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AN EXPLICIT FORMULA FOR THE NUMBER OF
SUBGROUPS OF A FINITE ABELIAN p-GROUP
UP TO RANK 3

Ju-Moxk On

ABSTRACT. In this paper we give an explicit formula for the total number
of subgroups of a finite abelian p-group up to rank three.

1. Introduction

Given a finite abelian group what is the total number of subgroups? This
problem can be reduced to that of finding the number of subgroups of a finite
abelian p-group because every finite abelian group is the direct product of its
Sylow subgroups. Several different versions of the formula for the number of
certain type subgroups of a given finite abelian p-group have been known (for
example see [2, 3, 4, 6]). But in general these formulas do not lead us to an
explicit formula for the total number of subgroups, which is well explained
in [1]. As a result of this direction, G. Calugdreanu [1] and later J. Petrillo [5]
have given an explicit formula for the total number of subgroups of a finite
abelian p-group of rank two by using Goursat’s Theorem. In this paper we
reprove their result by finding its recurrence relation and as a new result we
give an explicit formula for the total number of subgroups of a finite abelian
p-group of rank three by a similar method.

2. The total number of subgroups of a finite abelian p-group up to
rank 3

The following is the main result of this paper, which will be proved in the
next section.

Theorem 2.1. Let
Ly X Lipn X Lt = <a,b,c | " = = = e,la,b] = [a,c] = [b,c] = e>
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be an abelian p-group of order p™t" Tt where m, n and £ are non-negative
integers such that m > n > £ and p is a prime number. Then the total number
S(Zpm X Lin X Lpe) of subgroups of Lym X Lupn X L is

S(me X Lipn X Zp[,) = Zt [(m +n+f—3t+ 4)p2(t71)

t=1

(1) Fm+n+0—3t+ 2)p2<t*1>+1}

+) (1) (m+n+ 1= 2k)pEt,
k=¢

where the first iterated sum is 0 when £ = 0.
We now evaluate Eq. (1) more specifically. Since
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20 20 20—2
_ 42,2042 2p” — 1 2 [(L—1)p 2P -1

we have

Y4
€2p2€+2 p2€ -1 ([ _ 1)p2€ p2€—2 -1
2,2t 2 2 2
(3) St = - { - }

G b5 2 2 2 3
po p?—1 (p (p? —1) (»*—1)
Since
(p—1)Y kp=pY kp* = kpt
k=1 k=1 k=1
n—1 n—1
( "H—i—kap) <p+pz (k+1)p )
k=1 k=1
n—1 » _1
= —pY pr=mnp P—
k=0 p
we have
—+1 n
p*—1
4 kp® — .

Using Egs. (2)-(4) we get that
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B e A . " (€4 1)((m —n+ Dp"H+1 — (m 4+ n — 20+ 3)p%)
(p* = 1) p—1

2(€+ 1)(pn+[+1 *p%)
(p—1)

Therefore, we have proved the following.

+

Corollary 2.2. Let
Ly X Ly % Lg = (a,b,¢ | " =" = = ¢, [0,6] = o, = b, =¢)

be an abelian p-group of order p™t" Tt where m, n and £ are non-negative
integers such that m > n > £ and p is a prime number. Then the total number
S(Zym X Lign X Lye) of subgroups of Lym X Lpn X Lpe is

(m+n — 20+ 4)0p* + (m +n — 20 4 2)ep>**!

S(Zpm X Lgn X Tupe) =

p*—1
_ (m+n—50+7p* +(m+n—50+5)p* ' —(m+n+l—Dp-—m-n—~L—1
(p*—1)°
6 ¥ =P —p?) L UHD(m—n+ Dp" T — (m 4 n — 204 3)p*)
(»*—1)° p—1
L2 DT - p*)
(p—1)?

3. The proof of Theorem 2.1

Given a finite group G let S(G) and T(G) be the set of subgroups of G
and the set of proper subgroups of G, respectively. Let S(G) := |S(G)| and
T(G) = [T(G)].

Throughout the section we assume that
Ly X Lo X Lt = <a,b,c | " = = = e,la,b] = [a,c] = [b,c] = e>
is an abelian p-group of order p™*"*¢ where m, n and ¢ are non-negative
integers such that m > n > £ and p is a prime number. Let
bm7n1[ = S(me X an X Zpé),

where m > n > (. For convenience of notation we set by, p, = bpy no and
bm = bm,0,0-

Clearly by, = S(Zpm) = m + 1. In the following we consider the case for
rank 2 and 3 separately.

