Commun. Korean Math. Soc. **28** (2013), No. 4, pp. 697–707 http://dx.doi.org/10.4134/CKMS.2013.28.4.697

ON PERMUTING *n*-DERIVATIONS IN NEAR-RINGS

Mohammad Ashraf and Mohammad Aslam Siddeeque

ABSTRACT. In this paper, we introduce the notion of permuting *n*-derivations in near-ring N and investigate commutativity of addition and multiplication of N. Further, under certain constrants on a *n*!-torsion free prime near-ring N, it is shown that a permuting *n*-additive mapping D on N is zero if the trace d of D is zero. Finally, some more related results are also obtained.

1. Introduction

Throughout this paper N will denote a zero-symmetric left near ring. A near ring N is called zero symmetric if 0x = 0 for all $x \in N$ (recall that in a left near ring x0 = 0 for all $x \in N$). N is called prime if $xNy = \{0\}$ implies x = 0 or y = 0. It is called semi prime if $xNx = \{0\}$ implies x = 0. Near-ring N is called n-torsion free if nx = 0 implies x = 0. The symbol Z will represent the multiplicative center of N, that is, $Z = \{x \in N \mid xy = yx \text{ for all } y \in N\}$. As usual, for $x, y \in N, [x, y]$ will denote the commutator xy - yx, while (x, y) will indicate the additive group commutator x + y - x - y. The symbol C will represent the set of all additive commutators of near ring N. For terminologies concerning near-rings we refer to G. Pilz [10].

An additive map $f: N \longrightarrow N$ is called a derivation if f(xy) = f(x)y + xf(y)holds for all $x, y \in N$. The concepts of symmetric bi-derivation, permuting triderivation and permuting *n*-derivation have already been introduced in rings by G. Maksa, M. A. Öztürk and K. H. Park in [4, 5, 6], and [8], respectively. These concepts of symmetric bi-derivations and permuting tri-derivations have been studied in near-rings by M. A. Öztürk and K. H. Park in [7] and [9], respectively. In the present paper, motivated by these concepts, we define permuting *n*-derivations in near-rings and study some properties involved there. Some relations between permuting *n*-derivations and *C*, the set of all additive commutators in near-ring *N* have also been studied.

O2013 The Korean Mathematical Society

Received August 14, 2012; Revised February 22, 2013.

²⁰¹⁰ Mathematics Subject Classification. 16W25, 16Y30.

 $Key\ words\ and\ phrases.$ left near-rings, zero symmetric, derivations, permuting n-derivations.

A map $D: \underbrace{N \times N \times \cdots \times N}_{n\text{-times}} \longrightarrow N$ is said to be permuting if the equation $D(x_1, x_2, \dots, x_n) = D(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$ holds for all $x_1, x_2, \dots, x_n \in N$ and for every permutation $\pi \in S_n$, where S_n is the permutation group on $\{1, 2, \ldots, n\}$. A map $d : N \to N$ defined by $d(x) = D(x, x, \ldots, x)$ for all $x \in N$ where $D : N \times N \times \cdots \times N \to N$ is a permuting map, is called n-times

the trace of D. A permuting n-additive (i.e., additive in each argument) mapping $D : \underbrace{N \times N \times \dots \times N}_{n-\text{times}} \longrightarrow N$ is called a permuting *n*-derivation if

 $D(x_1x'_1, x_2, \ldots, x_n) = D(x_1, x_2, \ldots, x_n)x'_1 + x_1D(x'_1, x_2, \ldots, x_n)$ holds for all $x_1, x'_1, \ldots, x_n \in N$. Of course, a permuting 1-derivation is a derivation and permuting 2-derivation is a symmetric bi-derivation. For an example of permuting $n\text{-}\mathrm{derivation}$ let $n\geq 1$ be a fixed positive integer, N a commutative near-ring. Then $R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b, 0 \in N \right\}$ is a non-commutative near-ring with regard to matrix addition and matrix multiplication. Define $D: \underbrace{R \times R \times \ldots \times R}_{n-\text{times}} \longrightarrow$

R such that

$$D\left(\left(\begin{array}{ccc}a_1 & b_1\\ 0 & 0\end{array}\right), \left(\begin{array}{ccc}a_2 & b_2\\ 0 & 0\end{array}\right), \dots, \left(\begin{array}{ccc}a_n & b_n\\ 0 & 0\end{array}\right)\right) = \left(\begin{array}{ccc}0 & a_1a_2\cdots a_n\\ 0 & 0\end{array}\right).$$

It is easy to see that D is a permuting n-derivation of R.

