }} \longrightarrow$ R such that

$$
D\left(\left(\begin{array}{cc}
a_{1} & b_{1} \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
a_{2} & b_{2} \\
0 & 0
\end{array}\right), \ldots,\left(\begin{array}{cc}
a_{n} & b_{n} \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & a_{1} a_{2} \cdots a_{n} \\
0 & 0
\end{array}\right) .
$$

It is easy to see that D is a permuting n-derivation of R.
Now let D be a permuting n-derivation of a near-ring N. Then it can be easily seen that $D\left(0, x_{2}, \ldots, x_{n}\right)=D\left(0+0, x_{2}, \ldots, x_{n}\right)=D\left(0, x_{2}, \ldots, x_{n}\right)+$ $D\left(0, x_{2}, \ldots, x_{n}\right)$. Therefore $D\left(0, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in N$. We also observe that $D\left(-x_{1}, x_{2}, \ldots, x_{n}\right)=-D\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for all $x_{i} \in N ; i=$ $1,2, \ldots, n$.

There has been a great deal of work concerning derivations, biderivations and triderivations in near-rings (see [1, 2, 3, 4, 9] where further references can be found). In this paper we study the commutativity of addition and multiplication of near-rings. Many well known results for derivations, bi-derivations and tri-derivations in near-rings have been generalized for permuting n-derivation. In fact, our results generalize and complement several well known theorems for near-rings.

2. Preliminary results

We begin with the following lemmas which are essential for developing the proofs of our main results . Proofs of Lemmas 2.1 and 2.2 can be seen in [2, Lemma 3] and [3, Lemma 1.2], respectively.

Lemma 2.1. Let N be a prime near-ring.
(i) If $z \in Z \backslash\{0\}$, then z is not a zero divisor.
(ii) If $Z \backslash\{0\}$ contains an element z for which $z+z \in Z$, then $(N,+)$ is abelian.

Lemma 2.2. Let N be a prime near-ring. If $z \in Z \backslash\{0\}$ and x is an element of N such that $x z \in Z$ or $z x \in Z$, then $x \in Z$.
Lemma 2.3. Let N be a near-ring. Then D is a permuting n-derivation of N if and only if $D\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)+D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}$ for all $x_{1}, x_{1}{ }^{\prime}, x_{2}, \ldots, x_{n} \in N$.

Proof. We have

$$
\begin{aligned}
& D\left(x_{1}\left(x_{1}^{\prime}+x_{1}^{\prime}\right), x_{2}, \ldots, x_{n}\right) \\
= & D\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(x_{1}^{\prime}+x_{1}^{\prime}\right)+x_{1} D\left(x_{1}^{\prime}+x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
= & D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime} \\
& +x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& D\left(x_{1} x_{1}^{\prime}+x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
= & D\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)+D\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
= & D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
& +D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

Combining above two equalities we obtain that

$$
\begin{aligned}
& D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
= & x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)+D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime} .
\end{aligned}
$$

Therefore, $D\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)+D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}$.
Converse can be proved in a similar way.
In a left near-ring N, right distributive law does not hold in general, however, we can prove the following partial distributive properties in N.
Lemma 2.4. Let N be a near-ring. Let D be a permuting n-derivation of N and d be the trace of D. Then for every $x_{1}, x_{1}^{\prime}, \ldots, x_{n}, y \in N$,
(i) $\left\{D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)\right\} y$

$$
=D\left(x_{1}, x_{2} \ldots, x_{n}\right) x_{1}^{\prime} y+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) y
$$

(ii) $\quad\left\{x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)+D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}{ }^{\prime}\right\} y$

$$
=x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) y+D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime} y
$$

(iii) $\left\{d(x) x_{1}+x D\left(x, x, \ldots, x, x_{1}\right)\right\} y=d(x) x_{1} y+x D\left(x, x, \ldots, x, x_{1}\right) y$,
(iv) $\left\{x D\left(x, x, \ldots, x, x_{1}\right)+d(x) x_{1}\right\} y=x D\left(x, x, \ldots, x, x_{1}\right) y+d(x) x_{1} y$.