3.1. The number of subgroups of Zym X Zpn
In elementary group theory, the following is well-known.

Lemma 3.1. Assume that m and n are positive integers. The group Zym X Zpn
has (p + 1) index p subgroups (aP,b) = Zym—1 X Lypn, <bp, aib> & Zpm X Lpn—1,
i=1,2,...,p—1, and {(a,bP) = Zym X Lpn-1.
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Lemma 3.2. (1) If m > n, then

(5) bmn = bm—1n + POmn-1—bm-1,n-1) + 1.
(2) If m =n, then

(6) bmm = (0 + 1)bm,m-1 — Pbm—1,m-1 + 1.

Proof. We only give the proof when m > n. The remaining can be proved
similarly.
By Lemma 3.1 we have

p—1
T(Zym X Zpn) = S((aP,b) = Ly X L) | J SV, 0'b) = Zipm X L)
i=1

UJSWa, b)) = Zpm x Zypns).

Using the inclusion-exclusion principle we have

+1 +1
bm,n -1= bm—l,n +pbm,n—1 - (p 9 )bm—l,n—l + (p 3 )bm—l,n—l

ofp+1
4+ (_1)p+ (p N 1) bm—l,n—l
= bm—1,n + Pbrm,n—1 — Pbm—1,n—1.
Thus
bmn = bm—1n +Pbmmn—1 —bm—1n-1) + 1. O

As commented in Introduction, the following is already proved in [1, 5]. We
reprove it by using Lemma 3.2.

Lemma 3.3.

n

(7) b = 3 _(m+n+1—2k)p".
k=0

Proof. We prove Eq. (7) by induction on n. Assume first that n = 1. Since
bm,o = S(Zpm) =m+1and by o = S({e)) =1, Eq. (5) with n = 1 gives us that
b1 =bm-11+p+1

Thus
bm,1 =b11+ (m—1)(p+1).
Since by1,; = p+ 3 by Eq. (6) with m = 1, we have
bmi =p+3+(m—1)(p+1).

Hence Eq. (7) holds for n = 1.
Assume now that Eq. (7) holds from 1 to n and consider the case for n + 1.
By Eq. (5) replacing n by n + 1 we have

bm,n—i—l = bm—l,n-{-l +p(bm,n - bm—l,n) + 1.
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Since
(m+n+1=2k)p* = (m—1+n+1-2k)p*

n
k=0 k=0
n
k=

p(bm,n - bmfl n =

by induction hypothes1s we have

n+1
bmn+1—bm 1n+1+zpk+1+1_bm 1n+1+zpa
k=0 k=0

which implies that
n+1

bm,nJrl - bn+1,n+1 + (m -—n— 1) Zpk
k=0

Furthermore, since

bn+1,n+1 - (p + 1)bn+1,n - pbn,n + 1

n

=(p+1)> (n+1+n+1-2kp" —p> (n+n+1-2k)p"+1
k=0 k=0
n+1

= Z(Qn + 3 — 2k)p"
k=0

by induction hypothesis, we have

n+1 n+1 n+1
bm7n+1:Z(2n+3—2kz)p +(m—-n-1) Zp —Zm+n+2—2kz)pk
k=0 k=0
Hence Eq. (7) holds for n + 1. O

3.2. The number of subgroups of Zym X Zpn X Zpe

Given a positive integer n let Z,, be the cyclic group of order n with the
addictive operation. By Z; we denote the multiplicative group, that is, the
group consisting of all multiplicatively invertible elements of Z,.

In elementary group theory, the following is well-known.

Lemma 3.4. Assume that m, n and ¢ are positive integers. The group Zpm %
Zipn X Lpe has (p* +p + 1) index p subgroups as follows.
(1) {a,b,cP) = Zpm X Lpn X Lpe-1,
(2) (a'b,bP,c) = Zym X Lpn— X Lpe; i =1,2,...,p— 1,
(3) (a Zb b,y = Zpm X Lypn X Lpe—1;i=1,2,...,p—1and j=1,2,...,
p—
(aP, b > & Lpm—1 X Lign X Lt
) {aie,b, ) 2 Lpym X Lypn X Loy i=1,2,...,p—1,

(4)
(5)
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(6) (a,bé,c) & Zipm X Lin—1 X Ly,
(7) {a,bic,P) = Lym X Lpn X Lpe—1; i =1,2,...,p— 1.

