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AN EXPLICIT FORMULA FOR THE NUMBER OF

SUBGROUPS OF A FINITE ABELIAN p-GROUP

UP TO RANK 3

Ju-Mok Oh

Abstract. In this paper we give an explicit formula for the total number
of subgroups of a finite abelian p-group up to rank three.

1. Introduction

Given a finite abelian group what is the total number of subgroups? This
problem can be reduced to that of finding the number of subgroups of a finite
abelian p-group because every finite abelian group is the direct product of its
Sylow subgroups. Several different versions of the formula for the number of
certain type subgroups of a given finite abelian p-group have been known (for
example see [2, 3, 4, 6]). But in general these formulas do not lead us to an
explicit formula for the total number of subgroups, which is well explained
in [1]. As a result of this direction, G. Călugăreanu [1] and later J. Petrillo [5]
have given an explicit formula for the total number of subgroups of a finite
abelian p-group of rank two by using Goursat’s Theorem. In this paper we
reprove their result by finding its recurrence relation and as a new result we
give an explicit formula for the total number of subgroups of a finite abelian
p-group of rank three by a similar method.

2. The total number of subgroups of a finite abelian p-group up to

rank 3

The following is the main result of this paper, which will be proved in the
next section.

Theorem 2.1. Let

Zpm × Zpn × Zpℓ =
〈

a, b, c | ap
m

= bp
n

= cp
ℓ

= e, [a, b] = [a, c] = [b, c] = e
〉
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be an abelian p-group of order pm+n+ℓ where m, n and ℓ are non-negative

integers such that m ≥ n ≥ ℓ and p is a prime number. Then the total number

S(Zpm × Zpn × Zpℓ) of subgroups of Zpm × Zpn × Zpℓ is

(1)

S(Zpm × Zpn × Zpℓ) =

ℓ
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 4)p2(t−1)

+(m+ n+ ℓ − 3t+ 2)p2(t−1)+1
]

+

n
∑

k=ℓ

(ℓ+ 1)(m+ n+ 1− 2k)pk+ℓ,

where the first iterated sum is 0 when ℓ = 0.

We now evaluate Eq. (1) more specifically. Since

(p2 − 1)
ℓ
∑

t=1

tp2t = p2
ℓ
∑

t=1

tp2t −
ℓ
∑

t=1

tp2t

=

(

ℓp2ℓ+2 + p2
ℓ−1
∑

t=1

tp2t

)

−

(

p2 + p2
ℓ−1
∑

t=1

(t+ 1)p2t

)

= ℓp2ℓ+2 − p2
ℓ−1
∑

t=0

p2t = ℓp2ℓ+2 − p2
p2ℓ − 1

p2 − 1
,

we have

(2)

ℓ
∑

t=1

tp2t =
ℓp2ℓ+2

p2 − 1
− p2

p2ℓ − 1

(p2 − 1)2
.

Since

(p2 − 1)

ℓ
∑

t=1

t2p2t

= p2
ℓ
∑

t=1

t2p2t −

ℓ
∑

t=1

t2p2t

=

(

ℓ2p2ℓ+2 + p2
ℓ−1
∑

t=1

t2p2t

)

−

(

p2 + p2
ℓ−1
∑

t=1

(t+ 1)2p2t

)

= ℓ2p2ℓ+2 − p2 + p2
ℓ−1
∑

t=1

(−2t− 1)p2t

= ℓ2p2ℓ+2 − p2
ℓ−1
∑

t=0

p2t − 2p2
ℓ−1
∑

t=1

tp2t
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= ℓ2p2ℓ+2 − p2
p2ℓ − 1

p2 − 1
− 2p2

[

(ℓ− 1)p2ℓ

p2 − 1
− p2

p2ℓ−2 − 1

(p2 − 1)2

]

by Eq. (2),

we have

(3)

ℓ
∑

t=1

t2p2t =
ℓ2p2ℓ+2

p2 − 1
− p2

p2ℓ − 1

(p2 − 1)2
− 2p2

[

(ℓ− 1)p2ℓ

(p2 − 1)2
− p2

p2ℓ−2 − 1

(p2 − 1)3

]

.

Since

(p− 1)

n
∑

k=1

kpk = p

n
∑

k=1

kpk −

n
∑

k=1

kpk

=

(

npn+1 + p

n−1
∑

k=1

kpk

)

−

(

p+ p

n−1
∑

k=1

(k + 1)pk

)

= npn+1 − p

n−1
∑

k=0

pk = npn+1 − p
pn − 1

p− 1
,

we have

(4)

n
∑

k=1

kpk =
npn+1

p− 1
− p

pn − 1

(p− 1)2
.

Using Eqs. (2)-(4) we get that

ℓ
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 4)p2(t−1) + (m+ n+ ℓ− 3t+ 2)p2(t−1)+1
]

+
n
∑

k=ℓ

(ℓ + 1)(m+ n+ 1− 2k)pk+ℓ

=

ℓ
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 4)p2(t−1) + (m+ n+ ℓ− 3t+ 2)p2(t−1)+1
]

+

n
∑

k=0

(ℓ + 1)(m+ n+ 1− 2k)pk+ℓ −

ℓ−1
∑

k=0

(ℓ+ 1)(m+ n+ 1− 2k)pk+ℓ

=

[

m+ n+ ℓ+ 4

p2
+

m+ n+ ℓ+ 2

p

] ℓ
∑

t=1

tp2t − 3

[

1

p2
+

1

p

] ℓ
∑

t=1

t2p2t

+ (ℓ+ 1)(m+ n+ 1)pℓ

[

n
∑

k=0

pk −

ℓ−1
∑

k=0

pk

]

− 2(ℓ+ 1)pℓ

[

n
∑

k=0

kpk −

ℓ−1
∑

k=0

kpk

]

=
(m+ n− 2ℓ+ 4)ℓp2ℓ + (m+ n− 2ℓ+ 2)ℓp2ℓ+1

p2 − 1

−
(m+ n− 5ℓ+ 7)p2ℓ + (m+ n− 5ℓ+ 5)p2ℓ+1 − (m+ n+ ℓ− 1)p−m− n− ℓ− 1

(p2 − 1)2
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−
6(p2ℓ + p2ℓ+1 − p3 − p2)

(p2 − 1)3
+

(ℓ+ 1)((m− n+ 1)pn+ℓ+1 − (m+ n− 2ℓ+ 3)p2ℓ)

p− 1

+
2(ℓ+ 1)(pn+ℓ+1 − p2ℓ)

(p− 1)2
.