Now let D be a permuting *n*-derivation of a near-ring N. Then it can be easily seen that $D(0, x_2, ..., x_n) = D(0 + 0, x_2, ..., x_n) = D(0, x_2, ..., x_n) +$ $D(0, x_2, \ldots, x_n)$. Therefore $D(0, x_2, \ldots, x_n) = 0$ for all $x_2, \ldots, x_n \in N$. We also observe that $D(-x_1, x_2, \ldots, x_n) = -D(x_1, x_2, \ldots, x_n)$ for all $x_i \in N$; i = $1, 2, \ldots, n.$

There has been a great deal of work concerning derivations, biderivations and triderivations in near-rings (see [1, 2, 3, 4, 9] where further references can be found). In this paper we study the commutativity of addition and multiplication of near-rings. Many well known results for derivations, bi-derivations and tri-derivations in near-rings have been generalized for permuting n-derivation. In fact, our results generalize and complement several well known theorems for near-rings.

2. Preliminary results

We begin with the following lemmas which are essential for developing the proofs of our main results. Proofs of Lemmas 2.1 and 2.2 can be seen in [2, Lemma 3] and [3, Lemma 1.2], respectively.

Lemma 2.1. Let N be a prime near-ring.

- (i) If $z \in Z \setminus \{0\}$, then z is not a zero divisor.
- (ii) If $Z \setminus \{0\}$ contains an element z for which $z + z \in Z$, then (N, +) is abelian.

Lemma 2.2. Let N be a prime near-ring. If $z \in Z \setminus \{0\}$ and x is an element of N such that $xz \in Z$ or $zx \in Z$, then $x \in Z$.

Lemma 2.3. Let N be a near-ring. Then D is a permuting n-derivation of N if and only if $D(x_1x'_1, x_2, \ldots, x_n) = x_1D(x'_1, x_2, \ldots, x_n) + D(x_1, x_2, \ldots, x_n)x'_1$ for all $x_1, x_1', x_2, \ldots, x_n \in N$.

Proof. We have

$$D(x_1(x'_1 + x'_1), x_2, \dots, x_n)$$

= $D(x_1, x_2, \dots, x_n)(x'_1 + x'_1) + x_1 D(x'_1 + x'_1, x_2, \dots, x_n)$
= $D(x_1, x_2, \dots, x_n)x'_1 + D(x_1, x_2, \dots, x_n)x'_1$
+ $x_1 D(x'_1, x_2, \dots, x_n) + x_1 D(x'_1, x_2, \dots, x_n)$

and

$$D(x_1x'_1 + x_1x'_1, x_2, \dots, x_n)$$

= $D(x_1x'_1, x_2, \dots, x_n) + D(x_1x'_1, x_2, \dots, x_n)$
= $D(x_1, x_2, \dots, x_n)x'_1 + x_1D(x'_1, x_2, \dots, x_n)$
+ $D(x_1, x_2, \dots, x_n)x'_1 + x_1D(x'_1, x_2, \dots, x_n).$

Combining above two equalities we obtain that

.

$$D(x_1, x_2, \dots, x_n)x'_1 + x_1 D(x'_1, x_2, \dots, x_n)$$

= $x_1 D(x'_1, x_2, \dots, x_n) + D(x_1, x_2, \dots, x_n)x'_1.$

Therefore, $D(x_1x'_1, x_2, \dots, x_n) = x_1D(x'_1, x_2, \dots, x_n) + D(x_1, x_2, \dots, x_n)x'_1$. Converse can be proved in a similar way.

In a left near-ring N, right distributive law does not hold in general, however, we can prove the following partial distributive properties in N.

Lemma 2.4. Let N be a near-ring. Let D be a permuting n-derivation of N and d be the trace of D. Then for every $x_1, x'_1, \ldots, x_n, y \in N$,

 $\begin{array}{ll} (\mathrm{i}) & \{D(x_1, x_2, \dots, x_n)x_1' + x_1D(x_1', x_2, \dots, x_n)\}y\\ & = D(x_1, x_2, \dots, x_n)x_1'y + x_1D(x_1', x_2, \dots, x_n)y,\\ (\mathrm{ii}) & \{x_1D(x_1', x_2, \dots, x_n) + D(x_1, x_2, \dots, x_n)x_1'\}y\\ & = x_1D(x_1', x_2, \dots, x_n)y + D(x_1, x_2, \dots, x_n)x_1'y,\\ (\mathrm{iii}) & \{d(x)x_1 + xD(x, x, \dots, x, x_1)\}y = d(x)x_1y + xD(x, x, \dots, x, x_1)y,\\ (\mathrm{iv}) & \{xD(x, x, \dots, x, x_1) + d(x)x_1\}y = xD(x, x, \dots, x, x_1)y + d(x)x_1y. \end{array}$

Proof. (i) For all $x_1, x_1', x_1'', x_2, ..., x_n \in N$

$$D((x_1x'_1)x''_1, x_2, \dots, x_n)$$

= $D(x_1x'_1, x_2, \dots, x_n)x''_1 + (x_1x'_1)D(x''_1, x_2, \dots, x_n)$
= $\{D(x_1, x_2, \dots, x_n)x'_1 + x_1D(x'_1, x_2, \dots, x_n)\}x''_1 + (x_1x'_1)D(x''_1, x_2, \dots, x_n).$