Note that every index p subgroup of Z,m X Zyn X Zpe contains the subgroup
(aP, 0P, cP) = Zym—1 X Lpn—1 X Lpe—1. In the next lemma we find all index p?
subgroups of Zym X Zyn X Zye containing (a?, b, cP).

Lemma 3.5. Assume that m, n and £ are positive integers. There exist (p*+p+
1) index p* subgroups of Zym X Lyn X Lye containing the subgroup (aP,bP, cP) =
Ligm—1 X Lign—1 X Lpe—1 as follows.

(1) (a’Ie,bP, cP) = Zpm X Lpn-r X Zpe—1; i = 1,2,...,p— 1 and j =

0,1,....,p—1,

<ap,bkc cp> =7,
(ap, bp, C> = me—l X an—l X Zpe,
{(a'b,bP, P) = Ly X Lin—1 X Lipe—1; i =1,2,...,p—1,
) < m—1 X an X Zp171,
6 (a,bp,cp> = me X an—l X Zpé—l.

p

m—1 Xan XZp[—l; k:1,2,...,p71,

Proof. Let K be an index p? subgroup of Zym X Zpn X Ze containing the
subgroup (a?,b?,cP). Then we have a’b/ck € K for some integers i, j and k
such that 0 < ¢, 7,k < p—1and (4,5, k) # (0,0,0). We now divide the argument
into two cases depending on ¢ = 0 or not.

Case 1: 1 # 0. If j = k = 0, then K > <ap,bp,cp,ai> = (a,b?,cP), and
hence K = (a,b?,c?) = Zpm X Zyn-1 X Lpe—1. If j # 0 and k = 0, then
K > (aP,bP,cP,a'b). Since j € Zyn, there exists j/ € Zy. such that jj’ = 1
(mod p™). So K > <ap,bp,cp,aibj> = <ap,bp,cp, (aibj)j/ = aij/b>, and hence
K = <aij/b, bp,cp> S oy X Lpn-s X Lpeer. If j = 0 and k # 0, then K >
(aP, b, P a'cF). Since k € Zr,, there exists k' € Zy, such that kk' = 1
(mod p*). So K > <ap,bp,cp,aick> = <ap,bp,cp, (aick)k/ = aik/c>, and hence
K = <aik/c, bp,cp> 2 Zpm X Lnr X Le—r. 1f j # 0 and k # 0, then K >
(aP,bP,cP,a’bck). Since k € Zye, there exists k' € Zn, such that kk' = 1
(mod p*). So K > <ap,bp,cp,aibjck> = <ap,bp,cp, (aibjck)k/ = aik/bjk/c>, and
hence K = (@b ¢, 07, ¢ ) & Zym x Zyos X Zyeer.

Case 2.1 =0. If j =0, then k # 0 and K > <ap,bp,cp,ck> = (a?,b?, c),
and hence K = (aP,bP,c) = Zym-1 X Lyn—1 X Zye. If j # 0 and k = 0,
then K > (aP,b?,c?,b7) = (aP,b,cP), and hence K = (aP,b,cP) = Zpm-1 X
Zign X Lpe—1. If j # 0 and k # 0, then K > <ap,bp,cp,bjck>. Since k € Z;[,
there exists k' € Z;, such that kk' =1 (mod p). So K > (aP,bP,cP,bicr) =
<ap,bp,cp, (bjck)k/ - bjk/c>, and hence K = <ap,bjk/c, cp> 2 Zipm—1 X Lpn X
]

pifl .
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Lemma 3.6. If K is an index p* subgroup of Zym X Zpn X Zie and K contains
the subgroup (aP,bP, cP), then there exist (p + 1) index p subgroup of Zpm %
Lign X Lpe containing K.