Proof. (i) For all $x_{1}, x_{1}{ }^{\prime}, x_{1}{ }^{\prime \prime}, x_{2}, \ldots, x_{n} \in N$

$$
\begin{aligned}
& D\left(\left(x_{1} x_{1}^{\prime}\right) x_{1}^{\prime \prime}, x_{2}, \ldots, x_{n}\right) \\
= & D\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime \prime}+\left(x_{1} x_{1}^{\prime}\right) D\left(x_{1}^{\prime \prime}, x_{2}, \ldots, x_{n}\right) \\
= & \left\{D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)\right\} x_{1}^{\prime \prime}+\left(x_{1} x_{1}^{\prime}\right) D\left(x_{1}^{\prime \prime}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
& D\left(x_{1}\left(x_{1}^{\prime} x_{1}^{\prime \prime}\right), x_{2}, \ldots, x_{n}\right) \\
= & D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime} x_{1}^{\prime \prime}+x_{1} D\left(x_{1}^{\prime} x_{1}^{\prime \prime}, x_{2}, \ldots, x_{n}\right) \\
= & D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime} x_{1}^{\prime \prime}+x_{1}\left\{D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime \prime}+x_{1}^{\prime} D\left(x_{1}^{\prime \prime}, x_{2}, \ldots, x_{n}\right)\right\} \\
= & D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime} x_{1}^{\prime \prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime \prime}+x_{1} x_{1}^{\prime} D\left(x_{1}^{\prime \prime}, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

Combining the above two relations, we get

$$
\begin{aligned}
& \left\{D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)\right\} x_{1}^{\prime \prime} \\
= & D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime} x_{1}^{\prime \prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime \prime} .
\end{aligned}
$$

Putting y in the place of $x_{1}^{\prime \prime}$, we find that

$$
\begin{aligned}
& \left\{D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)\right\} y \\
= & D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime} y+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) y .
\end{aligned}
$$

(ii) It can be proved, in a similar, way as above, with the help of Lemma 2.3.
(iii) In the proof (i) above putting $x_{1}=x_{2}=x_{3}=\cdots=x_{n}=x$, we get

$$
\left\{d(x) x_{1}^{\prime}+x D\left(x_{1}^{\prime}, x, \ldots, x\right)\right\} y=d(x) x_{1}^{\prime} y+x D\left(x_{1}^{\prime}, x \ldots, x\right) y .
$$

In particular for $x_{1}^{\prime}=x_{1}$ we get

$$
\left\{d(x) x_{1}+x D\left(x, x, \ldots, x_{1}\right)\right\} y=d(x) x_{1} y+x D\left(x, x, \ldots, x_{1}\right) y
$$

(iv) It can be proved in a similar way as above.

Lemma 2.5. Let N be prime near-ring and D be a non zero permuting n derivation of N,
(i) If $D(N, N, \ldots, N) x=\{0\}$ where $x \in N$, then $x=0$,
(ii) If $x D(N, N, \ldots, N)=\{0\}$ where $x \in N$, then $x=0$.

Proof. (i) Given that $D\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) x=0$ for all $x_{1}, x_{1}^{\prime}, \ldots, x_{n} \in N$. This yields that $\left\{D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)\right\} x=0$. By hypothesis and Lemma 2.4(i) we have $D\left(x_{1}, x_{2}, \ldots, x_{n}\right) N x=\{0\}$. But since N is a prime near ring and $D \neq 0$, we have $x=0$.
(ii) It can be proved in a similar way.

Lemma 2.6. Let D be a nonzero permuting n-derivation of a prime near ring N. Then $D(C, C, \ldots, C) \neq\{0\}$ where $C \neq\{0\}$.
Proof. If possible assume $D(C, C, \ldots, C)=\{0\}$, then $D\left(c_{1}, c_{2}, \ldots, c_{n}\right)=0$ for all $c_{1}, c_{2}, \ldots, c_{n} \in C$. For all $r_{1} \in N$ and $c_{1} \in C$ we get $r_{1} c_{1} \in C$. Also $D\left(r_{1} c_{1}, c_{2}, \ldots, c_{n}\right)=0$ implies $r_{1} D\left(c_{1}, c_{2}, \ldots, c_{n}\right)+D\left(r_{1}, c_{2}, \ldots, c_{n}\right) c_{1}=0$. Thus we get

$$
\begin{equation*}
D\left(r_{1}, c_{2}, \ldots, c_{n}\right) c_{1}=0 \tag{2.1}
\end{equation*}
$$

Replacing c_{1} by $x c_{1}$ in equation (2.1) where $x \in N$ we find that

$$
D\left(r_{1}, c_{2}, \ldots, c_{n}\right) N c_{1}=\{0\}
$$

Primeness of N yields,

$$
\begin{equation*}
D\left(r_{1}, c_{2}, \ldots, c_{n}\right)=0 \tag{2.2}
\end{equation*}
$$

Now putting $r_{2} c_{2} \in C$ in place of c_{2} where $r_{2} \in N$ in the equation (2.2) and proceeding as above we have $D\left(r_{1}, r_{2}, c_{3}, \ldots, c_{n}\right)=0$. Proceeding inductively we conclude that $D\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$ for all $r_{1}, r_{2}, \ldots, r_{n} \in N$ leading to a contradiction.