Also

$$D(x_1(x_1x_1''), x_2, \dots, x_n)$$

$$= D(x_1, x_2, \dots, x_n)x_1'x_1'' + x_1D(x_1'x_1'', x_2, \dots, x_n)$$

$$= D(x_1, x_2, \dots, x_n)x_1'x_1'' + x_1\{D(x_1', x_2, \dots, x_n)x_1'' + x_1'D(x_1'', x_2, \dots, x_n)\}$$

$$= D(x_1, x_2, \dots, x_n)x_1'x_1'' + x_1D(x_1', x_2, \dots, x_n)x_1'' + x_1x_1'D(x_1'', x_2, \dots, x_n).$$

Combining the above two relations, we get

$$\{D(x_1, x_2, \dots, x_n)x_1' + x_1D(x_1', x_2, \dots, x_n)\}x_1''$$

= $D(x_1, x_2, \dots, x_n)x_1'x_1'' + x_1D(x_1', x_2, \dots, x_n)x_1''$.

Putting y in the place of x_1'' , we find that

$$\{D(x_1, x_2, \dots, x_n)x'_1 + x_1D(x'_1, x_2, \dots, x_n)\}y = D(x_1, x_2, \dots, x_n)x'_1y + x_1D(x'_1, x_2, \dots, x_n)y.$$

(ii) It can be proved, in a similar, way as above, with the help of Lemma 2.3.

(iii) In the proof (i) above putting $x_1 = x_2 = x_3 = \cdots = x_n = x$, we get

$$\{d(x)x_{1}^{'}+xD(x_{1}^{'},x,\ldots,x)\}y=d(x)x_{1}^{'}y+xD(x_{1}^{'},x\ldots,x)y.$$

In particular for $x_{1}^{'} = x_{1}$ we get

$$\{d(x)x_1 + xD(x, x, \dots, x_1)\}y = d(x)x_1y + xD(x, x, \dots, x_1)y.$$

(iv) It can be proved in a similar way as above.

Lemma 2.5. Let N be prime near-ring and D be a non zero permuting nderivation of N,

- (i) If $D(N, N, ..., N)x = \{0\}$ where $x \in N$, then x = 0,
- (ii) If $xD(N, N, ..., N) = \{0\}$ where $x \in N$, then x = 0.

Proof. (i) Given that $D(x_1x_1', x_2, \ldots, x_n)x = 0$ for all $x_1, x_1', \ldots, x_n \in N$. This yields that $\{D(x_1, x_2, ..., x_n)x'_1 + x_1D(x'_1, x_2, ..., x_n)\}x = 0$. By hypothesis and Lemma 2.4(i) we have $D(x_1, x_2, \ldots, x_n)Nx = \{0\}$. But since N is a prime near ring and $D \neq 0$, we have x = 0.

(ii) It can be proved in a similar way.

Lemma 2.6. Let D be a nonzero permuting n-derivation of a prime near ring N. Then $D(C, C, ..., C) \neq \{0\}$ where $C \neq \{0\}$.

Proof. If possible assume $D(C, C, \ldots, C) = \{0\}$, then $D(c_1, c_2, \ldots, c_n) = 0$ for all $c_1, c_2, \ldots, c_n \in C$. For all $r_1 \in N$ and $c_1 \in C$ we get $r_1c_1 \in C$. Also $D(r_1c_1, c_2, \dots, c_n) = 0$ implies $r_1D(c_1, c_2, \dots, c_n) + D(r_1, c_2, \dots, c_n)c_1 = 0.$ Thus we get

(2.1)
$$D(r_1, c_2, \dots, c_n)c_1 = 0.$$

700

Replacing c_1 by xc_1 in equation (2.1) where $x \in N$ we find that

$$D(r_1, c_2, \ldots, c_n)Nc_1 = \{0\}.$$

Primeness of N yields,

(2.2)
$$D(r_1, c_2, \dots, c_n) = 0.$$

Now putting $r_2c_2 \in C$ in place of c_2 where $r_2 \in N$ in the equation (2.2) and proceeding as above we have $D(r_1, r_2, c_3, \ldots, c_n) = 0$. Proceeding inductively we conclude that $D(r_1, r_2, \ldots, r_n) = 0$ for all $r_1, r_2, \ldots, r_n \in N$ leading to a contradiction.

Lemma 2.7. Let N be a m!-torsion free near-ring, where (N, +) is an abelian group. Suppose $y_1, y_2, \ldots, y_m \in N$ satisfy $\alpha y_1 + \alpha^2 y_2 + \cdots + \alpha^m y_m = 0$ for $\alpha = 1, 2, \ldots, m$. Then $y_i = 0$ for all i.