Proof. Assume that K is a subgroup satisfying the assumption. Then K is
one of the (p? + p + 1) subgroups in Lemma 3.4. We only give the proof when
K = (a'bic,bP, cP) = Zym X Lyn-1 X Lye—r for each integers i and j such that
1<i<p-—1and 0 < j <p—1. The remaining can be proved in a similar
way. Set x := a'bc, y ;== b and z := c. Then Zym X Zyn X Zye = (x,y, z) and
K = (x,y?,2P). Let H be an index p subgroup of Zym X Zyn X Z,e containing
K. Since K = (z,y?,2P) is an index p? subgroup of Zym X Zyn X Zye, we have
yPkiFizpkati ¢ [ for some integers ki, ks, 4 and j such that 0 <4, j < p—1 and
(i,4) #(0,0). If i =0, then 1 < j < p—1and H > (z,yP, 2P, 27) = (x,y?, z),
and hence H = (z,yP, z) = Zym X Lyn—1 X ZLye. Assume now that i # 0. Then
0<j<p—1and H > <z,yp,zp,yizi>. If j =0, then H > <z,yp,zp,yi> =
(z,y,2P), and hence H = (x,y,2") = Zypn X Lpn X Lpe-1. If j # 0, then there

exists j' € Z,, such that jj" = 1 (mod p%), and so H > <x,yp,zp,yij/z> =
<x,yij/z,zp>. Hence we have H = <x,ykz,z1’> X Zpm X Lpn X Lpe-1, k =
1,2, ... p—1. 0
Lemma 3.7. (1) If m > n > £, then
(8) bt = bm-1ne+Pbmn—1.0—bm-10-1,) +P*bmnt—1 — by—1,n0-1)
—P*(bmn—1,0-1 — bm-1n-1,0-1) + 1.

(2) If m=mn and n > ¢, then

(9 bmme= 14+ D)bmm—1,0 — Pbm—1,m-1,
+ P*bime—1 — P*(1+ P)bmm—1,0-1 + P*bimn—1,m-1,0-1 + L.

(3) If m > n and n = ¢, then

(10) bmnn = bm—1nn + P14+ D) (bmnn-1—bm—1nn-1)
— P bmn—1n-1 — bm—1mn-1.n-1) + L.

(4) If m=n =1, then

A1) bmmm = L+ +2)bmmm—1 = P(L+ P+ P*)bmm—1,m-1
+ b tm—1.m—1 + 1.

Proof. We only give the proof of Eq. (8). The remaining can be proved by a
similar way.
By Lemma 3.4 we have

T(me X an X Zpé) = S(<a, b, Cp> = me X an X Zpé—l)
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U S{a’b, b, ¢) = Zym X Lypn-1 X Lt )

U S(<alb, bJC, Cp> = me X an X ZPZ—l)

1<i,j<p-1

UJS(aP,b,¢) 2 Zymr X Zyn x L)
U S(a’e,b,¢?) = Zym x Zipn X Zpe-1)
OS((a,bP,@ & Lipm X Lin—1 X Lye)
U S(a,b'e, ) = Zym X Zpn X Zips-1).

Using the inclusion-exclusion principle and Lemmas 3.5 and 3.6 we have
bm,n,é -1

= p2bm,n,€—1 +pbm,n—1,é + b1 n, b

+1 +1
- |:p2 <p )bm n—1,4—1 +p< >bm 1,nl—1 + <p )bml,n1,€:|
2 2
+1 +1 +1
+[p2(p ) m,n—1,40— 1+p< )bm 1,n,4— 1+(p3 )bm—l,n—1,€
+p+1
[(p A R |
+ 1 p+1 +1
p b mn 1,4— 1+p bm 1,n,l— 1+ P bm—l,n—l,é
4 4
+p+1
+ [ p f ) ( )] m— 1,n—1,€—1:|

+1 +
ok (—1)PT2 {p2 (i N 1>bm7n_1,e_1 +p(£ n 1) bm—1m,0—1

p+1 p?+p+1 ) <p+ 1)} ]
+ bm— n— + - + + 1 bm— n— —
(p+ 1) 1,n—1, [( pil (p°+p+1) bl 1n—1,6-1

2 2
+p+1 +p+1
+ (_1)p+3 (p D 52 )bm—17n_175_1 + (_1)p+4 (p D f?) )bm—l,n—l,é—l

2
2 +p+1
o (1) (22 Mo 1)“"‘1’"‘1’“'

Thus we have
bm,n,@ = bmfl,n,l + pbm,nfl,l + prm,n,Efl
— Pbm—1m-1.4— P°bm-1mt-1 — P bmm—10-1+FDbm—1n-10-1+1.
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We prove Eq. (1) by double induction on n and ¢. In the following lemma
we show that Eq. (1) holds for ¢ = 1.

Lemma 3.8.