Lemma 2.7. Let N be a m!-torsion free near-ring, where $(N,+)$ is an abelian group. Suppose $y_{1}, y_{2}, \ldots, y_{m} \in N$ satisfy $\alpha y_{1}+\alpha^{2} y_{2}+\cdots+\alpha^{m} y_{m}=0$ for $\alpha=1,2, \ldots, m$. Then $y_{i}=0$ for all i.
Proof. Let $A=\left(\begin{array}{cccc}1 & 1 & \cdots & 1 \\ 2 & 2^{2} & \cdots & 2^{m} \\ \vdots & \vdots & \vdots & \vdots \\ m & m^{2} & \cdots & m^{m}\end{array}\right)$ be any $m \times m$ matrix. Then by our assump$\operatorname{tion} A\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{m}\end{array}\right)=\left(\begin{array}{c}m^{m} \\ 0 \\ \vdots \\ 0\end{array}\right)$. Now pre multiplying by $\operatorname{Adj} A$ yields $\operatorname{Det} A\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{m}\end{array}\right)$ $=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$. Since $\operatorname{Det} A$, as a Vondermonde determinant, is equal to a product of positive integers, each of which is less than or equal to m and as N is a $m!$-torsion free near-ring, it follows immediately that $y_{i}=0$ for all i.

3. Main results

Recently M. A. Öztürk and Y. B. Jun [7, Lemma 3.1] proved that in a 2torsion free near-ring which admits a symmetric bi-additive mapping D if the trace d of D is zero, then $D=0$. Further, this result was generalized by K. H. Park and Y. S. Jung [9, Lemma 2.2] for permuting tri-additive mapping in 3!-torsion free near-ring in the year 2010. We have extended this result, as below, for permuting n-additive mapping in a $n!$-torsion free prime near-ring under some constraints.

Theorem 3.1. Let N be n!-torsion free prime near-ring and D be a permuting n-additive mapping of N such that $D(N, N, \ldots, N) \subseteq Z$. If $d(x)=0$ for all $x \in N$, then $D=0$.

Proof. If $D=0$, then we have nothing to do, if not then D is a non zero permuting n-additive mapping of prime near-ring N such that $D(N, N, \ldots, N) \subseteq Z$. Hence there exist $x_{1}, x_{2}, \ldots, x_{n} \in N$, all nonzero such that $D\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq$ 0 and $D\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Z$. Since $D\left(x_{1}+x_{1}, x_{2}, \ldots, x_{n}\right)=D\left(x_{1}, x_{2}, \ldots, x_{n}\right)+$ $D\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Z$, by Lemma 2.1(ii), $(N,+)$ is an abelian group. Hence
the trace $d(x)=D(x, x, \ldots, x)$ of permuting n-additive mapping D can be expressed as;

$$
\begin{equation*}
d(x+y)=d(x)+d(y)+\sum_{k=1}^{n-1}\binom{n}{k} h_{k}(x, y) \tag{3.1}
\end{equation*}
$$

where $x, y \in N$ and $h_{k}(x, y)=D(\underbrace{x, x, \ldots, x}_{(n-k) \text {-times }}, \underbrace{y, y, \ldots, y}_{k \text {-times }})$. In particular by our hypothesis $d\left(\mu x+x_{n}\right)=0$ where $1 \leq \mu \leq n-1$. With the help of equation (3.1) we get

$$
\begin{aligned}
0 & =d(\mu x)+d\left(x_{n}\right)+\sum_{k=1}^{n-1}\binom{n}{k} h_{k}\left(\mu x, x_{n}\right) \\
& =\sum_{k=1}^{n-1}\binom{n}{k} h_{k}\left(\mu x, x_{n}\right)
\end{aligned}
$$

This yields that

$$
\mu y_{1}+\mu^{2} y_{2}+\cdots+\mu^{n-2} y_{n-2}+\mu^{n-1} n D\left(x, x, \ldots, x, x_{n}\right)=0
$$

where $y_{1}, y_{2}, \ldots, y_{n-2} \in N$. By our hypothesis and Lemma 2.7, we deduce that

$$
\begin{equation*}
D\left(x, x, \ldots, x, x_{n}\right)=0 \tag{3.2}
\end{equation*}
$$

for all $x, x_{n} \in N$. Let $\nu(1 \leq \nu \leq n-2)$ be any integer. By equation (3.2) we find that

$$
D\left(\nu x+x_{n-1}, \nu x+x_{n-1}, \ldots, \nu x+x_{n-1}, x_{n}\right)=0
$$

Expanding the above relation and using equation (3.2) again we obtain

$$
\nu z_{1}+\nu^{2} z_{2}+\ldots+\nu^{n-3} z_{n-3}+\nu^{n-2}\binom{n}{2} D\left(x, x, \ldots, x, x_{n-1}, x_{n}\right)=0
$$

where $z_{1}, z_{2}, \ldots, z_{n-3} \in N$. By our hypothesis and Lemma 2.7 , we conclude that $D\left(x, x, \ldots, x, x_{n-1}, x_{n}\right)=0$ for all $x, x_{n-1}, x_{n} \in N$. Now if we continue the above process inductively, then we finally arrive at $D\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=0$. This gives that $D=0$, a contradiction.