Therefore, we have proved the following.

Corollary 2.2. Let

Zpm × Zpn × Zpℓ =
〈

a, b, c | ap
m

= bp
n

= cp
ℓ

= e, [a, b] = [a, c] = [b, c] = e
〉

be an abelian p-group of order pm+n+ℓ where m, n and ℓ are non-negative
integers such that m ≥ n ≥ ℓ and p is a prime number. Then the total number
S(Zpm × Zpn × Zpℓ) of subgroups of Zpm × Zpn × Zpℓ is

S(Zpm × Zpn × Zpℓ) =
(m+ n− 2ℓ+ 4)ℓp2ℓ + (m+ n− 2ℓ+ 2)ℓp2ℓ+1

p2 − 1

−

(m+ n− 5ℓ+ 7)p2ℓ + (m+ n− 5ℓ + 5)p2ℓ+1
− (m+ n+ ℓ− 1)p−m− n− ℓ− 1

(p2 − 1)2

−

6(p2ℓ + p2ℓ+1
− p3 − p2)

(p2 − 1)3
+

(ℓ+ 1)((m− n+ 1)pn+ℓ+1
− (m+ n− 2ℓ + 3)p2ℓ)

p− 1

+
2(ℓ+ 1)(pn+ℓ+1

− p2ℓ)

(p− 1)2
.

3. The proof of Theorem 2.1

Given a finite group G let S(G) and T (G) be the set of subgroups of G
and the set of proper subgroups of G, respectively. Let S(G) := |S(G)| and
T (G) := |T (G)|.

Throughout the section we assume that

Zpm × Zpn × Zpℓ =
〈

a, b, c | ap
m

= bp
n

= cp
ℓ

= e, [a, b] = [a, c] = [b, c] = e
〉

is an abelian p-group of order pm+n+ℓ where m, n and ℓ are non-negative
integers such that m ≥ n ≥ ℓ and p is a prime number. Let

bm,n,ℓ := S(Zpm × Zpn × Zpℓ),

where m ≥ n ≥ ℓ. For convenience of notation we set bm,n := bm,n,0 and
bm := bm,0,0.

Clearly bm = S(Zpm) = m + 1. In the following we consider the case for
rank 2 and 3 separately.

3.1. The number of subgroups of Zpm × Zpn

In elementary group theory, the following is well-known.

Lemma 3.1. Assume that m and n are positive integers. The group Zpm×Zpn

has (p+ 1) index p subgroups 〈ap, b〉 ∼= Zpm−1 × Zpn ,
〈

bp, aib
〉

∼= Zpm × Zpn−1 ,

i = 1, 2, . . . , p− 1, and 〈a, bp〉 ∼= Zpm × Zpn−1 .
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Lemma 3.2. (1) If m > n, then

(5) bm,n = bm−1,n + p(bm,n−1 − bm−1,n−1) + 1.

(2) If m = n, then

(6) bm,m = (p+ 1)bm,m−1 − pbm−1,m−1 + 1.

Proof. We only give the proof when m > n. The remaining can be proved
similarly.

By Lemma 3.1 we have

T (Zpm × Zpn) = S(〈ap, b〉 ∼= Zpm−1 × Zpn)

p−1
⋃

i=1

S(
〈

bp, aib
〉

∼= Zpm × Zpn−1)

⋃

S(〈a, bp〉 ∼= Zpm × Zpn−1).

Using the inclusion-exclusion principle we have

bm,n − 1 = bm−1,n + pbm,n−1 −

(

p+ 1

2

)

bm−1,n−1 +

(

p+ 1

3

)

bm−1,n−1

+ · · ·+ (−1)p+2

(

p+ 1

p+ 1

)

bm−1,n−1

= bm−1,n + pbm,n−1 − pbm−1,n−1.

Thus

bm,n = bm−1,n + p(bm,n−1 − bm−1,n−1) + 1. �

As commented in Introduction, the following is already proved in [1, 5]. We
reprove it by using Lemma 3.2.

Lemma 3.3.

bm,n =

n
∑

k=0

(m+ n+ 1− 2k)pk.(7)

Proof. We prove Eq. (7) by induction on n. Assume first that n = 1. Since
bm,0 = S(Zpm) = m+1 and b0,0 = S(〈e〉) = 1, Eq. (5) with n = 1 gives us that

bm,1 = bm−1,1 + p+ 1.

Thus

bm,1 = b1,1 + (m− 1)(p+ 1).

Since b1,1 = p+ 3 by Eq. (6) with m = 1, we have

bm,1 = p+ 3 + (m− 1)(p+ 1).

Hence Eq. (7) holds for n = 1.
Assume now that Eq. (7) holds from 1 to n and consider the case for n+ 1.

By Eq. (5) replacing n by n+ 1 we have

bm,n+1 = bm−1,n+1 + p(bm,n − bm−1,n) + 1.
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Since

p(bm,n − bm−1,n) = p

[

n
∑

k=0

(m+ n+ 1− 2k)pk −

n
∑

k=0

(m− 1 + n+ 1− 2k)pk

]

=

n
∑

k=0

pk+1

by induction hypothesis, we have

bm,n+1 = bm−1,n+1 +

n
∑

k=0

pk+1 + 1 = bm−1,n+1 +

n+1
∑

k=0

pk,

which implies that

bm,n+1 = bn+1,n+1 + (m− n− 1)

n+1
∑

k=0

pk.