Proof. Let
$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2^2 & \cdots & 2^m \\ \vdots & \vdots & \vdots & \vdots \\ m & m^2 & \cdots & m^m \end{pmatrix}$$
 be any $m \times m$ matrix. Then by our assumption $A \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$. Now pre multiplying by Adj A yields $\text{Det}A \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ y_m \end{pmatrix}$. Since DetA, as a Vondermonde determinant, is equal to a product

of positive integers, each of which is less than or equal to m and as N is a

of positive integers, each of which is less than or equal to m and as N is a m!-torsion free near-ring, it follows immediately that $y_i = 0$ for all i.

3. Main results

Recently M. A. Öztürk and Y. B. Jun [7, Lemma 3.1] proved that in a 2torsion free near-ring which admits a symmetric bi-additive mapping D if the trace d of D is zero, then D = 0. Further, this result was generalized by K. H. Park and Y. S. Jung [9, Lemma 2.2] for permuting tri-additive mapping in 3!-torsion free near-ring in the year 2010. We have extended this result, as below, for permuting n-additive mapping in a n!-torsion free prime near-ring under some constraints.

Theorem 3.1. Let N be n!-torsion free prime near-ring and D be a permuting n-additive mapping of N such that $D(N, N, ..., N) \subseteq Z$. If d(x) = 0 for all $x \in N$, then D = 0.

Proof. If D = 0, then we have nothing to do, if not then D is a non zero permuting n-additive mapping of prime near-ring N such that $D(N, N, \ldots, N) \subseteq Z$. Hence there exist $x_1, x_2, \ldots, x_n \in N$, all nonzero such that $D(x_1, x_2, \ldots, x_n) \neq 0$ and $D(x_1, x_2, \ldots, x_n) \in Z$. Since $D(x_1 + x_1, x_2, \ldots, x_n) = D(x_1, x_2, \ldots, x_n) + D(x_1, x_2, \ldots, x_n) \in Z$, by Lemma 2.1(ii), (N, +) is an abelian group. Hence the trace d(x) = D(x, x, ..., x) of permuting *n*-additive mapping D can be expressed as;

(3.1)
$$d(x+y) = d(x) + d(y) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(x,y),$$

where $x, y \in N$ and $h_k(x, y) = D(\underbrace{x, x, \dots, x}_{(n-k)\text{-times}}, \underbrace{y, y, \dots, y}_{k\text{-times}})$. In particular by our hypothesis $d(\mu x + x_n) = 0$ where $1 \leq \mu \leq n-1$. With the help of equation

(3.1) we get

$$0 = d(\mu x) + d(x_n) + \sum_{k=1}^{n-1} \binom{n}{k} h_k(\mu x, x_n)$$
$$= \sum_{k=1}^{n-1} \binom{n}{k} h_k(\mu x, x_n).$$

This yields that

$$\mu y_1 + \mu^2 y_2 + \dots + \mu^{n-2} y_{n-2} + \mu^{n-1} n D(x, x, \dots, x, x_n) = 0,$$

where $y_1, y_2, \ldots, y_{n-2} \in N$. By our hypothesis and Lemma 2.7, we deduce that **n** (

$$(3.2) D(x, x, \dots, x, x_n) = 0$$

for all $x, x_n \in N$. Let $\nu(1 \leq \nu \leq n-2)$ be any integer. By equation (3.2) we find that

$$D(\nu x + x_{n-1}, \nu x + x_{n-1}, \dots, \nu x + x_{n-1}, x_n) = 0.$$

Expanding the above relation and using equation (3.2) again we obtain

$$\nu z_1 + \nu^2 z_2 + \ldots + \nu^{n-3} z_{n-3} + \nu^{n-2} \binom{n}{2} D(x, x, \ldots, x, x_{n-1}, x_n) = 0,$$

where $z_1, z_2, \ldots, z_{n-3} \in N$. By our hypothesis and Lemma 2.7, we conclude that $D(x, x, \ldots, x, x_{n-1}, x_n) = 0$ for all $x, x_{n-1}, x_n \in N$. Now if we continue the above process inductively, then we finally arrive at $D(x_1, x_2, \ldots, x_{n-1}, x_n) = 0$. This gives that D = 0, a contradiction. \square

In the year 1987 H. E. Bell [3, Theorem 2] proved that if a 2-torsion free zero symmetric prime near-ring N admits a non zero derivation D for which $D(N) \subseteq Z$, then N is a commutative ring. Further, this result was generalized by K. H. Park [5, Theorem 3.1] in the year 2010 for permuting tri-derivation, who showed that if 3!-torsion free zero symmetric prime near-ring N admits a non zero permuting tri-derivation D for which $D(N, N, N) \subseteq Z$, then N is a commutative ring. The following result shows that 2-torsion free and 3!-torsion free restrictions in the above results used by Bell and Park are superfluous. In fact, for permuting n-derivation in a prime near-ring N we have obtained the following:

Theorem 3.2. Let D be a non zero permuting n-derivation of prime near-ring N such that $D(N, N, ..., N) \subseteq Z$. Then N is a commutative ring.