(12) b =(m+n+2)+(m+n)p+ Z 2(m 4 n +1 —2k)p"*t.
k=1

Proof. We prove Eq. (12) by induction on n. Assume first that n = 1. Note
that

b1 = bm-1,1,1 + (1 +D)(bm,1,0 — bm—1,1,0)
— P (bm,0,0 — bm-1,0,0) + 1 by Eq. (10)
=bm 11+ @+p)(p+1)—p>+1 by Lemma 3.3
=bm_111+2p° +p+ 1.
Thus we have
b1 =bi11+ (m—1)2p* +p+1).
Since
biin = (1+p+p°)biio —p(l+p+p*)bioo+p’booo+1 by Eq. (11)
=(1+p+p*)p+3)—pl+p+p*)2+p°+1 by Lemma 3.3
=4+ 2p+2p%,
we have
b1 =4+2p+2p> +(m—1)2p* +p+1)=m+3+ (m+ 1)p+ 2mp*.

Thus Eq. (12) holds for n = 1.

Assume now that Eq. (12) holds from 1 to n and consider the case for n+ 1.
By Eq. (8) with (m,n,£) = (m,n + 1,1) we have

bnnt11 = bm—1n41.1 + P0mnt — bm—1.m1) + P> Ommnt1.0 — bn—1.n41.0)

- pg(bm,n,o - bmfl,n,O) + 1.
Note that

bmnt = bm—1m1 = (M+n+2)+ (m+n)p+ Y (2m+2n+2 — 4k)p**!
k=1

— |(m+n+1)+(m+n—1)p+Y (2m+2n — 4k)p"+
k=1

n
k=1
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by induction hypothesis and
n+1

n

k k

bm,n—i—l,O - bm—l,n-{-l,O = E D, bm,n,O - bm—l,n,O = E p
k=0 k=0

by Lemma 3.3. Thus

n n+1 n
bm,n—i—l,l - bm—l,n-{-l,l =1 +p +p2 + QZPk+2 + Zpk+2 - Zpk+3
k=1 k=0 k=0

n
=1+p+2p°+2) p'?
k=1

which implies that

(13)  bmnt1n =bnginpra+ (m—n—1) |[1+p+2p>+2) p**
k=1

On the other hand, Eq. (9) with (m,£) = (n+ 1,1) gives us that
bn+1,n+1,1 = (1 +p)bn+1,n,1 _pbn,n,l +p2bn+1,n+1,O
= (0 + P)bnt1,m0 + oo+ 1.

Since

n

butim1 =2n+3+ 20+ Lp+ Y (4n+4 - 4k)p*H,
k=1

b1 =2n+2+2np+ Y (4n+2—4k)pt!

k=1
by induction hypothesis and
n+1 n
bn+1,n+1,0 - Z(Qn +3 - 2k)pka bn-l—l,n,O - Z(2n +2 - 2k)pka
k=0 k=0
bpmo = Z(2n +1—2k)p*
k=0

by Lemma 3.3, we have

bnt1int1,1 = (1 +p)

2 +3+2n+1)p+ Y (An+4— 4k)p’“+1]
k=1

—-p

2n+ 2+ 2np + 2(471 +2- 4k)pk+1]
k=1
n+1
+p? Z(Qn +3 — 2k)p”
k=0

659
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n

—(*+p")Y @n+2-2k)pF+p° ) (2n+1-2k)p" +1

k=0 k=0
n+1
=2n+4+ (2n+2)p+ 2(471 + 6 — 4k)pt T,
k=1

Hence, together with Eq. (13) we have

n+1
bmnt11=2n+4+ (2n+2)p+ Y (4n + 6 — 4k)p*H!
k=1

+(m—n—1)|1+p+2p°+2) pt?
k=1
n+1

=(m+n+3)+m+n+lp+ )Y (4n+6—4k)p"
k=1

+(2m—2n72)p2+2(m7n7I)Zp’”?

k=1
n+1
= (m+n+3)+(m+n+1)p+22(m+n+2—2k)pk+1.
k=1
Therefore, Eq. (12) holds for n + 1. O

Assume now that Eq. (1) holds from 1 to ¢ and consider the case for £+ 1.
Eq. (10) with (m,n) = (m, £+ 1) gives us that
b t+1,041 = bm—1,041,041 + (p2 + D) (bme+1.6 — bm—1.041,0)
— P (bmte — bm—1.00) + 1.
By induction hypothesis we know that

bim,e+1,6 = bim—1,041,¢
14
= Y t[(m+20=3t4+5)p" 2 + (m+20 -3t +3)p” ]
t=1
41

Y A1)+ 42— 2k)pH = "t [(m 420 — 3t + 4)p* 2
k=¢ t=1
l+1
H(m+20—3t+2)p” 1] =Y (0+ 1) (m+ 0+ 1 - 2k)pHt!
k=t