Furthermore, since

bn+1,n+1 = (p+ 1)bn+1,n − pbn,n + 1

= (p+ 1)

n
∑

k=0

(n+ 1 + n+ 1− 2k)pk − p

n
∑

k=0

(n+ n+ 1− 2k)pk + 1

=

n+1
∑

k=0

(2n+ 3− 2k)pk

by induction hypothesis, we have

bm,n+1 =

n+1
∑

k=0

(2n+ 3− 2k)pk + (m− n− 1)

n+1
∑

k=0

pk =

n+1
∑

k=0

(m+ n+ 2− 2k)pk.

Hence Eq. (7) holds for n+ 1. �

3.2. The number of subgroups of Zpm × Zpn × Zpℓ

Given a positive integer n let Zn be the cyclic group of order n with the
addictive operation. By Z

∗
n we denote the multiplicative group, that is, the

group consisting of all multiplicatively invertible elements of Zn.
In elementary group theory, the following is well-known.

Lemma 3.4. Assume that m, n and ℓ are positive integers. The group Zpm ×
Zpn × Zpℓ has (p2 + p+ 1) index p subgroups as follows.

(1) 〈a, b, cp〉 ∼= Zpm × Zpn × Zpℓ−1 ,

(2)
〈

aib, bp, c
〉

∼= Zpm × Zpn−1 × Zpℓ ; i = 1, 2, . . . , p− 1,

(3)
〈

aib, bjc, cp
〉

∼= Zpm × Zpn × Zpℓ−1 ; i = 1, 2, . . . , p− 1 and j = 1, 2, . . .,
p− 1,

(4) 〈ap, b, c〉 ∼= Zpm−1 × Zpn × Zpℓ ,

(5)
〈

aic, b, cp
〉

∼= Zpm × Zpn × Zpℓ−1 ; i = 1, 2, . . . , p− 1,
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(6) 〈a, bp, c〉 ∼= Zpm × Zpn−1 × Zpℓ ,

(7)
〈

a, bic, cp
〉

∼= Zpm × Zpn × Zpℓ−1 ; i = 1, 2, . . . , p− 1.

Note that every index p subgroup of Zpm ×Zpn ×Zpℓ contains the subgroup

〈ap, bp, cp〉 ∼= Zpm−1 × Zpn−1 × Zpℓ−1 . In the next lemma we find all index p2

subgroups of Zpm × Zpn × Zpℓ containing 〈ap, bp, cp〉.

Lemma 3.5. Assume that m, n and ℓ are positive integers. There exist (p2+p+
1) index p2 subgroups of Zpm ×Zpn ×Zpℓ containing the subgroup 〈ap, bp, cp〉 ∼=
Zpm−1 × Zpn−1 × Zpℓ−1 as follows.

(1)
〈

aibjc, bp, cp
〉

∼= Zpm × Zpn−1 × Zpℓ−1 ; i = 1, 2, . . . , p − 1 and j =
0, 1, . . . , p− 1,

(2)
〈

ap, bkc, cp
〉

∼= Zpm−1 × Zpn × Zpℓ−1 ; k = 1, 2, . . . , p− 1,
(3) 〈ap, bp, c〉 ∼= Zpm−1 × Zpn−1 × Zpℓ ,

(4)
〈

aib, bp, cp
〉

∼= Zpm × Zpn−1 × Zpℓ−1 ; i = 1, 2, . . . , p− 1,
(5) 〈ap, b, cp〉 ∼= Zpm−1 × Zpn × Zpℓ−1 ,

(6) 〈a, bp, cp〉 ∼= Zpm × Zpn−1 × Zpℓ−1 .

Proof. Let K be an index p2 subgroup of Zpm × Zpn × Zpℓ containing the

subgroup 〈ap, bp, cp〉. Then we have aibjck ∈ K for some integers i, j and k

such that 0 ≤ i, j, k ≤ p−1 and (i, j, k) 6= (0, 0, 0). We now divide the argument
into two cases depending on i = 0 or not.

Case 1: i 6= 0. If j = k = 0, then K ≥
〈

ap, bp, cp, ai
〉

= 〈a, bp, cp〉 , and
hence K = 〈a, bp, cp〉 ∼= Zpm × Zpn−1 × Zpℓ−1 . If j 6= 0 and k = 0, then

K ≥
〈

ap, bp, cp, aibj
〉

. Since j ∈ Z
∗
pn , there exists j′ ∈ Z

∗
pn such that jj′ ≡ 1

(mod pn). So K ≥
〈

ap, bp, cp, aibj
〉

=
〈

ap, bp, cp, (aibj)j
′

= aij
′

b
〉

, and hence

K =
〈

aij
′

b, bp, cp
〉

∼= Zpm × Zpn−1 × Zpℓ−1 . If j = 0 and k 6= 0, then K ≥
〈

ap, bp, cp, aick
〉

. Since k ∈ Z
∗
pℓ , there exists k′ ∈ Z

∗
pℓ such that kk′ ≡ 1

(mod pℓ). So K ≥
〈

ap, bp, cp, aick
〉

=
〈

ap, bp, cp, (aick)k
′

= aik
′

c
〉

, and hence

K =
〈

aik
′

c, bp, cp
〉

∼= Zpm × Zpn−1 × Zpℓ−1 . If j 6= 0 and k 6= 0, then K ≥
〈

ap, bp, cp, aibjck
〉

. Since k ∈ Z
∗
pℓ , there exists k′ ∈ Z

∗
pℓ such that kk′ ≡ 1

(mod pℓ). So K ≥
〈

ap, bp, cp, aibjck
〉

=
〈

ap, bp, cp, (aibjck)k
′

= aik
′

bjk
′

c
〉

, and

hence K =
〈

aik
′

bjk
′

c, bp, cp
〉

∼= Zpm × Zpn−1 × Zpℓ−1 .

