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ON PERMUTING n-DERIVATIONS IN NEAR-RINGS

MOHAMMAD ASHRAF AND MOHAMMAD ASLAM SIDDEEQUE

ABSTRACT. In this paper, we introduce the notion of permuting n-deri-
vations in near-ring N and investigate commutativity of addition and
multiplication of N. Further, under certain constrants on a n!-torsion
free prime near-ring N, it is shown that a permuting n-additive mapping
D on N is zero if the trace d of D is zero. Finally, some more related
results are also obtained.

1. Introduction

Throughout this paper N will denote a zero-symmetric left near ring. A
near ring N is called zero symmetric if 0x = 0 for all z € N (recall that in a
left near ring 0 = 0 for all z € N). N is called prime if tNy = {0} implies
x=0ory=0. It is called semi prime if zNz = {0} implies z = 0. Near-ring
N is called n-torsion free if nz = 0 implies £ = 0. The symbol Z will represent
the multiplicative center of N, that is, Z = {x € N | zy = yx for all y € N}.
As usual, for 2,y € N, [z,y] will denote the commutator xy — yx, while (z,y)
will indicate the additive group commutator x 4+ y — x —y. The symbol C' will
represent the set of all additive commutators of near ring N. For terminologies
concerning near-rings we refer to G. Pilz [10].

An additive map f : N — N is called a derivation if f(xy) = f(x)y+zf(y)
holds for all z,y € N . The concepts of symmetric bi-derivation, permuting tri-
derivation and permuting n-derivation have already been introduced in rings
by G. Maksa, M. A. Oztiirk and K. H. Park in [4, 5, 6], and [8], respectively.
These concepts of symmetric bi-derivations and permuting tri-derivations have
been studied in near-rings by M. A. Oztiirk and K. H. Park in [7] and [9],
respectively. In the present paper, motivated by these concepts, we define
permuting n-derivations in near-rings and study some properties involved there.
Some relations between permuting n-derivations and C, the set of all additive
commutators in near-ring N have also been studied.
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Amap D: N x N x---x N — N is said to be permuting if the equation

n-times
D(x1,22,...,2n) = D(Zx(1), Tr(2),- -+ Ta(n)) holds for all x1,z,...,2, € N
and for every permutation w € S,, where S, is the permutation group on
{1,2,...,n}. A mapd: N — N defined by d(z) = D(z,x,...,z) for all
x € N where D : NXN Xx---x N — N is a permuting map, is called

n-times
the trace of D. A permuting n-additive (i.e., additive in each argument)
mapping D : NXNx---xN — N is called a permuting n-derivation if
—_—

n-times
’ ’ ’
D(x1xy,x9,...,xy) = D(x1,22,..., Tpn)xy + x1D(2{,29,...,2,) holds for all
/ . . . . . .
T1,%1,...,Zn € N. Of course, a permuting 1-derivation is a derivation and per-

muting 2-derivation is a symmetric bi-derivation. For an example of permuting
n-derivation let n > 1 be a fixed positive integer, N a commutative near-ring.
Then R = {( ab ) | a,b,0 € N} is a non-commutative near-ring with regard
to matrix addition and matrix multiplication. Define D: R X R x ... X R —

n-times

R such that

D a1 bl ag bQ Ay, bn o 0 ai1ag .- Qnp
o o0 )’ o o )7 0 O ~\ 0 0 '

It is easy to see that D is a permuting n-derivation of R.

Now let D be a permuting n-derivation of a near-ring N. Then it can be
easily seen that D(0,z2,...,2,) = D(0+ 0,22,...,2,) = D(0,z2,...,2,) +
D(0,z2,...,x,). Therefore D(0,22,...,z,) = 0 for all z9,...,z, € N. We
also observe that D(—x1,xa,...,2,) = —D(21,%2,...,2,) for all z; € N;i =
1,2,...,n.

There has been a great deal of work concerning derivations, biderivations
and triderivations in near-rings (see [1, 2, 3, 4, 9] where further references can be
found). In this paper we study the commutativity of addition and multiplica-
tion of near-rings. Many well known results for derivations, bi-derivations and
tri-derivations in near-rings have been generalized for permuting n-derivation.
In fact, our results generalize and complement several well known theorems for
near-rings.