Proof. For all $x_1, x'_1, \ldots, x_n \in N$, we have

(3.3) $D(x_1x_1', x_2, \dots, x_n) = D(x_1, x_2, \dots, x_n)x_1' + x_1D(x_1', x_2, \dots, x_n) \in \mathbb{Z}.$

Hence $x_1'\{D(x_1, x_2, \ldots, x_n)x_1' + x_1D(x_1', x_2, \ldots, x_n)\} = \{D(x_1, x_2, \ldots, x_n)x_1' + x_1D(x_1', x_2, \ldots, x_n)\}x_1'$. Using the hypothesis and Lemma 2.4(i) we get $x_1'x_1$ $D(x_1', x_2, \ldots, x_n) = x_1x_1'D(x_1', x_2, \ldots, x_n)$. This yields that $D(x_1', x_2, \ldots, x_n)$ $(x_1'x_1 - x_1x_1') = 0$. Since Z has no zero divisors, for each fixed $x_1' \in N$ either $(x_1'x_1 - x_1x_1') = 0$ or $D(x_1', x_2, \ldots, x_n) = 0$ for all $x_1, x_2, \ldots, x_n \in N$. If first holds, then $x_1' \in Z$ if not, i.e., $D(x_1', x_2, \ldots, x_n) = 0$, then equation(3.3) reduces to $D(x_1x_1', x_2, \ldots, x_n) = D(x_1, x_2, \ldots, x_n)x_1'$. Since $D \neq 0$ and $D(x_1, x_2, \ldots, x_n) \in Z$, by Lemma 2.2 $x_1' \in Z$. Hence we conclude that $N \subseteq Z$. Thus we obtain that N = Z, i.e., N is a commutative near-ring. If $N = \{0\}$, then N is trivially a commutative ring. If $N \neq \{0\}$, then there exists $0 \neq x \in N$ and hence $x + x \in N = Z$. Now by Lemma 2.1(ii), we conclude that N is a commutative ring.

Theorem 3.3. Let N be a prime near-ring and D_1 and D_2 be any two non zero permuting n-derivations of N. If $[D_1(N, N, ..., N), D_2(N, N, ..., N)] = \{0\}$, then (N, +) is an abelian group.

Proof. If both z and z + z commute element wise with $D_2(N, N, ..., N)$, then $zD_2(x_1, x_2, ..., x_n) = D_2(x_1, x_2, ..., x_n)z$ and $(z + z)D_2(x_1, x_2, ..., x_n) = D_2(x_1, x_2, ..., x_n)(z + z)$ for all $x_1, x_2, ..., x_n \in N$. In particular, $(z + z)D_2(x_1 + x'_1, x_2, ..., x_n) = D_2(x_1 + x'_1, x_2, ..., x_n)(z + z)$ for all $x_1, x'_1, ..., x_n \in N$. From the previous equalities we get $zD_2(x_1 + x'_1 - x_1 - x'_1, x_2, ..., x_n) = 0$, i.e., $zD_2((x_1, x'_1), x_2, ..., x_n) = 0$. Putting $z = D_1(y_1, y_2, ..., y_n)$ we get $D_1(y_1, y_2, ..., y_n)D_2((x_1, x'_1), x_2, ..., x_n) = 0$. By Lemma 2.5(i) we conclude that $D_2((x_1, x'_1), x_2, ..., x_n) = 0$. Putting $w(x_1, x'_1)$ in place of additive commutator (x_1, x'_1) where $w \in N$ we have $D_2(w(x_1, x'_1), x_2, ..., x_n) = 0$, i.e., $D_2(w, x_2, ..., x_n)(x_1, x'_1) + wD_2((x_1, x'_1), x_2, ..., x_n) = 0$. Previous equality yields $D_2(w, x_2, ..., x_n)(x_1, x'_1) = 0$. By Lemma 2.5(i) again we conclude that $(x_1, x'_1) = 0$. Hence (N, +) is an abelian group. □

Theorem 3.4. Let N be a prime near-ring with non zero permuting n-derivations D_1 and D_2 such that

 $D_1(x_1, x_2, \dots, x_n) D_2(y_1, y_2, \dots, y_n) = -D_2(x_1, x_2, \dots, x_n) D_1(y_1, y_2, \dots, y_n)$

for all $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in N$. Then (N, +) is an abelian group.

Proof. By our hypothesis we have, $D_1(x_1, x_2, ..., x_n)D_2(y_1, y_2, ..., y_n) + D_2(x_1, x_2, ..., x_n)D_1(y_1, y_2, ..., y_n) = 0$ for all $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in N$. Replacing y_1 by $y_1 + y'_1$ in previous equation we get $D_1(x_1, x_2, ..., x_n)D_2(y_1 + y_1)$