Case 2: i = 0. If j = 0, then k 6= 0 and K ≥
〈

ap, bp, cp, ck
〉

= 〈ap, bp, c〉,
and hence K = 〈ap, bp, c〉 ∼= Zpm−1 × Zpn−1 × Zpℓ . If j 6= 0 and k = 0,

then K ≥
〈

ap, bp, cp, bj
〉

= 〈ap, b, cp〉, and hence K = 〈ap, b, cp〉 ∼= Zpm−1 ×

Zpn × Zpℓ−1 . If j 6= 0 and k 6= 0, then K ≥
〈

ap, bp, cp, bjck
〉

. Since k ∈ Z
∗
pℓ ,

there exists k′ ∈ Z
∗
pℓ such that kk′ ≡ 1 (mod pℓ). So K ≥

〈

ap, bp, cp, bjck
〉

=
〈

ap, bp, cp, (bjck)k
′

= bjk
′

c
〉

, and hence K =
〈

ap, bjk
′

c, cp
〉

∼= Zpm−1 × Zpn ×

Zpℓ−1 . �
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Lemma 3.6. If K is an index p2 subgroup of Zpm ×Zpn ×Zpℓ and K contains

the subgroup 〈ap, bp, cp〉, then there exist (p + 1) index p subgroup of Zpm ×
Zpn × Zpℓ containing K.

Proof. Assume that K is a subgroup satisfying the assumption. Then K is
one of the (p2 + p+ 1) subgroups in Lemma 3.4. We only give the proof when
K =

〈

aibjc, bp, cp
〉

∼= Zpm × Zpn−1 × Zpℓ−1 for each integers i and j such that
1 ≤ i ≤ p − 1 and 0 ≤ j ≤ p − 1. The remaining can be proved in a similar
way. Set x := aibjc, y := b and z := c. Then Zpm × Zpn × Zpℓ = 〈x, y, z〉 and
K = 〈x, yp, zp〉. Let H be an index p subgroup of Zpm × Zpn × Zpℓ containing

K. Since K = 〈x, yp, zp〉 is an index p2 subgroup of Zpm × Zpn ×Zpℓ , we have

ypk1+izpk2+j ∈ H for some integers k1, k2, i and j such that 0 ≤ i, j ≤ p−1 and
(i, j) 6= (0, 0). If i = 0, then 1 ≤ j ≤ p− 1 and H ≥

〈

x, yp, zp, zj
〉

= 〈x, yp, z〉,
and hence H = 〈x, yp, z〉 ∼= Zpm × Zpn−1 × Zpℓ . Assume now that i 6= 0. Then

0 ≤ j ≤ p − 1 and H ≥
〈

x, yp, zp, yizi
〉

. If j = 0, then H ≥
〈

x, yp, zp, yi
〉

=
〈x, y, zp〉, and hence H = 〈x, y, zp〉 ∼= Zpm × Zpn × Zpℓ−1 . If j 6= 0, then there

exists j′ ∈ Z
∗
pℓ such that jj′ ≡ 1 (mod pℓ), and so H ≥

〈

x, yp, zp, yij
′

z
〉

=
〈

x, yij
′

z, zp
〉

. Hence we have H =
〈

x, ykz, zp
〉

∼= Zpm × Zpn × Zpℓ−1 , k =

1, 2, . . . , p− 1. �

Lemma 3.7. (1) If m > n > ℓ, then

bm,n,ℓ = bm−1,n,ℓ + p(bm,n−1,ℓ − bm−1,n−1,ℓ) + p2(bm,n,ℓ−1 − bm−1,n,ℓ−1)(8)

− p3(bm,n−1,ℓ−1 − bm−1,n−1,ℓ−1) + 1.

(2) If m = n and n > ℓ, then

bm,m,ℓ = (1 + p)bm,m−1,ℓ − pbm−1,m−1,ℓ(9)

+ p2bm,m,ℓ−1 − p2(1 + p)bm,m−1,ℓ−1 + p3bm−1,m−1,ℓ−1 + 1.

(3) If m > n and n = ℓ, then

bm,n,n = bm−1,n,n + p(1 + p)(bm,n,n−1 − bm−1,n,n−1)(10)

− p3(bm,n−1,n−1 − bm−1,n−1,n−1) + 1.

(4) If m = n = ℓ, then

bm,m,m = (1 + p+ p2)bm,m,m−1 − p(1 + p+ p2)bm,m−1,m−1(11)

+ p3bm−1,m−1,m−1 + 1.

Proof. We only give the proof of Eq. (8). The remaining can be proved by a
similar way.

By Lemma 3.4 we have

T (Zpm × Zpn × Zpℓ) = S(〈a, b, cp〉 ∼= Zpm × Zpn × Zpℓ−1)
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p−1
⋃

i=1

S(
〈

aib, bp, c
〉

∼= Zpm × Zpn−1 × Zpℓ)

⋃

1≤i,j≤p−1

S(
〈

aib, bjc, cp
〉

∼= Zpm × Zpn × Zpℓ−1)

⋃

S(〈ap, b, c〉 ∼= Zpm−1 × Zpn × Zpℓ)

p−1
⋃

i=1

S(
〈

aic, b, cp
〉

∼= Zpm × Zpn × Zpℓ−1)

⋃

S(〈a, bp, c〉 ∼= Zpm × Zpn−1 × Zpℓ)

p−1
⋃

i=1

S(
〈

a, bic, cp
〉

∼= Zpm × Zpn × Zpℓ−1).