2. Preliminary results

We begin with the following lemmas which are essential for developing the
proofs of our main results . Proofs of Lemmas 2.1 and 2.2 can be seen in |2,
Lemma 3] and [3, Lemma 1.2], respectively.

Lemma 2.1. Let N be a prime near-ring.
(i) If z € Z\ {0}, then z is not a zero divisor.
(ii) If Z \ {0} contains an element z for which z + z € Z, then (N,+) is
abelian.
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Lemma 2.2. Let N be a prime near-ring. If z € Z\ {0} and z is an element
of N such that tz € Z or zx € Z, then x € Z.

Lemma 2.3. Let N be a near-ring. Then D is a permuting n-derivation of N
if and only if D(zlz,l,:cg, coyp) =@ D(xy, o, ... xn) + D(X1, 29, ..., X0 )Ty
for all x1, 21", 22,...,2, € N.

Proof. We have
D(xl(:n/l +x/1),x2,...,xn)
= D(x1,xa,... ,xn)(xll + ;) +$1D($,1 tay, 29, .. ) Tn)
= D(xl,xg,...,xn):cll +D(x1,x2,...,zn)z;

+ 1'1D(1',1,1'2, ceey ) xlD(:cll,:cg, ceey )

and ) )
D(z12y + 2121, 22, ..., Tn)
’ !
= D(z1$15z25 s 7:Cn) + D(xlzlv'er s 7:Cn)
’ ’
= D(x1,x2,...,2,)x; + ©1D(21, 22, ..., Zp)
’ 7’
+ D(x1,22,...,xn)x + 21 D(2q, T2, ..., Tp).
Combining above two equalities we obtain that
’ ’
D(x1,xa,...,2,)x; + 21 D(21, 22, ..., %)
’ ’
= xlD('rlv:CQv s 51'71) + D(x15z27 s 7:C’n)'r1'
! ! ’
Therefore, D(x121, o, ...,2y) = x1D(xy, T2, ..., 2n) + D(x1,22, ..., Tpn)2y.
Converse can be proved in a similar way. O

In aleft near-ring N, right distributive law does not hold in general, however,
we can prove the following partial distributive properties in N.

Lemma 2.4. Let N be a near-ring. Let D be a permuting n-derivation of N
and d be the trace of D. Then for every zl,z;, ey Tn,Y €N,
(i) {D(z1,x2,...,20)2) +T1D(x], T0\ ..., x0) }y
= D(x1, 2 ..., xp)x 0y + 21 D(2), T2, ..., 20)Y,
(i) {x1D(xy, 20, .., xn) + D1, 20, ..., 20)z1 }y
= xlD(:cll,:cg, o)y + D(xy, xe, . xn)2 Y,
(ii) {d(z)x1 +2D(z,z,...,z,21)} y = d(x)r1y + 2D(x, z, ..., 2, 21)Y,
(iv) {aD(z,x,...,x,21) + d(x)x1}y = 2D (z,z, ..., z,21)y + d(x)z1Y.

Proof. (i) For all 1, 21", 21", 22,..., 2, € N
’ "
D((z17y)3y, 22, ..., Tp)
’ 1" ’ "
= D(zlxlﬂz%- '-7$n)z1 + (zlxl)D( 17025 51'71)

"

= {D(x1,xza, .. ,zn):cll + xlD(:cll,:cg, .. ,zn)}:clll + (zlxll)D( 15@2, ..y Tp).
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Also
D(zl(x/lzll/>a Z2, ... ,SCn)
7 17 ’ 1"
= D(z1,a,...,xp)x121" + 21 D(2121, 22, ..., Tp)
!’ !’ 1" !’ 1"
= D(x1,22,...,2n)1 21" + 21{D(21, 22, ..., 20)7, +2,D(27,70,...,2,)}
= D(x1,a,. .. ,xn):c/lxl” + xlD(xll,xg, ... ,:I:n)xlll + xlxllD(xlll,xg, ey T)-