In the year 1987 H. E. Bell [3, Theorem 2] proved that if a 2-torsion free zero symmetric prime near-ring N admits a non zero derivation D for which $D(N) \subseteq Z$, then N is a commutative ring. Further, this result was generalized by K. H. Park [5, Theorem 3.1] in the year 2010 for permuting tri-derivation, who showed that if 3 !-torsion free zero symmetric prime near-ring N admits a non zero permuting tri-derivation D for which $D(N, N, N) \subseteq Z$, then N is a commutative ring. The following result shows that 2 -torsion free and 3 !-torsion free restrictions in the above results used by Bell and Park are superfluous. In fact, for permuting n-derivation in a prime near-ring N we have obtained the following:

Theorem 3.2. Let D be a non zero permuting n-derivation of prime near-ring N such that $D(N, N, \ldots, N) \subseteq Z$. Then N is a commutative ring.
Proof. For all $x_{1}, x_{1}^{\prime}, \ldots, x_{n} \in N$, we have

$$
\begin{equation*}
D\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \in Z \tag{3.3}
\end{equation*}
$$

Hence $x_{1}^{\prime}\left\{D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)\right\}=\left\{D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}+\right.$ $\left.x_{1} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)\right\} x_{1}^{\prime}$. Using the hypothesis and Lemma 2.4(i) we get $x_{1}^{\prime} x_{1}$ $D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{1}^{\prime} D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)$. This yields that $D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)$ $\left(x_{1}^{\prime} x_{1}-x_{1} x_{1}^{\prime}\right)=0$. Since Z has no zero divisors, for each fixed $x_{1}^{\prime} \in N$ either $\left(x_{1}^{\prime} x_{1}-x_{1} x_{1}^{\prime}\right)=0$ or $D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{1}, x_{2}, \ldots, x_{n} \in N$. If first holds, then $x_{1}^{\prime} \in Z$ if not, i.e., $D\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=0$, then equa$\operatorname{tion}(3.3)$ reduces to $D\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=D\left(x_{1}, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}$. Since $D \neq 0$ and $D\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Z$, by Lemma $2.2 x_{1}^{\prime} \in Z$. Hence we conclude that $N \subseteq Z$. Thus we obtain that $N=Z$, i.e., N is a commutative near-ring. If $N=\{0\}$, then N is trivially a commutative ring. If $N \neq\{0\}$, then there exists $0 \neq x \in N$ and hence $x+x \in N=Z$. Now by Lemma 2.1(ii), we conclude that N is a commutative ring.

Theorem 3.3. Let N be a prime near-ring and D_{1} and D_{2} be any two non zero permuting n-derivations of N. If $\left[D_{1}(N, N, \ldots, N), D_{2}(N, N, \ldots, N)\right]=\{0\}$, then $(N,+)$ is an abelian group.
Proof. If both z and $z+z$ commute element wise with $D_{2}(N, N, \ldots, N)$, then $z D_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=D_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) z$ and $(z+z) D_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=D_{2}$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)(z+z)$ for all $x_{1}, x_{2}, \ldots, x_{n} \in N$. In particular, $(z+z) D_{2}\left(x_{1}+\right.$ $\left.x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=D_{2}\left(x_{1}+x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)(z+z)$ for all $x_{1}, x_{1}^{\prime}, \ldots, x_{n} \in N$. From the previous equalities we get $z D_{2}\left(x_{1}+x_{1}^{\prime}-x_{1}-x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=$ 0 , i.e., $z D_{2}\left(\left(x_{1}, x_{1}^{\prime}\right), x_{2}, \ldots, x_{n}\right)=0$. Putting $z=D_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ we get $D_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right) D_{2}\left(\left(x_{1}, x_{1}^{\prime}\right), x_{2}, \ldots, x_{n}\right)=0$. By Lemma 2.5(i) we conclude that $D_{2}\left(\left(x_{1}, x_{1}^{\prime}\right), x_{2}, \ldots, x_{n}\right)=0$. Putting $w\left(x_{1}, x_{1}^{\prime}\right)$ in place of additive commutator $\left(x_{1}, x_{1}^{\prime}\right)$ where $w \in N$ we have $D_{2}\left(w\left(x_{1}, x_{1}^{\prime}\right), x_{2}, \ldots, x_{n}\right)=0$, i.e., $D_{2}\left(w, x_{2}, \ldots, x_{n}\right)\left(x_{1}, x_{1}^{\prime}\right)+w D_{2}\left(\left(x_{1}, x_{1}^{\prime}\right), x_{2}, \ldots, x_{n}\right)=0$. Previous equality yields $D_{2}\left(w, x_{2}, \ldots, x_{n}\right)\left(x_{1}, x_{1}^{\prime}\right)=0$. By Lemma 2.5(i) again we conclude that $\left(x_{1}, x_{1}^{\prime}\right)=0$. Hence $(N,+)$ is an abelian group.