Using the inclusion-exclusion principle and Lemmas 3.5 and 3.6 we have

bm,n,ℓ − 1

= p2bm,n,ℓ−1 + pbm,n−1,ℓ + bm−1,n,ℓ

−

[

p2
(

p+ 1

2

)

bm,n−1,ℓ−1 + p

(

p+ 1

2

)

bm−1,n,ℓ−1 +

(

p+ 1

2

)

bm−1,n−1,ℓ

]

+

[

p2
(

p+ 1

3

)

bm,n−1,ℓ−1 + p

(

p+ 1

3

)

bm−1,n,ℓ−1 +

(

p+ 1

3

)

bm−1,n−1,ℓ

+

[(

p2 + p+ 1

3

)

− (p2 + p+ 1)

(

p+ 1

3

)]

bm−1,n−1,ℓ−1

]

−

[

p2
(

p+ 1

4

)

bm,n−1,ℓ−1 + p

(

p+ 1

4

)

bm−1,n,ℓ−1 +

(

p+ 1

4

)

bm−1,n−1,ℓ

+

[(

p2 + p+ 1

4

)

− (p2 + p+ 1)

(

p+ 1

4

)]

bm−1,n−1,ℓ−1

]

+ · · ·+ (−1)p+2

[

p2
(

p+ 1

p+ 1

)

bm,n−1,ℓ−1 + p

(

p+ 1

p+ 1

)

bm−1,n,ℓ−1

+

(

p+ 1

p+ 1

)

bm−1,n−1,ℓ+

[(

p2+ p+ 1

p+ 1

)

−(p2 + p+ 1)

(

p+ 1

p+ 1

)]

bm−1,n−1,ℓ−1

]

+ (−1)p+3

(

p2 + p+ 1

p+ 2

)

bm−1,n−1,ℓ−1 + (−1)p+4

(

p2 + p+ 1

p+ 3

)

bm−1,n−1,ℓ−1

+ · · ·+ (−1)p
2+p+2

(

p2 + p+ 1

p2 + p+ 1

)

bm−1,n−1,ℓ−1.

Thus we have

bm,n,ℓ= bm−1,n,ℓ + pbm,n−1,ℓ + p2bm,n,ℓ−1

− pbm−1,n−1,ℓ − p2bm−1,n,ℓ−1 − p3bm,n−1,ℓ−1+p3bm−1,n−1,ℓ−1+1. �
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We prove Eq. (1) by double induction on n and ℓ. In the following lemma
we show that Eq. (1) holds for ℓ = 1.

Lemma 3.8.

(12) bm,n,1 = (m+ n+ 2) + (m+ n)p+

n
∑

k=1

2(m+ n+ 1− 2k)pk+1.

Proof. We prove Eq. (12) by induction on n. Assume first that n = 1. Note
that

bm,1,1 = bm−1,1,1 + p(1 + p)(bm,1,0 − bm−1,1,0)

− p3(bm,0,0 − bm−1,0,0) + 1 by Eq. (10)

= bm−1,1,1 + (p+ p2)(p+ 1)− p3 + 1 by Lemma 3.3

= bm−1,1,1 + 2p2 + p+ 1.

Thus we have

bm,1,1 = b1,1,1 + (m− 1)(2p2 + p+ 1).

Since

b1,1,1 = (1 + p+ p2)b1,1,0 − p(1 + p+ p2)b1,0,0 + p3b0,0,0 + 1 by Eq. (11)

= (1 + p+ p2)(p+ 3)− p(1 + p+ p2)2 + p3 + 1 by Lemma 3.3

= 4 + 2p+ 2p2,

we have

bm,1,1 = 4 + 2p+ 2p2 + (m− 1)(2p2 + p+ 1) = m+ 3 + (m+ 1)p+ 2mp2.

Thus Eq. (12) holds for n = 1.
Assume now that Eq. (12) holds from 1 to n and consider the case for n+1.

By Eq. (8) with (m,n, ℓ) = (m,n+ 1, 1) we have

bm,n+1,1 = bm−1,n+1,1 + p(bm,n,1 − bm−1,n,1) + p2(bm,n+1,0 − bm−1,n+1,0)

− p3(bm,n,0 − bm−1,n,0) + 1.

Note that

bm,n,1 − bm−1,n,1 = (m+ n+ 2) + (m+ n)p+
n
∑

k=1

(2m+ 2n+ 2− 4k)pk+1

−

[

(m+ n+ 1)+(m+ n− 1)p+

n
∑

k=1

(2m+ 2n− 4k)pk+1

]

= 1 + p+ 2

n
∑

k=1

pk+1
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by induction hypothesis and

bm,n+1,0 − bm−1,n+1,0 =

n+1
∑

k=0

pk, bm,n,0 − bm−1,n,0 =

n
∑

k=0

pk

by Lemma 3.3. Thus

bm,n+1,1 − bm−1,n+1,1 = 1 + p+ p2 + 2

n
∑

k=1

pk+2 +

n+1
∑

k=0

pk+2 −

n
∑

k=0

pk+3

= 1 + p+ 2p2 + 2

n
∑

k=1

pk+2,

which implies that

(13) bm,n+1,1 = bn+1,n+1,1 + (m− n− 1)

[

1 + p+ 2p2 + 2
n
∑

k=1

pk+2

]

.

On the other hand, Eq. (9) with (m, ℓ) = (n+ 1, 1) gives us that

bn+1,n+1,1 = (1 + p)bn+1,n,1 − pbn,n,1 + p2bn+1,n+1,0

− (p3 + p2)bn+1,n,0 + p3bn,n,0 + 1.

Since

bn+1,n,1 = 2n+ 3 + (2n+ 1)p+

n
∑

k=1

(4n+ 4− 4k)pk+1,

bn,n,1 = 2n+ 2 + 2np+

n
∑

k=1

(4n+ 2− 4k)pk+1

by induction hypothesis and

bn+1,n+1,0 =

n+1
∑

k=0

(2n+ 3− 2k)pk, bn+1,n,0 =

n
∑

k=0

(2n+ 2− 2k)pk,

bn,n,0 =

n
∑

k=0

(2n+ 1− 2k)pk

by Lemma 3.3, we have

bn+1,n+1,1 = (1 + p)

[

2n+ 3 + (2n+ 1)p+

n
∑

k=1

(4n+ 4− 4k)pk+1

]

− p

[

2n+ 2 + 2np+

n
∑

k=1

(4n+ 2− 4k)pk+1

]

+ p2
n+1
∑

k=0

(2n+ 3− 2k)pk
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− (p3 + p2)

n
∑

k=0

(2n+ 2− 2k)pk + p3
n
∑

k=0

(2n+ 1− 2k)pk + 1

= 2n+ 4+ (2n+ 2)p+

n+1
∑

k=1

(4n+ 6− 4k)pk+1.