Combining the above two relations , we get
{D(x1,2,...,20)2, + 21D (2}, 22, ..., 20)} 2]
= D(z1, 22, ... ,xn)z/lxlll + le(z/l, T, ... ,xn)z/l/
Putting y in the place of :clll, we find that
{D(x1,32,...,20)2, + 31 D(xy, T2, . .., 20)}y
= D(x1, 22, ... ,:I:n):z:/ly + $1D($/1, Tay .., Tn)Y.
(ii) It can be proved, in a similar, way as above, with the help of Lemma
2-S&iii) In the proof (i) above putting 1 = x9 =23 = --- =z, = x, we get
{d(z)z] + 2D(z},z,...,2)}y = d(@)z,y + aD(zy, z ..., 2)y.
In particular for xll = 11 we get
{d(z)x1 + 2D (z,z, ... ,x1)}y = d(@)z1y + 2D (x, 2, . .., 21)Y.
(iv) It can be proved in a similar way as above. O

Lemma 2.5. Let N be prime near-ring and D be a non zero permuting n-
derivation of N,

(i) If D(N,N,...,N)x = {0} where x € N, then z =0,
(ii) If xD(N,N,...,N) = {0} where x € N, then = 0.

Proof. (i) Given that D(zlscll, Zoy ..., &n)x =0 for all zq, z/l, ..., Ty € N. This
yields that {D(z1, 22, ..., 2n)2, + 21D(x), 2o, ..., 2n)}x = 0. By hypothesis

and Lemma 2.4(i) we have D(z1, 22,...,z,) Nz = {0}. But since N is a prime
near ring and D # 0, we have z = 0.
(ii) It can be proved in a similar way. O

Lemma 2.6. Let D be a nonzero permuting n-derivation of a prime near ring

N. Then D(C,C,...,C) # {0} where C # {0}.

Proof. If possible assume D(C,C,...,C) = {0}, then D(c1,¢a,...,¢,) = 0
for all ¢1,¢9,...,¢, € C. For all r; € N and ¢; € C we get r1c1 € C. Also
D(ric1,co,...,¢n) = 0 implies 7 D(c1,co,...,¢n) + D(r1,c2,...,¢n)c1 = 0.
Thus we get

(21) D(Tl,CQ,...,Cn)Cl =0.



ON PERMUTING n-DERIVATIONS IN NEAR-RINGS 701

Replacing ¢; by zc1 in equation (2.1) where x € N we find that
D(r1,c2,...,¢n)Ney = {0}.

Primeness of N yields,

(2.2) D(ri,c2,...,¢n) =0.

Now putting roco € C in place of ¢ where ro € N in the equation (2.2) and
proceeding as above we have D(rq,r2,¢3,...,¢,) = 0. Proceeding inductively
we conclude that D(rq,r2,...,r,) = 0 for all ri,7q,...,7, € N leading to a
contradiction. O

Lemma 2.7. Let N be a m!-torsion free near-ring, where (N, +) is an abelian
group. Suppose Yi,Ya, ..., Ym € N satisfy oy1 + o®ys + -+ + a™ym = 0 for
a=1,2,....,m. Then y; =0 for all i.

11 - 1
9 92 ... gm
Proof. Let A = S be any m x m matrix. Then by our assump-
mom2 e m™
1 0 Y1
Y2 0 Y2
tion A : = ( ) > . Now pre multiplying by Adj A yields Det A :
y;n 0 y;n

0
0
:< : ) Since DetA, as a Vondermonde determinant, is equal to a product
0

of positive integers, each of which is less than or equal to m and as N is a
m!-torsion free near-ring, it follows immediately that y; = 0 for all i. (|

3. Main results

Recently M. A. Oztiirk and Y. B. Jun [7, Lemma 3.1] proved that in a 2-
torsion free near-ring which admits a symmetric bi-additive mapping D if the
trace d of D is zero, then D = 0. Further, this result was generalized by K.
H. Park and Y. S. Jung [9, Lemma 2.2] for permuting tri-additive mapping
in 3l-torsion free near-ring in the year 2010. We have extended this result, as
below, for permuting n-additive mapping in a n!-torsion free prime near-ring
under some constraints.

Theorem 3.1. Let N be n!-torsion free prime near-ring and D be a permuting
n-additive mapping of N such that D(N,N,...,N) C Z. If d(x) = 0 for all
x € N, then D = 0.