_ Zt[th_2+p2t_1] +(£+1)p2é+(£+1)p2€+1
t=1
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and

M~

bmee — bm—1,00 = t[(m+20—3t+ 4)p* % 4 (m + 20 — 3t + 2)p2t_1}

~
Il

Vi

+) (C+1)(m A+ L+ 1 - 2k)pht

ol
1
~

M-

t[(m+20—3t+3)p*" 2 + (m+ 20— 3t + 1)p* ]

~+~
~ |l
_

= U+ 1) (m+ £ —2k)p"Tt

I
~

t [p2t—2 +p2t—1} + ([ + 1)p2é-

[
7~

t=1

Thus we have

bm,eg1,641 — bm—1,041,041

= (P> +p)

L
Zt [p2t—2 +p2t—1] + (f + 1)p2é + ([ + 1)p2é+11

t=1

14
fp3 lzt [p2t72+p2t71] + (£+ l)pﬂ +1

t=1

J4
— Zt [p2t—1 +2p2t _p2t+2} +2(€+1)p2é+2+(£+1)p2€+1+1

~ o+
+ 1l
_ =

t [p2t72 +p2t71} 4 (6 4 2)p2€+2,

~
—_

which implies that

(14)  bme+1.041 = bet1,041,041
l+1
+ (m _/— 1) Zt [p2t72 +p2t71] + (ng 2)p26+2
t=1

On the other hand, Eq. (11) with m = £ + 1 gives us that

besto41.001 = (PP + D+ Dbosror1.0 — (0° + 0%+ p)bogiee + p*bess+ 1.

Since

¢
bei,e+1,6 = Zt (3¢ — 3t +6)p* ™2 + (3¢ — 3t + 4)p* ']
t=1
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{+1
+ 3 (C+1)(20+ 3 — 2k)p*Te,
k=¢

MN

beyiee= Y t[(30—3t+5)p* 2+ (3¢ — 3t + 3)p* ']
t=1
¢
+ ) (0 1) (20 + 2 — 2k)pFte
)
and
¢
bé,é,é = Z [(3€ 3t + 4) 2t—2 + (3g —3t+ 2)p2t—1]

~
Il

- 1

Y (0 1)(20+1 - 2k)ph e

B

=L

by induction hypothesis, we have

bl+1,e+1,e+1

=@ +p+1)
J4
X Y t[(BE=3t+6)p™ 2 + (3¢ - 3t + 4)p* ]
t=1
£+1
+3 @+ 1)20+3 - Qk)pW]
k=t
14
— (PP ) |36 -3t +5)pP 2 + (30— 3t + 3)p* Y]
t=1

£
+> e+ 1)( 2€+22k)pk+e]
k=¢

4
3 Zt 36 3t+4) 2t— 2+(3£f3t+2)p2t71}
t=1

4

+) 0+ 1) 20+ 1 — 2k | +1
k=~

J4
= Dt [-p* 2 2p* 4 (30— 3t + 5)p* T + (3¢ — 3t + 6)p* 7]

~+

1
+ 200+ D)p* 2 4 200+ 1)p* T + 30+ 1)p*' + 1



THE NUMBER OF SUBGROUPS OF A FINITE ABELIAN p-GROUP 663

+1
— Zt (3¢ — 3t + T)p* =2 + (3¢ — 3t + 5)p* 1] + (£ + 2)p**2.

t=1
Hence, together with Eq. (14) we have

44+1
bm,et1,641 = Zt [(36 —3t+7)p* 2+ (3¢ — 3t + 5)p2t—1} 0 2)p2£+2
=1
041
(m—=1) | D t[p*72 + p*71 + (0 + 2)p*+?
=1

+1
= > t[(m+20=3t+6)p™ %+ (m+20—3t+4)p* "]
t=1
+1
+ > (42 (m+ 42— 2k)pFT
k=t+1

Therefore, Eq. (1) holds for n = ¢+ 1.
Assume now that Eq. (1) holds from ¢ + 1 to n, and consider the case for
n+ 1. Eq. (8) with (m,n,£) = (m,n+ 1, + 1) gives us that

bnnt1.e41 = bm—1mn+1.041 + POmone+1 — Dm—1n,041)
+ P2 (mnt1.6 — bm-1n+1.6) — D> (bt — brn—1.n.0) + 1.
By induction hypothesis we know that
b nt41 — bm—1,n.0+41
{41