Hence, together with Eq. (13) we have

bm,n+1,1 = 2n+ 4 + (2n+ 2)p+
n+1
∑

k=1

(4n+ 6− 4k)pk+1

+ (m− n− 1)

[

1 + p+ 2p2 + 2

n
∑

k=1

pk+2

]

= (m+ n+ 3) + (m+ n+ 1)p+

n+1
∑

k=1

(4n+ 6− 4k)pk+1

+ (2m− 2n− 2)p2 + 2(m− n− 1)
n
∑

k=1

pk+2

= (m+ n+ 3) + (m+ n+ 1)p+

n+1
∑

k=1

2(m+ n+ 2− 2k)pk+1.

Therefore, Eq. (12) holds for n+ 1. �

Assume now that Eq. (1) holds from 1 to ℓ and consider the case for ℓ+ 1.
Eq. (10) with (m,n) = (m, ℓ+ 1) gives us that

bm,ℓ+1,ℓ+1 = bm−1,ℓ+1,ℓ+1 + (p2 + p)(bm,ℓ+1,ℓ − bm−1,ℓ+1,ℓ)

− p3(bm,ℓ,ℓ − bm−1,ℓ,ℓ) + 1.

By induction hypothesis we know that

bm,ℓ+1,ℓ − bm−1,ℓ+1,ℓ

=

ℓ
∑

t=1

t
[

(m+ 2ℓ− 3t+ 5)p2t−2 + (m+ 2ℓ− 3t+ 3)p2t−1
]

+

ℓ+1
∑

k=ℓ

(ℓ+ 1)(m+ ℓ+ 2− 2k)pk+ℓ −

ℓ
∑

t=1

t
[

(m+ 2ℓ− 3t+ 4)p2t−2

+(m+ 2ℓ− 3t+ 2)p2t−1
]

−

ℓ+1
∑

k=ℓ

(ℓ+ 1)(m+ ℓ+ 1− 2k)pk+ℓ

=

ℓ
∑

t=1

t
[

p2t−2 + p2t−1
]

+ (ℓ+ 1)p2ℓ + (ℓ+ 1)p2ℓ+1
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and

bm,ℓ,ℓ − bm−1,ℓ,ℓ =
ℓ
∑

t=1

t
[

(m+ 2ℓ− 3t+ 4)p2t−2 + (m+ 2ℓ− 3t+ 2)p2t−1
]

+

ℓ
∑

k=ℓ

(ℓ + 1)(m+ ℓ+ 1− 2k)pk+ℓ

−

ℓ
∑

t=1

t
[

(m+ 2ℓ− 3t+ 3)p2t−2 + (m+ 2ℓ− 3t+ 1)p2t−1
]

−

ℓ
∑

k=ℓ

(ℓ + 1)(m+ ℓ− 2k)pk+ℓ

=

ℓ
∑

t=1

t
[

p2t−2 + p2t−1
]

+ (ℓ+ 1)p2ℓ.

Thus we have

bm,ℓ+1,ℓ+1 − bm−1,ℓ+1,ℓ+1

= (p2 + p)

[

ℓ
∑

t=1

t
[

p2t−2 + p2t−1
]

+ (ℓ + 1)p2ℓ + (ℓ+ 1)p2ℓ+1

]

− p3

[

ℓ
∑

t=1

t
[

p2t−2 + p2t−1
]

+ (ℓ+ 1)p2ℓ

]

+ 1

=

ℓ
∑

t=1

t
[

p2t−1 + 2p2t − p2t+2
]

+ 2(ℓ+ 1)p2ℓ+2 + (ℓ + 1)p2ℓ+1 + 1

=

ℓ+1
∑

t=1

t
[

p2t−2 + p2t−1
]

+ (ℓ+ 2)p2ℓ+2,

which implies that

bm,ℓ+1,ℓ+1 = bℓ+1,ℓ+1,ℓ+1(14)

+ (m− ℓ− 1)

[

ℓ+1
∑

t=1

t
[

p2t−2 + p2t−1
]

+ (ℓ + 2)p2ℓ+2

]

.

On the other hand, Eq. (11) with m = ℓ+ 1 gives us that

bℓ+1,ℓ+1,ℓ+1 = (p2 + p+ 1)bℓ+1,ℓ+1,ℓ − (p3 + p2 + p)bℓ+1,ℓ,ℓ + p3bℓ,ℓ,ℓ + 1.

Since

bℓ+1,ℓ+1,ℓ =

ℓ
∑

t=1

t
[

(3ℓ− 3t+ 6)p2t−2 + (3ℓ− 3t+ 4)p2t−1
]
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+

ℓ+1
∑

k=ℓ

(ℓ+ 1)(2ℓ+ 3− 2k)pk+ℓ,

bℓ+1,ℓ,ℓ =

ℓ
∑

t=1

t
[

(3ℓ− 3t+ 5)p2t−2 + (3ℓ− 3t+ 3)p2t−1
]

+

ℓ
∑

k=ℓ

(ℓ+ 1)(2ℓ+ 2− 2k)pk+ℓ

and

bℓ,ℓ,ℓ =

ℓ
∑

t=1

t
[

(3ℓ− 3t+ 4)p2t−2 + (3ℓ− 3t+ 2)p2t−1
]

+
ℓ
∑

k=ℓ

(ℓ+ 1)(2ℓ+ 1− 2k)pk+ℓ

by induction hypothesis, we have

bℓ+1,ℓ+1,ℓ+1

= (p2 + p+ 1)

×

[

ℓ
∑

t=1

t
[

(3ℓ− 3t+ 6)p2t−2 + (3ℓ− 3t+ 4)p2t−1
]

+

ℓ+1
∑

k=ℓ

(ℓ+ 1)(2ℓ+ 3− 2k)pk+ℓ

]