Proof. If D = 0, then we have nothing to do, if not then D is a non zero permut-
ing n-additive mapping of prime near-ring N such that D(N,N,...,N) C Z.
Hence there exist 1, xa, ..., 2, € N, all nonzero such that D(z1, 22, ...,2,) #
0 and D(z1,22,...,2,) € Z. Since D(x1+x1,Z2,...,%n) = D(x1,22,...,Zn)+
D(xy,x9,...,2,) € Z, by Lemma 2.1(ii), (N, +) is an abelian group. Hence
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the trace d(z) = D(x,x,...,z) of permuting n-additive mapping D can be
expressed as;

(3.1) d(z +y) = d(z Z< >hk:cy

where z,y € N and hi(z,y) = D(z,z,...,2,y,9,...,y). In particular by our
— Y——
(n—k)-times  k-times
hypothesis d(ux + z,) = 0 where 1 < p < n — 1. With the help of equation
(3.1) we get

0= d(pz) + d(zn) + (" (4, Tn)
m ];<k> R

S (0t

k=1
This yields that

HY1 + M2y2 +-+ /J‘n_QyTlfQ + /’Ln_lnD(za Ly.oy Ty Z'n> = 07
where y1,¥2, ..., Yn—2 € N. By our hypothesis and Lemma 2.7, we deduce that
(3.2) D(z,z,...,z,2,) =0

for all z, 2, € N. Let v(1 < v < n —2) be any integer. By equation (3.2) we
find that
D(V:C + Tpn—1, VT + Tp—1,.. -,Vx‘i’l'nfhl'n) =0.

Expanding the above relation and using equation (3.2) again we obtain
n
vor+ vz . U 3 g2 <2>D(x, Ty Ty Ty_1,Ty) =0,

where 21, 22,...,2,—3 € N. By our hypothesis and Lemma 2.7, we conclude
that D(x, z,...,2,p-1,2,) = 0 for all z, 2,1, 2,, € N. Now if we continue the
above process inductively, then we finally arrive at D(z1, xa,...,Zn—1,2,) = 0.
This gives that D = 0, a contradiction. (I

In the year 1987 H. E. Bell [3, Theorem 2] proved that if a 2-torsion free
zero symmetric prime near-ring N admits a non zero derivation D for which
D(N) C Z , then N is a commutative ring. Further, this result was generalized
by K. H. Park [5, Theorem 3.1] in the year 2010 for permuting tri-derivation,
who showed that if 3!-torsion free zero symmetric prime near-ring N admits a
non zero permuting tri-derivation D for which D(N, N, N) C Z, then N is a
commutative ring. The following result shows that 2-torsion free and 3!-torsion
free restrictions in the above results used by Bell and Park are superfluous. In
fact, for permuting n-derivation in a prime near-ring N we have obtained the
following:
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Theorem 3.2. Let D be a non zero permuting n-derivation of prime near-ring
N such that D(N,N,...,N) C Z. Then N is a commutative ring.

Proof. For all xl,x;, ..., Ty € N, we have
(3.3) D(:Clxll,xg, ceyZpn) = D(x1, 29, . .. ,xn)x; +$1D($,1,$2, ceyXp) € Z.

Hence z){D(x1, %2, ..., xn)x; +21D(x), 20, ..., 2n)} = {D(x1, 22, ..., 20)x, +
a1D(x), &, ..., xn)}x;. Using the hypothesis and Lemma 2.4(i) we get )21
D(z),29,...,2n) = x12,D(x}, 2, ..., 2y). This yields that D(z}, 2o, ..., x)
(z1'z1 — x12)) = 0. Since Z has no zero divisors, for each fixed z; € N ei-
ther (zjx; — z12)) = 0 or D(x),2a,...,2,) = 0 for all z1,z,...,2, € N.
If first holds, then z; € 7 if not, i.e., D(Z‘;,Z'Q,...,SC”) = 0, then equa-
tion(3.3) reduces to D(z1x, o, ..., 2n) = D(x1,2a,. .., 2n)x,. Since D # 0
and D(x1,29,...,2,) € Z, by Lemma 2.2 :cll € Z. Hence we conclude that
N C Z. Thus we obtain that N = Z, i.e., N is a commutative near-ring. If
N = {0}, then N is trivially a commutative ring. If N # {0}, then there exists
0+# a2 € N and hence x +x € N = Z. Now by Lemma 2.1(ii), we conclude
that IV is a commutative ring. O

Theorem 3.3. Let N be a prime near-ring and D1 and D+ be any two non zero
permuting n-derivations of N. If [D1(N,N,...,N),Ds(N,N,...,N)] = {0},
then (N, +) is an abelian group.