 $y'_1, y_2, \ldots, y_n) + D_2(x_1, x_2, \ldots, x_n)D_1(y_1 + y'_1, y_2, \ldots, y_n) = 0.$ Using our hypothesis we get, $D_1(x_1, x_2, \ldots, x_n)D_2(y_1, y_2, \ldots, y_n) + D_1(x_1, x_2, \ldots, x_n)D_2(y'_1, y_2, \ldots, y_n) + D_1(x_1, x_2, \ldots, x_n)D_2(-y_1, y_2, \ldots, y_n) + D_1(x_1, x_2, \ldots, x_n)D_2(-y'_1, y_2, \ldots, y_n) = 0, i.e., D_1(x_1, x_2, \ldots, x_n)D_2((y_1, y'_1), y_2, \ldots, y_n) = 0.$ Now using Lemma 2.5(i) we conclude that $D_2((y_1, y'_1), y_2, \ldots, y_n) = 0.$ Putting $w(y_1, y'_1)$ in place of (y_1, y'_1) where $w \in N$ in the previous equality and using Lemma 2.5(i); as used in the previous theorem, we conclude that (N, +) is an abelian group. \Box

Corollary 3.1 ([1, Lemma 2.1]). Let N be a prime near-ring with non zero derivations d_1 and d_2 such that $d_1(x)d_2(y) = -d_2(x)d_1(y)$ for all $x, y \in N$. Then (N, +) is an abelian group.

Theorem 3.5. Let D be a non zero permuting n-derivation of prime near-ring N. If $D(C, N, N, \ldots, N) = \{0\}$, then (N, +) is an abelian group.

Proof. Since $D(c, r_2, \ldots, r_n) = 0$ for all $c \in C$ and for all $r_2, \ldots, r_n \in N$, $D(wc, r_2, \ldots, r_n) = 0$ where $w \in N$, i.e., $wD(c, r_2, \ldots, r_n) + D(w, r_2, \ldots, r_n)c = 0$. In turn we get $D(w, r_2, \ldots, r_n)c = 0$ but $D \neq 0$, and therefore by Lemma 2.5(i); c = 0. Hence (N, +) is an abelian group.

Theorem 3.6. Let N be a semi prime near-ring and D be a permuting nderivation of N. If $D(x_1, x_2, \ldots, x_n)y_1 = x_1D(y_1, y_2, \ldots, y_n)$ for all $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in N$, then D = 0.

Proof. We have

(3.4)
$$D(x_1, x_2, \dots, x_n)y_1 = x_1 D(y_1, y_2, \dots, y_n).$$

Putting $y_1 z_1$ in place of y_1 in the above equation; where $z_1 \in N$, we get

$$D(x_1, x_2, \dots, x_n)y_1z_1 = x_1 D(y_1z_1, y_2, \dots, y_n)$$

= $x_1 D(y_1, y_2, \dots, y_n)z_1 + x_1 y_1 D(z_1, y_2, \dots, y_n).$

By equation (3.4) we get $D(x_1, x_2, \ldots, x_n)y_1z_1 = D(x_1, x_2, \ldots, x_n)y_1z_1 + x_1y_1D(z_1, y_2, \ldots, y_n)$. This yields that $x_1y_1D(z_1, y_2, \ldots, y_n) = 0$. Now replacing x_1 by $D(z_1, y_2, \ldots, y_n)$ we get $D(z_1, y_2, \ldots, y_n)ND(z_1, y_2, \ldots, y_n) = \{0\}$. But since N is a semi prime near-ring, we conclude that D = 0.

Theorem 3.7. Let N be any prime near-ring and D be any non-zero permuting n-derivation of N. If $K = \{a \in N \mid [D(N, N, ..., N), a] = \{0\}\}$, then

- (i) $a \in K$ implies either $a \in Z$ or d(a) = 0,
- (ii) $d(K) \subseteq Z$,
- (iii) K is a semigroup under multiplication,
- (iv) If there exists an element $a \in K$ for which $d(a) \neq 0$ and $D(a^2, a, ..., a) \in Z$, then (N, +) is an abelian group.

Proof. (i) We have

(3.5)
$$D(x_1, x_2, \dots, x_n)a = aD(x_1, x_2, \dots, x_n)$$

for all $x_1, x_2, \ldots, x_n \in N$. Putting ax_1 in place of x_1 in the above equation and using Lemma 2.4(i) we get $D(a, x_2, \ldots, x_n)x_1a + aD(x_1, x_2, \ldots, x_n)a =$ $aD(a, x_2, \ldots, x_n)x_1 + aaD(x_1, x_2, \ldots, x_n)$. Using the equation (3.5), we get $D(a, x_2, \ldots, x_n)x_1a = aD(a, x_2, \ldots, x_n)x_1$. Now putting x_1y_1 for x_1 in the latter relation and using it again, we have $D(a, x_2, \ldots, x_n)x_1[y_1, a] = 0$ where $y_1 \in N$. This gives us $D(a, x_2, \ldots, x_n)N[a, y_1] = \{0\}$. Since N is a prime near-ring, either $[a, y_1] = 0$ for all $y_1 \in N$ or $D(a, x_2, \ldots, x_n) = 0$ for all $x_2, \ldots, x_n \in N$. If first holds, then $a \in Z$, if not then $D(a, x_2, \ldots, x_n) = 0$, and hence in particular, $D(a, a, \ldots, a) = 0$ or d(a) = 0.