Theorem 3.4. Let N be a prime near-ring with non zero permuting n-derivations D_{1} and D_{2} such that

$$
D_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=-D_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$. Then $(N,+)$ is an abelian group.
Proof. By our hypothesis we have, $D_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+D_{2}\left(x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}\right) D_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0$ for all $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$. Replacing y_{1} by $y_{1}+y_{1}^{\prime}$ in previous equation we get $D_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{2}\left(y_{1}+\right.$
$\left.y_{1}^{\prime}, y_{2}, \ldots, y_{n}\right)+D_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{1}\left(y_{1}+y_{1}^{\prime}, y_{2}, \ldots, y_{n}\right)=0$. Using our hypothesis we get, $D_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+D_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{2}\left(y_{1}^{\prime}\right.$, $\left.y_{2}, \ldots, y_{n}\right)+D_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{2}\left(-y_{1}, y_{2}, \ldots, y_{n}\right)+D_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{2}\left(-y_{1}\right.$, $\left.y_{2}, \ldots, y_{n}\right)=0$, i.e., $D_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) D_{2}\left(\left(y_{1}, y_{1}^{\prime}\right), y_{2}, \ldots, y_{n}\right)=0$. Now using Lemma 2.5(i) we conclude that $D_{2}\left(\left(y_{1}, y_{1}^{\prime}\right), y_{2}, \ldots, y_{n}\right)=0$. Putting $w\left(y_{1}, y_{1}^{\prime}\right)$ in place of $\left(y_{1}, y_{1}^{\prime}\right)$ where $w \in N$ in the previous equality and using Lemma $2.5(\mathrm{i})$; as used in the previous theorem, we conclude that $(N,+)$ is an abelian group.

Corollary 3.1 ([1, Lemma 2.1]). Let N be a prime near-ring with non zero derivations d_{1} and d_{2} such that $d_{1}(x) d_{2}(y)=-d_{2}(x) d_{1}(y)$ for all $x, y \in N$. Then $(N,+)$ is an abelian group.

Theorem 3.5. LetD be a non zero permuting n-derivation of prime near-ring N. If $D(C, N, N, \ldots, N)=\{0\}$, then $(N,+)$ is an abelian group.

Proof. Since $D\left(c, r_{2}, \ldots, r_{n}\right)=0$ for all $c \in C$ and for all $r_{2}, \ldots, r_{n} \in N$, $D\left(w c, r_{2}, \ldots, r_{n}\right)=0$ where $w \in N$, i.e., $w D\left(c, r_{2}, \ldots, r_{n}\right)+D\left(w, r_{2}, \ldots, r_{n}\right) c=$ 0 . In turn we get $D\left(w, r_{2}, \ldots, r_{n}\right) c=0$ but $D \neq 0$, and therefore by Lemma $2.5(\mathrm{i}) ; c=0$. Hence $(N,+)$ is an abelian group.

Theorem 3.6. Let N be a semi prime near-ring and D be a permuting n derivation of N. If $D\left(x_{1}, x_{2}, \ldots, x_{n}\right) y_{1}=x_{1} D\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ for all x_{1}, x_{2}, $\ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in N$, then $D=0$.