Proof. If both z and z 4+ z commute element wise with Da(N, N, ..., N), then

z2Do(x1,22, ..., Tpn) = Da(x1,22,...,2,)z and (2 + 2)Da(x1,22,...,2,) = Do
(x1,29,...,2,)(2+ 2) for all x1,x9,...,2, € N. In particular, (z 4+ z)Da(z1 +
SC;,SCQ,...,ZL'H) = Do(z1 + SC;,SCQ,...,ZL'H)(Z + z) for all xl,x;,...,zn € N.
From the previous equalities we get zDo(z1 + z/l -z — z/l,xg, cey ) =

0, i.e., zDy((z1,2)), 2, ..., 2n) = 0. Putting z = Dy(y1,y2,-..,yn) we get
D1(y1,y2,- - ,yn)Dg((xl,x;), Za,...,2,) = 0. By Lemma 2.5(1) we conclude
that Do((z1, ), Za,...,2,) = 0. Putting w(z1,z)) in place of additive com-
mutator (z1,z;) where w € N we have Dy(w(xy,z)),22,...,2,) = 0, ie.,
Dy(w, x, ..., x,)(z1,2,) + wDy((z1,2)), T2, ..., 2,) = 0. Previous equality
yields Dy(w, 2, . .., 2)(x1,2;) = 0. By Lemma 2.5(i) again we conclude that
(z1,z,) = 0. Hence (N, +) is an abelian group. O

Theorem 3.4. Let N be a prime near-ring with non zero permuting n-deriva-
tions D1 and Dy such that

D1($1,$2,---,iEn)DQ(yl,y%--wyn) = *D2(5E1,5E27'-wﬂfn)Dl(ylva;-'-,yn)
for all x1, 29, ...,Tn,y1,Y2, .-, Yn € N. Then (N,+) is an abelian group.

Proof. By our hypothesis we have, D1 (1, 2, . .., Zn)D2(y1, Y2, - - -, Yn)+Da(x1,
Zay ooy Tn)D1(y1,92, ..., yn) = 0 for all z1,29,..., 20, y1,Y2,...,Yn € N. Re-
placing y1 by y1 + y; in previous equation we get Di(x1,x2,...,2,)Da(y1 +
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y;,yg, cosYn) + Da(x1,29,. .. 20)D1(y1 + y;,yg, ...yYn) = 0. Using our hy-
pothesis we get, Dy (21, %2, . .., 2n)Da(y1, Y2, - - - yn)+Di(x1, Zo,s - . ., 20) Da(yy
Y2,y Yn)+D1(x1, 22, . .., n)Da(—y1, Y2, - - - ,y7)+D1(:E1, Ty .. ,SCn>D2(*y,1,
Y2, yn) = 0, Le, Dy(z1,22,..., zn)Dg/((yl, Y1)y Y25 -+, yn) = 0. Now usir}g
Lemma 2.5(i) we conclude that Da((y1,%1), Y2, ---,Yn) = 0. Putting w(y1,y;)
in place of (y1, yll) where w € N in the previous equality and using Lemma
2.5(i); as used in the previous theorem, we conclude that (N, +) is an abelian
group. (I

Corollary 3.1 ([1, Lemma 2.1]). Let N be a prime near-ring with non zero
derivations di and dy such that dyi(x)d2(y) = —da(x)d1(y) for all x,y € N.
Then (N,4) is an abelian group.

Theorem 3.5. LetD be a non zero permuting n-derivation of prime near-ring
N. If D(C,N,N,...,N)={0}, then (N,+) is an abelian group.

Proof. Since D(c,r2,...,1,) = 0 for all ¢ € C and for all r9,...,r, € N,

D(we,ra, ... ) = 0where w € N, e, wD(c,ra,...,1)+D(w,re,...,rm)c=
0. In turn we get D(w,ra,...,r,)c = 0 but D # 0, and therefore by Lemma
2.5(1); ¢ = 0. Hence (N, +) is an abelian group. O

Theorem 3.6. Let N be a semi prime near-ring and D be a permuting n-
derwation of N. If D(x1,22,...,2n)01 = 1 D(Y1,Y2,...,Yn) for all x1, 2,
Ty Y1,Y2, -« Yn € N, then D = 0.