− (p3 + p2 + p)

[

ℓ
∑

t=1

t
[

(3ℓ− 3t+ 5)p2t−2 + (3ℓ− 3t+ 3)p2t−1
]

+
ℓ
∑

k=ℓ

(ℓ+ 1)(2ℓ+ 2− 2k)pk+ℓ

]

+ p3

[

ℓ
∑

t=1

t
[

(3ℓ− 3t+ 4)p2t−2 + (3ℓ− 3t+ 2)p2t−1
]

+

ℓ
∑

k=ℓ

(ℓ+ 1)(2ℓ+ 1− 2k)pk+ℓ

]

+ 1

=

ℓ
∑

t=1

t
[

−p2t+2 + 2p2t + (3ℓ− 3t+ 5)p2t−1 + (3ℓ− 3t+ 6)p2t−2
]

+ 2(ℓ+ 1)p2ℓ+2 + 2(ℓ+ 1)p2ℓ+1 + 3(ℓ+ 1)p2ℓ + 1
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=

ℓ+1
∑

t=1

t
[

(3ℓ− 3t+ 7)p2t−2 + (3ℓ− 3t+ 5)p2t−1
]

+ (ℓ+ 2)p2ℓ+2.

Hence, together with Eq. (14) we have

bm,ℓ+1,ℓ+1 =

ℓ+1
∑

t=1

t
[

(3ℓ− 3t+ 7)p2t−2 + (3ℓ− 3t+ 5)p2t−1
]

+ (ℓ+ 2)p2ℓ+2

(m− ℓ − 1)

[

ℓ+1
∑

t=1

t
[

p2t−2 + p2t−1
]

+ (ℓ + 2)p2ℓ+2

]

=

ℓ+1
∑

t=1

t
[

(m+ 2ℓ− 3t+ 6)p2t−2 + (m+ 2ℓ− 3t+ 4)p2t−1
]

+
ℓ+1
∑

k=ℓ+1

(ℓ+ 2)(m+ ℓ+ 2− 2k)pk+ℓ+1.

Therefore, Eq. (1) holds for n = ℓ+ 1.
Assume now that Eq. (1) holds from ℓ + 1 to n, and consider the case for

n+ 1. Eq. (8) with (m,n, ℓ) = (m,n+ 1, ℓ+ 1) gives us that

bm,n+1,ℓ+1 = bm−1,n+1,ℓ+1 + p(bm,n,ℓ+1 − bm−1,n,ℓ+1)

+ p2(bm,n+1,ℓ − bm−1,n+1,ℓ)− p3(bm,n,ℓ − bm−1,n,ℓ) + 1.

By induction hypothesis we know that

bm,n,ℓ+1 − bm−1,n,ℓ+1

=

ℓ+1
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 5)p2t−2 + (m+ n+ ℓ− 3t+ 3)p2t−1
]

+

n
∑

k=ℓ+1

(ℓ+ 2)(m+ n+ 1− 2k)pk+ℓ+1 −

ℓ+1
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 4)p2t−2

+(m+ n+ ℓ− 3t+ 2)p2t−1
]

−

n
∑

k=ℓ+1

(ℓ+ 2)(m+ n− 2k)pk+ℓ+1

=

ℓ+1
∑

t=1

t
[

p2t−2 + p2t−1
]

+

n
∑

k=ℓ+1

(ℓ + 2)pk+ℓ+1,

bm,n+1,ℓ − bm−1,n+1,ℓ

=

ℓ
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 5)p2t−2 + (m+ n+ ℓ− 3t+ 3)p2t−1
]

+

n+1
∑

k=ℓ

(ℓ+ 1)(m+ n+ 2− 2k)pk+ℓ −

ℓ
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 4)p2t−2
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+(m+ n+ ℓ− 3t+ 2)p2t−1
]

−

n+1
∑

k=ℓ

(ℓ+ 1)(m+ n+ 1− 2k)pk+ℓ

=

ℓ
∑

t=1

t
[

p2t−2 + p2t−1
]

+

n+1
∑

k=ℓ

(ℓ+ 1)pk+ℓ

and

bm,n,ℓ − bm−1,n,ℓ

=

ℓ
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 4)p2t−2 + (m+ n+ ℓ− 3t+ 2)p2t−1
]

+

n
∑

k=ℓ

(ℓ + 1)(m+ n+ 1− 2k)pk+ℓ −

ℓ
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 3)p2t−2

+(m+ n+ ℓ− 3t+ 1)p2t−1
]

−

n
∑

k=ℓ

(ℓ+ 1)(m+ n− 2k)pk+ℓ

=

ℓ
∑

t=1

t
[

p2t−2 + p2t−1
]

+

n
∑

k=ℓ

(ℓ+ 1)pk+ℓ.

Hence we have

bm,n+1,ℓ+1 − bm−1,n+1,ℓ+1

= p

[

ℓ+1
∑

t=1

t
[

p2t−2 + p2t−1
]

+

n
∑

k=ℓ+1

(ℓ+ 2)pk+ℓ+1

]

+ p2

[

ℓ
∑

t=1

t
[

p2t−2 + p2t−1
]

+
n+1
∑

k=ℓ

(ℓ + 1)pk+ℓ

]

− p3

[

ℓ
∑

t=1

t
[

p2t−2 + p2t−1
]

+
n
∑

k=ℓ

(ℓ+ 1)pk+ℓ

]

+ 1

=

ℓ+1
∑

t=1

t
[

p2t−2 + p2t−1
]

+

n+1
∑

k=ℓ+1

(ℓ+ 2)pk+ℓ+1,

which implies that

bm,n+1,ℓ+1(15)

= bn+1,n+1,ℓ+1

+ (m− n− 1)

[

ℓ+1
∑

t=1

t
[

p2t−2 + p2t−1
]

+

n+1
∑

k=ℓ+1

(ℓ + 2)pk+ℓ+1

]

.
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On the other hand, by Eq. (9) with (m, ℓ) = (n+ 1, ℓ+ 1) we have

bn+1,n+1,ℓ+1 = (p+ 1)bn+1,n,ℓ+1 − pbn,n,ℓ+1 + p2bn+1,n+1,ℓ

− (p3 + p2)bn+1,n,ℓ + p3bn,n,ℓ + 1.