Proof. We have

$$
\begin{equation*}
D\left(x_{1}, x_{2}, \ldots, x_{n}\right) y_{1}=x_{1} D\left(y_{1}, y_{2}, \ldots, y_{n}\right) \tag{3.4}
\end{equation*}
$$

Putting $y_{1} z_{1}$ in place of y_{1} in the above equation; where $z_{1} \in N$, we get

$$
\begin{aligned}
D\left(x_{1}, x_{2}, \ldots, x_{n}\right) y_{1} z_{1} & =x_{1} D\left(y_{1} z_{1}, y_{2}, \ldots, y_{n}\right) \\
& =x_{1} D\left(y_{1}, y_{2}, \ldots, y_{n}\right) z_{1}+x_{1} y_{1} D\left(z_{1}, y_{2}, \ldots, y_{n}\right) .
\end{aligned}
$$

By equation (3.4) we get $D\left(x_{1}, x_{2}, \ldots, x_{n}\right) y_{1} z_{1}=D\left(x_{1}, x_{2}, \ldots, x_{n}\right) y_{1} z_{1}+x_{1} y_{1} D$ $\left(z_{1}, y_{2}, \ldots, y_{n}\right)$. This yields that $x_{1} y_{1} D\left(z_{1}, y_{2}, \ldots, y_{n}\right)=0$. Now replacing x_{1} by $D\left(z_{1}, y_{2}, \ldots, y_{n}\right)$ we get $D\left(z_{1}, y_{2}, \ldots, y_{n}\right) N D\left(z_{1}, y_{2}, \ldots, y_{n}\right)=\{0\}$. But since N is a semi prime near-ring, we conclude that $D=0$.

Theorem 3.7. Let N be any prime near-ring and D be any non-zero permuting n-derivation of N. If $K=\{a \in N \mid[D(N, N, \ldots, N), a]=\{0\}\}$, then
(i) $a \in K$ implies either $a \in Z$ or $d(a)=0$,
(ii) $d(K) \subseteq Z$,
(iii) K is a semigroup under multiplication,
(iv) If there exists an element $a \in K$ for which $d(a) \neq 0$ and $D\left(a^{2}, a, \ldots, a\right)$ $\in Z$, then $(N,+)$ is an abelian group.

Proof. (i) We have

$$
\begin{equation*}
D\left(x_{1}, x_{2}, \ldots, x_{n}\right) a=a D\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{3.5}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in N$. Putting $a x_{1}$ in place of x_{1} in the above equation and using Lemma 2.4(i) we get $D\left(a, x_{2}, \ldots, x_{n}\right) x_{1} a+a D\left(x_{1}, x_{2}, \ldots, x_{n}\right) a=$ $a D\left(a, x_{2}, \ldots, x_{n}\right) x_{1}+a a D\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Using the equation (3.5), we get $D\left(a, x_{2}, \ldots, x_{n}\right) x_{1} a=a D\left(a, x_{2}, \ldots, x_{n}\right) x_{1}$. Now putting $x_{1} y_{1}$ for x_{1} in the latter relation and using it again, we have $D\left(a, x_{2}, \ldots, x_{n}\right) x_{1}\left[y_{1}, a\right]=0$ where $y_{1} \in N$. This gives us $D\left(a, x_{2}, \ldots, x_{n}\right) N\left[a, y_{1}\right]=\{0\}$. Since N is a prime near-ring, either $\left[a, y_{1}\right]=0$ for all $y_{1} \in N$ or $D\left(a, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in N$. If first holds, then $a \in Z$, if not then $D\left(a, x_{2}, \ldots, x_{n}\right)=0$, and hence in particular, $D(a, a, \ldots, a)=0$ or $d(a)=0$.
(ii) From the above proof we observe that if $a \in K$, then either $a \in Z$ or $d(a)=0$. But $d(a)=0$ implies $d(a) \in Z$. If $d(a) \neq 0$, then we have $a \in Z$. In this case we have $D(x a, a \ldots, a)=D(a x, a, \ldots, a)$ for all $x \in N$. This yields that $x D(a, a, \ldots, a)+D(x, a, \ldots, a) a=D(a, a, \ldots, a) x+a D(x, a, \ldots, a)$. This reduces to $x D(a, a, \ldots, a)=D(a, a, \ldots, a) x$, which shows that $d(a) \in Z$ and thus $d(K) \subseteq Z$.
(iii) Let $a, b \in K$. Hence $a b D\left(r_{1}, r_{2}, \ldots, r_{n}\right)=D\left(r_{1}, r_{2}, \ldots, r_{n}\right) a b$ holds trivially. Associativity of N shows that K is a semigroup.
(iv) Consider $D\left(a^{2}, a, \ldots, a\right)=a D(a, a, \ldots, a)+D(a, a, \ldots, a) a \in Z$. As $d(a)=D(a, a, \ldots, a) \neq 0$ implies that $a \in Z$ by (i). Hence $D\left(a^{2}, a, \ldots, a\right)=$ $D(a, a, \ldots, a)(a+a)$. By above proof (ii) we find that $D(a, a, \ldots, a) \in Z \backslash\{0\}$ and hence using Lemma 2.2, $(a+a) \in Z$. By Lemma 2.1(ii) we conclude that $(N,+)$ is an abelian group.