(ii) From the above proof we observe that if $a \in K$, then either $a \in Z$ or d(a) = 0. But d(a) = 0 implies $d(a) \in Z$. If $d(a) \neq 0$, then we have $a \in Z$. In this case we have $D(xa, a, \ldots, a) = D(ax, a, \ldots, a)$ for all $x \in N$. This yields that $xD(a, a, \ldots, a) + D(x, a, \ldots, a)a = D(a, a, \ldots, a)x + aD(x, a, \ldots, a)$. This reduces to $xD(a, a, \ldots, a) = D(a, a, \ldots, a)x$, which shows that $d(a) \in Z$ and thus $d(K) \subseteq Z$.

(iii) Let $a, b \in K$. Hence $abD(r_1, r_2, \ldots, r_n) = D(r_1, r_2, \ldots, r_n)ab$ holds trivially. Associativity of N shows that K is a semigroup.

(iv) Consider $D(a^2, a, \ldots, a) = aD(a, a, \ldots, a) + D(a, a, \ldots, a)a \in Z$. As $d(a) = D(a, a, \ldots, a) \neq 0$ implies that $a \in Z$ by (i). Hence $D(a^2, a, \ldots, a) = D(a, a, \ldots, a)(a + a)$. By above proof (ii) we find that $D(a, a, \ldots, a) \in Z \setminus \{0\}$ and hence using Lemma 2.2, $(a + a) \in Z$. By Lemma 2.1(ii) we conclude that (N, +) is an abelian group.

Theorem 3.8. Let N be a prime near-ring which admits a non zero permuting n-derivation D such that $D(C, C, ..., C) \subseteq Z$. Then N is a commutative ring where $C \neq \{0\}$.

Proof. For all $c_1, c'_1, \ldots, c_n \in C$, we get

$$(3.6) D(c_1c_1, c_2, \dots, c_n) = D(c_1, c_2, \dots, c_n)c_1 + c_1D(c_1, c_2, \dots, c_n) \in Z$$

and commuting this element with c_1' we arrive at $D(c'_1, c_2, \ldots, c_n)(c'_1c_1 - c_1c'_1) = 0$ for all $c_1, c'_1, \ldots, c_n \in C$. Now by Lemma 2.1(i), we observe that for each c'_1 either c'_1 centralizes C or $D(c'_1, c_2, \ldots, c_n) = 0$. If first case holds for each element of C, then C becomes commutative with respect to multiplication. On the other hand if second case holds, i.e., $D(c'_1, c_2, \ldots, c_n) = 0$, then equation(3.6) takes the form

(3.7)
$$D(c_1c_1, c_2, \dots, c_n) = D(c_1, c_2, \dots, c_n)c_1 \in Z$$

for all $c_1, c_2, \ldots, c_n \in C$. By Lemmas 2.2 and 2.6, we conclude that $c'_1 \in Z$. Hence in this case also we conclude that c'_1 centralizes C. Hence in both cases we conclude that C is a commutative semi group with respect to multiplication. Now we separate the proof in two cases: Case I: Let $C \cap Z \neq \{0\}$. Then in this case it follows that if C contains a non zero central element w, then we have wxc = xcw = xwc = wcx for all $c \in C$ and for all $x \in N$. Hence we have w(xc - cx) = 0. By Lemma 2.1(i), we conclude that $c \in Z$, i.e., $C \subseteq Z$. For all $c \in C$ and for all $x, y \in N$ we have xcy = yxc or cxy = cyx since $xc \in C$. Lastly we get c(xy - yx) = 0. As $C \neq \{0\}$, by Lemma 2.1(i), N becomes a commutative near-ring, i.e., N = Z. If $N = \{0\}$, then N is trivially a commutative ring. If $N \neq \{0\}$, then there exists $t \in N \setminus \{0\}$. Hence $t + t \in N = Z$, and by Lemma 2.1(ii) we conclude that N is a commutative ring.