Proof. We have

(3.4) D(x1,22,...,20)y1 = 21 D(Y1,Y2, - - -, Yn)-
Putting ¢z in place of y; in the above equation; where z; € N, we get

D(z1,22,...,20)y121 = T1D(y121, Y2, - - - 1 Yn)
=x1D(y1,y2, -, Yn)21 + 11 D (21, Y2, - -+, Yn)-

By equation (3.4) we get D(x1, x2, ..., zn)y121 = D(x1, 22, ..., 20)y121+x1951 D
(#1,Y2,---,Yn). This yields that x1y1 D(21,92,...,yn) = 0 . Now replacing
x1 by D(21,Y2,--.,Yn) we get D(21,92,...,yn)ND(21,y2,...,yn) = {0}. But
since NV is a semi prime near-ring, we conclude that D = 0. [

Theorem 3.7. Let N be any prime near-ring and D be any non-zero permuting
n-derivation of N. If K = {a € N | [D(N,N,...,N),a] = {0}}, then
(i)ae K implies either a € Z or d(a) =0,
(i) d(K) <
(i) K is a sengmup under multiplication,
(iv) If there exists an element a € K for which d(a) # 0 and D(a?,a, ..., a)
€ Z, then (N,+) is an abelian group.
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Proof. (i) We have

(3.5) D(z1,x9,...,2n)a = aD(x1,%2,...,2Tn)

for all x1,xs,...,2, € N. Putting az; in place of z; in the above equation
and using Lemma 2.4(i) we get D(a,x2,...,x,)x10 + aD(x1,22,...,2n)a =
aD(a,xa,...,2n)x1 + aaD(x1, T2, ..., x,). Using the equation (3.5), we get
D(a,xa,...,2n)x10 = aD(a,za,...,2,)x1. Now putting z1y; for x; in the
latter relation and using it again, we have D(a, z3,...,Zn)z1[y1,a] = 0 where

y1 € N. This gives us D(a,x2,...,z,)N|a,y1] = {0}. Since N is a prime
near-ring, either [a,31] = 0 for all y; € N or D(a,z2,...,z,) = 0 for all
Zay...,Tn € N.If first holds, then a € Z, if not then D(a,xa,...,2,) = 0, and
hence in particular, D(a,a,...,a) =0 or d(a) = 0.

(ii) From the above proof we observe that if a € K, then either ¢ € Z or
d(a) = 0. But d(a) = 0 implies d(a) € Z. If d(a) # 0, then we have ¢ € Z. In
this case we have D(za,a...,a) = D(az,a,...,a) for all x € N. This yields
that ©D(a,a,...,a) + D(z,qa,...,a)a = D(a,a,...,a)r+aD(z,a,...,a). This
reduces to xD(a,a,...,a) = D(a,a,...,a)z, which shows that d(a) € Z and
thus d(K) C Z.

(iii) Let a,b € K. Hence abD(r1,r2,...,my) = D(r1,79,...,7,)ab holds triv-
ially. Associativity of NV shows that K is a semigroup.

(iv) Consider D(a?,a,...,a) = aD(a,a,...,a) + D(a,a,...,a)a € Z . As
d(a) = D(a,a,...,a) # 0 implies that a € Z by (i). Hence D(a?,a,...,a) =
D(a,a,...,a)(a+ a). By above proof (ii) we find that D(a,a,...,a) € Z\ {0
and hence using Lemma 2.2, (a + a) € Z. By Lemma 2.1(ii) we conclude that
(N, +) is an abelian group. O

Theorem 3.8. Let N be a prime near-ring which admits a non zero permuting
n-derivation D such that D(C,C,...,C) C Z. Then N is a commutative ring
where C # {0}.