Theorem 3.8. Let N be a prime near-ring which admits a non zero permuting n-derivation D such that $D(C, C, \ldots, C) \subseteq Z$. Then N is a commutative ring where $C \neq\{0\}$.
Proof. For all $c_{1}, c_{1}^{\prime}, \ldots, c_{n} \in C$, we get

$$
\begin{equation*}
D\left(c_{1} c_{1}^{\prime}, c_{2}, \ldots, c_{n}\right)=D\left(c_{1}, c_{2}, \ldots, c_{n}\right) c_{1}^{\prime}+c_{1} D\left(c_{1}^{\prime}, c_{2}, \ldots, c_{n}\right) \in Z \tag{3.6}
\end{equation*}
$$

and commuting this element with c_{1}^{\prime} we arrive at $D\left(c_{1}^{\prime}, c_{2}, \ldots, c_{n}\right)\left(c_{1}^{\prime} c_{1}-\right.$ $\left.c_{1} c_{1}^{\prime}\right)=0$ for all $c_{1}, c_{1}^{\prime}, \ldots, c_{n} \in C$. Now by Lemma 2.1(i), we observe that for each c_{1}^{\prime} either c_{1}^{\prime} centralizes C or $D\left(c_{1}^{\prime}, c_{2}, \ldots, c_{n}\right)=0$. If first case holds for each element of C, then C becomes commutative with respect to multiplication. On the other hand if second case holds, i.e., $D\left(c_{1}^{\prime}, c_{2}, \ldots, c_{n}\right)=0$, then equation(3.6) takes the form

$$
\begin{equation*}
D\left(c_{1} c_{1}^{\prime}, c_{2}, \ldots, c_{n}\right)=D\left(c_{1}, c_{2}, \ldots, c_{n}\right) c_{1}^{\prime} \in Z \tag{3.7}
\end{equation*}
$$

for all $c_{1}, c_{2}, \ldots, c_{n} \in C$. By Lemmas 2.2 and 2.6 , we conclude that $c_{1}^{\prime} \in Z$. Hence in this case also we conclude that c_{1}^{\prime} centralizes C. Hence in both cases we conclude that C is a commutative semi group with respect to multiplication. Now we separate the proof in two cases:

Case I: Let $C \cap Z \neq\{0\}$. Then in this case it follows that if C contains a non zero central element w, then we have $w x c=x c w=x w c=w c x$ for all $c \in C$ and for all $x \in N$. Hence we have $w(x c-c x)=0$. By Lemma 2.1(i), we conclude that $c \in Z$, i.e., $C \subseteq Z$. For all $c \in C$ and for all $x, y \in N$ we have $x c y=y x c$ or $c x y=c y x$ since $x c \in C$. Lastly we get $c(x y-y x)=0$. As $C \neq\{0\}$, by Lemma 2.1(i), N becomes a commutative near-ring, i.e., $N=Z$. If $N=\{0\}$, then N is trivially a commutative ring. If $N \neq\{0\}$, then there exists $t \in N \backslash\{0\}$. Hence $t+t \in N=Z$, and by Lemma 2.1(ii) we conclude that N is a commutative ring.