Case II: Let $C \cap Z = \{0\}$. For this case in the light of equation (3.7) we claim that $D(c_1, c_2, ..., c_n) \neq 0$ for all $c_1, c_2, ..., c_{i-1}, c_{i+1}, ..., c_n \in C$ and for all $c_i \in C \setminus \{0\}$. For each $c_i \in C$ and for all $c_1, c_2, \ldots, c_{i-1}, c_{i+1}, \ldots, c_n \in C$ $C, D(c_1, c_2, \dots, c_i^2, \dots, c_n) = D(c_1, c_2, \dots, c_i, \dots, c_n)(c_i + c_i)$ and hence by Lemmas 2.2 and 2.6, $2c_i \in Z$. Suppose that $2c_i \neq 0$ for all $c_i \in C \setminus \{0\}$. It is obvious that $xC = \{xc \mid c \in C\} = \{0\}$ implies x = 0. This shows that for each $x \in N \setminus \{0\}$, there exists $c_x \in C$ such that $xc_x \neq 0$. Since xc_x being an additive commutator also belongs to C, we have $2xc_x = x(2c_x)$ and by Lemma 2.2 we conclude that $x \in Z$. Hence N = Z, i.e., N is a commutative near-ring. If $N = \{0\}$, then N is trivially a commutative ring. If $N \neq \{0\}$, then there exists $p \in N \setminus \{0\}$ such that $p + p \in N = Z$. By Lemma 2.1(ii) we conclude that N is a commutative ring. The only remaining possibility is that $C \cap Z = \{0\}$ and there exists $c_i \in C \setminus \{0\}$ such that $2c_i = 0$ and we complete our proof by showing that this leads to a contradiction. Suppose that $c_i \in C \setminus \{0\}$ and $2c_i = 0.$ We have $D(c_1, c_2, \ldots, c_i^3, \ldots, c_n) = 3c_i^2 D(c_1, c_2, \ldots, c_i, \ldots, c_n) \in Z.$ Since $2c_i^2 D(c_1, c_2, ..., c_i, ..., c_n) = 0$, we get $c_i^2 D(c_1, c_2, ..., c_i, ..., c_n) \in Z$. This implies that $c_i^2 \in Z$ by Lemma 2.2. Since $C \cap Z = \{0\}, c_i^2 = 0$. Now $D(c_1, c_2, \ldots, xc_i, \ldots, c_n) = xD(c_1, c_2, \ldots, c_i, \ldots, c_n) + D(c_1, c_2, \ldots, x, \ldots, c_n)c_i$ $\in Z$ for all $x \in N$ and $c_1, c_2, \ldots, c_n \in C$. Hence $c_i \{ x D(c_1, c_2, \ldots, c_i, \ldots, c_n) + \ldots \}$ $D(c_1, c_2, \dots, x, \dots, c_n)c_i\} = \{xD(c_1, c_2, \dots, c_i, \dots, c_n) + D(c_1, c_2, \dots, x, \dots, c_n)\}$ $c_i c_i = xD(c_1, c_2, \dots, c_i, \dots, c_n)c_i$. Left multiplying by c_i we get $c_i^2 \{xD(c_1, c_2, \dots, c_n)c_i\}$ $\dots, c_i, \dots, c_n) + D(c_1, c_2, \dots, x, \dots, c_n)c_i = c_i x D(c_1, c_2, \dots, c_i, \dots, c_n)c_i.$ Finally we get $c_i x D(c_1, c_2, \ldots, c_i, \ldots, c_n) c_i = 0$. This implies that $c_i N D(c_1, c_2, \ldots, c_n) c_i = 0$. \ldots, c_i, \ldots, c_n $c_i = \{0\}$, but primeness of N yields that $D(c_1, c_1, \ldots, c_i, \ldots, c_n)$ $c_i = 0$. Since $D(c_1, c_2, \ldots, c_i, \ldots, c_n) \in Z \setminus \{0\}$, by Lemma 2.1(i), we conclude that $c_i = 0$, a contradiction.

References

- K. I. Beidar, Y. Fong, and X. K. Wang, Posner and Herstein theorems for derivations of 3-prime near-rings, Comm. Algebra 24 (1996), no. 5, 1581–1589.
- [2] H. E. Bell, On derivations in near-rings. II, Nearrings, nearfields and K-loops (Hamburg, 1995), 191–197, Math. Appl., 426, Kluwer Acad. Publ., Dordrecht, 1997.
- [3] H. E. Bell and G. Mason, On derivations in near-rings, Near-rings and near-fields (Tübingen, 1985), 31–35, North-Holland Math. Stud., 137, North-Holland, Amsterdam, 1987.

- [4] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat. Ser. III **15(35)** (1980), no. 2, 279–282.
- [5] _____, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303–307.
- M. A. Öztürk, Permuting tri-derivations in prime and semi prime rings, East. Asian. Math. J. 15 (1999), no. 2, 177–190.
- M. A. Öztürk and Y. B. Jun, On trace of symmetric bi-derivations in near-rings, Int. J. Pure Appl. Math. 17 (2004), no. 1, 95–102.
- [8] K. H. Park, On prime and semi prime rings with symmetric n-derivations, J. Chungcheong Math. Soc. 22 (2009), no. 3, 451–458.
- [9] K. H. Park and Y. S. Jung, On permuting 3-derivations and commutativity in prime near-rings, Commun. Korean Math. Soc. 25 (2010), no. 1, 1–9.
- [10] G. Pilz, Near-rings, 2nd ed., 23, North Holland/American Elsevier, Amsterdam, 1983.

MOHAMMAD ASHRAF DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH-202002, INDIA *E-mail address*: mashraf80@hotmail.com

Mohammad Aslam Siddeeque Department of Mathematics Aligarh Muslim University Aligarh-202002, India *E-mail address*: aslamsiddeeque@gmail.com