Proof. For all cl,cll, .o, cn €C, we get
(36) D(clc/laCQa e '7Cn) = D(017027 . 'acn)cll +ch(C/17027 . '7Cn) €z

and commuting this element with ¢,/ we arrive at D(cy, ¢, ..., cn)(cicr —
crey) = 0 for all ¢1,¢y,...,¢, € C. Now by Lemma 2.1(i), we observe that
for each ¢ either ¢, centralizes C' or D(c},ca,...,¢n) = 0. If first case holds
for each element of C, then C becomes commutative with respect to multipli-
cation. On the other hand if second case holds, i.e., D(cll, C2,...,Cn) =0, then
equation(3.6) takes the form

(3.7) D(cicy, oy cn) = Dlcr,ca, ... cn)e, € Z

for all ¢1,¢a,...,¢, € C. By Lemmas 2.2 and 2.6, we conclude that 0,1 € Z.
Hence in this case also we conclude that c/1 centralizes C'. Hence in both cases
we conclude that C' is a commutative semi group with respect to multiplication.
Now we separate the proof in two cases:
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Case I: Let C' N Z # {0}. Then in this case it follows that if C' contains a
non zero central element w, then we have wxc = xcw = zwe = wex for all
¢ € C and for all z € N. Hence we have w(zc — cx) = 0. By Lemma 2.1(i),
we conclude that ¢ € Z, i.e., C C Z. For all ¢ € C and for all z,y € N we
have xzcy = yxc or cxy = cyx since xc € C. Lastly we get c(zy — yz) = 0. As
C # {0}, by Lemma 2.1(i), N becomes a commutative near-ring, i.e., N = Z.
If N = {0}, then N is trivially a commutative ring. If N # {0}, then there
exists t € N\ {0}. Hence t +¢ € N = Z, and by Lemma 2.1(ii) we conclude
that N is a commutative ring.

Case II: Let C N Z = {0}. For this case in the light of equation (3.7) we
claim that D(c1,co,...,¢,) # 0 for all ¢1,¢2,...,¢i—1,¢i41,...,¢, € C and
for all ¢; € C \ {0}. For each ¢; € C and for all ¢1,ca,...,¢i-1,Cit1,--.,Cn €
C,D(c1,cay...,¢2,...,¢cn) = Dlci,ca,... ¢y ..., cn)(citc;) and hence by Lem-
mas 2.2 and 2.6, 2¢; € Z. Suppose that 2¢; # 0 for all ¢; € C'\ {0}. It is obvious
that 2C = {xc | ¢ € C} = {0} implies = 0. This shows that for each
x € N\ {0}, there exists ¢, € C such that zc, # 0. Since zc, being an additive
commutator also belongs to C, we have 2zc, = x(2¢,) and by Lemma 2.2 we
conclude that z € Z. Hence N = Z, i.e., N is a commutative near-ring. If
N = {0}, then N is trivially a commutative ring. If N # {0}, then there exists
p € N\ {0} such that p+p € N = Z. By Lemma 2.1(ii) we conclude that
N is a commutative ring. The only remaining possibility is that C N Z = {0}
and there exists ¢; € C\ {0} such that 2¢; = 0 and we complete our proof
by showing that this leads to a contradiction. Suppose that ¢; € C'\ {0} and
2¢; = 0. We have D(c1,c2,...,¢2,...,cn) = 3c2D(c1,¢2,...,Ciy. . Cn) € Z.

RN

Since 2¢2D(c1,C2,- -+, Ciy- - Cn) = 0, we get cZ2D(c1,C2,...,Ciy...,Cn) € Z.
This implies that ¢? € Z by Lemma 2.2. Since C N Z = {0}, ¢? = 0. Now
D(cy, e, .. xCiy. .o en) =xD(c1, ¢,y Ciyenoyen)+D(c1,02, .00 @, o0 Cn)C

€ Z forall x € N and ¢y, ¢9,...,¢, € C. Hence ¢;{xD(c1,ca,...,Ciy...,Cn) +
D(ci,ca,..y2, ... cn)eit = {xD(er, e,y ..oy Ciyenoyen)+D(c1y ¢, oy oy Cp)
citei =xD(c1,c2,. .. ¢y .., cn)e;. Left multiplying by ¢; we get ¢2{xD(c1, ca,
cesCiyeoyen) + D(er,ca,. . 2y oo en)eit = cieD(er,eay . Gy oy Cn)e. Fi
nally we get c;xD(c1,¢a,...,¢iy...,cn)e; = 0. This implies that ¢;ND(eq, ca,
ey Ciyeenycn)c; = {0}, but primeness of N yields that D(c1,¢1,...,¢,...,¢n)
¢; = 0. Since D(cy,¢2,...,¢Ciy. .., ¢n) € Z\ {0}, by Lemma 2.1(i), we conclude
that ¢; = 0, a contradiction. O
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