Case II: Let $C \cap Z=\{0\}$. For this case in the light of equation (3.7) we claim that $D\left(c_{1}, c_{2}, \ldots, c_{n}\right) \neq 0$ for all $c_{1}, c_{2}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n} \in C$ and for all $c_{i} \in C \backslash\{0\}$. For each $c_{i} \in C$ and for all $c_{1}, c_{2}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n} \in$ $C, D\left(c_{1}, c_{2}, \ldots, c_{i}^{2}, \ldots, c_{n}\right)=D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right)\left(c_{i}+c_{i}\right)$ and hence by Lemmas 2.2 and 2.6, $2 c_{i} \in Z$. Suppose that $2 c_{i} \neq 0$ for all $c_{i} \in C \backslash\{0\}$. It is obvious that $x C=\{x c \mid c \in C\}=\{0\}$ implies $x=0$. This shows that for each $x \in N \backslash\{0\}$, there exists $c_{x} \in C$ such that $x c_{x} \neq 0$. Since $x c_{x}$ being an additive commutator also belongs to C, we have $2 x c_{x}=x\left(2 c_{x}\right)$ and by Lemma 2.2 we conclude that $x \in Z$. Hence $N=Z$, i.e., N is a commutative near-ring. If $N=\{0\}$, then N is trivially a commutative ring. If $N \neq\{0\}$, then there exists $p \in N \backslash\{0\}$ such that $p+p \in N=Z$. By Lemma 2.1(ii) we conclude that N is a commutative ring. The only remaining possibility is that $C \cap Z=\{0\}$ and there exists $c_{i} \in C \backslash\{0\}$ such that $2 c_{i}=0$ and we complete our proof by showing that this leads to a contradiction. Suppose that $c_{i} \in C \backslash\{0\}$ and $2 c_{i}=0$. We have $D\left(c_{1}, c_{2}, \ldots, c_{i}^{3}, \ldots, c_{n}\right)=3 c_{i}^{2} D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right) \in Z$. Since $2 c_{i}^{2} D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right)=0$, we get $c_{i}^{2} D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right) \in Z$. This implies that $c_{i}^{2} \in Z$ by Lemma 2.2. Since $C \cap Z=\{0\}, c_{i}^{2}=0$. Now $D\left(c_{1}, c_{2}, \ldots, x c_{i}, \ldots, c_{n}\right)=x D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right)+D\left(c_{1}, c_{2}, \ldots, x, \ldots, c_{n}\right) c_{i}$ $\in Z$ for all $x \in N$ and $c_{1}, c_{2}, \ldots, c_{n} \in C$. Hence $c_{i}\left\{x D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right)+\right.$ $\left.D\left(c_{1}, c_{2}, \ldots, x, \ldots, c_{n}\right) c_{i}\right\}=\left\{x D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right)+D\left(c_{1}, c_{2}, \ldots, x, \ldots, c_{n}\right)\right.$ $\left.c_{i}\right\} c_{i}=x D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right) c_{i}$. Left multiplying by c_{i} we get $c_{i}^{2}\left\{x D\left(c_{1}, c_{2}\right.\right.$, $\left.\left.\ldots, c_{i}, \ldots, c_{n}\right)+D\left(c_{1}, c_{2}, \ldots, x, \ldots, c_{n}\right) c_{i}\right\}=c_{i} x D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right) c_{i}$. Finally we get $c_{i} x D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right) c_{i}=0$. This implies that $c_{i} N D\left(c_{1}, c_{2}\right.$, $\left.\ldots, c_{i}, \ldots, c_{n}\right) c_{i}=\{0\}$, but primeness of N yields that $D\left(c_{1}, c_{1}, \ldots, c_{i}, \ldots, c_{n}\right)$ $c_{i}=0$. Since $D\left(c_{1}, c_{2}, \ldots, c_{i}, \ldots, c_{n}\right) \in Z \backslash\{0\}$, by Lemma 2.1(i), we conclude that $c_{i}=0$, a contradiction.

References

[1] K. I. Beidar, Y. Fong, and X. K. Wang, Posner and Herstein theorems for derivations of 3-prime near-rings, Comm. Algebra 24 (1996), no. 5, 1581-1589.
[2] H. E. Bell, On derivations in near-rings. II, Nearrings, nearfields and K-loops (Hamburg, 1995), 191-197, Math. Appl., 426, Kluwer Acad. Publ., Dordrecht, 1997.
[3] H. E. Bell and G. Mason, On derivations in near-rings, Near-rings and near-fields (Tübingen, 1985), 31-35, North-Holland Math. Stud., 137, North-Holland, Amsterdam, 1987.
[4] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat. Ser. III 15(35) (1980), no. 2, 279-282.
[5] , On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303-307.
[6] M. A. Öztürk, Permuting tri-derivations in prime and semi prime rings, East. Asian. Math. J. 15 (1999), no. 2, 177-190.
[7] M. A. Öztürk and Y. B. Jun, On trace of symmetric bi-derivations in near-rings, Int. J. Pure Appl. Math. 17 (2004), no. 1, 95-102.
[8] K. H. Park, On prime and semi prime rings with symmetric n-derivations, J. Chungcheong Math. Soc. 22 (2009), no. 3, 451-458.
[9] K. H. Park and Y. S. Jung, On permuting 3-derivations and commutativity in prime near-rings, Commun. Korean Math. Soc. 25 (2010), no. 1, 1-9.
[10] G. Pilz, Near-rings, 2nd ed., 23, North Holland/American Elsevier, Amsterdam, 1983.
Mohammad Ashraf
Department of Mathematics
Aligarh Muslim University
Aligarh-202002, India
E-mail address: mashraf80@hotmail.com
Mohammad Aslam Siddeeque Department of Mathematics Aligarh Muslim University
Aligarh-202002, India
E-mail address: aslamsiddeeque@gmail.com

[^0]: Received August 14, 2012; Revised February 22, 2013.
 2010 Mathematics Subject Classification. 16W25, 16Y30.
 Key words and phrases. left near-rings, zero symmetric, derivations, permuting n derivations.