Since

bn+1,n,ℓ+1 =

ℓ+1
∑

t=1

t
[

(2n+ ℓ− 3t+ 6)p2t−2 + (2n+ ℓ− 3t+ 4)p2t−1
]

+
n
∑

k=ℓ+1

(ℓ + 2)(2n+ 2− 2k)pk+ℓ+1,

bn,n,ℓ+1 =

ℓ+1
∑

t=1

t
[

(2n+ ℓ− 3t+ 5)p2t−2 + (2n+ ℓ− 3t+ 3)p2t−1
]

+

n
∑

k=ℓ+1

(ℓ + 2)(2n+ 1− 2k)pk+ℓ+1,

bn+1,n+1,ℓ =

ℓ
∑

t=1

t
[

(2n+ ℓ− 3t+ 6)p2t−2 + (2n+ ℓ− 3t+ 4)p2t−1
]

+

n+1
∑

k=ℓ

(ℓ+ 1)(2n+ 3− 2k)pk+ℓ,

bn+1,n,ℓ =
ℓ
∑

t=1

t
[

(2n+ ℓ− 3t+ 5)p2t−2 + (2n+ ℓ− 3t+ 3)p2t−1
]

+

n
∑

k=ℓ

(ℓ+ 1)(2n+ 2− 2k)pk+ℓ

and

bn,n,ℓ =

ℓ
∑

t=1

t
[

(2n+ ℓ− 3t+ 4)p2t−2 + (2n+ ℓ− 3t+ 2)p2t−1
]

+
n
∑

k=ℓ

(ℓ+ 1)(2n+ 1− 2k)pk+ℓ

by induction hypothesis, we have

bn+1,n+1,ℓ+1

= (p+ 1)

[

ℓ+1
∑

t=1

t
[

(2n+ ℓ− 3t+ 6)p2t−2 + (2n+ ℓ− 3t+ 4)p2t−1
]
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+

n
∑

k=ℓ+1

(ℓ+ 2)(2n+ 2− 2k)pk+ℓ+1

]

− p

[

ℓ+1
∑

t=1

t
[

(2n+ ℓ− 3t+ 5)p2t−2

+(2n+ ℓ− 3t+ 3)p2t−1
]

+

n
∑

k=ℓ+1

(ℓ+ 2)(2n+ 1− 2k)pk+ℓ+1

]

+ p2

[

ℓ
∑

t=1

t
[

(2n+ ℓ− 3t+ 6)p2t−2 + (2n+ ℓ− 3t+ 4)p2t−1
]

+
n+1
∑

k=ℓ

(ℓ+ 1)(2n+ 3− 2k)pk+ℓ

]

− (p3 + p2)

[

ℓ
∑

t=1

t
[

(2n+ ℓ − 3t+ 5)p2t−2

+(2n+ ℓ− 3t+ 3)p2t−1
]

+

n
∑

k=ℓ

(ℓ+ 1)(2n+ 2− 2k)pk+ℓ

]

+ p3

[

ℓ
∑

t=1

t
[

(2n+ ℓ− 3t+ 4)p2t−2 + (2n+ ℓ− 3t+ 2)p2t−1
]

+

n
∑

k=ℓ

(ℓ+ 1)(2n+ 1− 2k)pk+ℓ

]

+ 1

=
ℓ+1
∑

t=1

t
[

(2n+ ℓ− 3t+ 6)p2t−2 + (2n+ ℓ− 3t+ 5)p2t−1 + p2t
]

+

ℓ
∑

t=1

t
[

p2t − p2t+2
]

+

n
∑

k=ℓ+1

(ℓ + 2)(2n+ 2− 2k)pk+ℓ+1

+

n
∑

k=ℓ+1

(ℓ + 2)pk+ℓ+2 +

n+1
∑

k=ℓ

(ℓ+ 1)(2n+ 3− 2k)pk+ℓ+2

−
n
∑

k=ℓ

(ℓ+ 1)(2n+ 2− 2k)pk+ℓ+2 −
n
∑

k=ℓ

(ℓ+ 1)pk+ℓ+3 + 1

=
ℓ+1
∑

t=1

t
[

(2n+ ℓ− 3t+ 7)p2t−2 + (2n+ ℓ− 3t+ 5)p2t−1
]

+

n+1
∑

k=ℓ+1

(ℓ + 2)(2n+ 3− 2k)pk+ℓ+1.

Hence, together with Eq. (15) we have

bm,n+1,ℓ+1 =

ℓ+1
∑

t=1

t
[

(2n+ ℓ− 3t+ 7)p2t−2 + (2n+ ℓ− 3t+ 5)p2t−1
]
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+

n+1
∑

k=ℓ+1

(ℓ+ 2)(2n+ 3− 2k)pk+ℓ+1

+ (m− n− 1)

[

ℓ+1
∑

t=1

t
[

p2t−2 + p2t−1
]

+

n+1
∑

k=ℓ+1

(ℓ + 2)pk+ℓ+1

]

=

ℓ+1
∑

t=1

t
[

(m+ n+ ℓ− 3t+ 6)p2t−2 + (m+ n+ ℓ− 3t+ 4)p2t−1
]

+

n+1
∑

k=ℓ+1

(ℓ+ 2)(m+ n+ 2− 2k)pk+ℓ+1.

Therefore, Eq. (1) holds for n+1. Consequently, we have proved Theorem 2.1.

In general, for the group Zpk1 × Zpk2 × · · · × Zpk
ℓ
, where k1, k2, . . . , kℓ are

positive integers, ℓ is a positive integer such that ℓ ≥ 4 and p is a prime
number, it seems not easy to obtain an explicit formula for the total number
of subgroups with the method used in this paper.
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