= Zt[(m+”+£*3t+5)p2t72+(m+n+£73t+3)p2t*1}
t=1

n 0+1
+ Z l+2)(m+n+1-— 2/{:)pk+€+1 — Zt [(m—l—n 4/ — 3t+4)p2t—2
k={+1 t=1

n

Hm+n+L=3t+2)p™ ] = D ((+2)(m+n - 2k)pFHH!

k=(+1
{+1 n
— t[th—2+p2t—1] + Z (£+2)pk+€+1’
t=1 k=0+1

bm,n-{-l,@ - bm—l,n-{-l,@

£
=Y t{m+n+-3t+5)p* %+ (m+n+L—3t+3)p* ]
t=1

n+1
+ (£+1)(m+n+272k)pk+672t[(m+n+€f3t+4)p2t’2
k=¢ P
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n+1
H(m ot nt €= 3t +2)p" ] =Y (C+ 1) (m+n 1 - 2kt
k=¢
¢ n+1
ST+ p T+ > (0 1ptt
t=1 k=¢
and
b

m,n,l T bm—l,n,é

=1

~+

n

+ (£+1)(m+n+172k)pk+eth[(m+n+€f3t+3)p2t_2

k=0 P
Hm+n4L=3t+1)p* ] = (L4 1)(m +n — 2k)p*H
k=¢
e n
— Zt [p2t—2+p2t—1] +Z(£+1)pk+2_

t=1

k=¢

Hence we have
b n+1,041 — bm—1,n+41,041

+1 n
=p [Zt P24+ Y (e 2)pk+4+1]
t=1

k=(+1

n+1
L+ Y (e 1)pk+é]
k=t

—p° [ t [th_Q +p2t—1} + Z([ +1)pktt
t=1

+1
k=¢
+1 nt1
= t [th—Q +p2t—1] + Z (g + 2)pk+€+1’
t=1 k=t+1

which implies that

(15) bm,n-l—l,é-‘,—l

= bn+1,n+1,2+1
l+1 n+1

+(m—n-1) Zt [pP*2+p* 1 + Z (€ + 2)ph+t+t
t=1 k=£+1



THE NUMBER OF SUBGROUPS OF A FINITE ABELIAN p-GROUP 665

On the other hand, by Eq. (9) with (m,¢) = (n+ 1, + 1) we have

bn+1,n+1,l+1 - (p + 1)bn+1,n,l+1 - pbn,n,lJrl + p2bn+1,n+1,l
— (0® + P )bns 1 + PPbpme + 1.
Since

l+1

bniinerr = Y t[(2n+L—3t+6)p™ 2+ (2n+ £ — 3t + 4)p* ']
t=1

+ 37 (0+2)@n +2 - 2k
k=(+1

+1
bomesr = 3 t[(2n+0—3t+5)p* 2+ (2n+ £ — 3t + 3)p* ]

t=1

+ Z (L+2)(2n+1— Qk)karéJrl,
k=(+1

M&

brt1,m+1,6 [(2n + £ =3t + 6)p™ 2 + (2n+ £ — 3t + 4)p°* ']
t=1
n+1
(0 +1)(2n + 3 — 2k)p™T,
k=t
4
bntine = Z [(2n + £ — 3t + 5)p* 2 + (2n + £ — 3t + 3)p* !
+ > (C+1)(2n +2 - 2k)p"H
k=t
and
4
bn,n,l - Z [(2TL 4+ ¢ — 3t —+ 4) 2t—2 + (27’L + ¢ — 3t + 2)p2t—1}

o~
Il

1
+) (04 1)(2n+ 1 - 2k)phH
k=t

by induction hypothesis, we have

brt1,n+1,041
0+1
= (p+1) | D t[(@n+0—3t+6)p" %+ (2n+ £ — 3t + )p* ]

t=1
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n 41
+ > (+2)@2n+2- 2k)pk+f+1] —p [Z t[(2n + £ — 3t + 5)p—2
k=0+1 =1

n

+@2n 4+ L= 3t+3)p" ] + > (0+2)(2n + 1 — 2k)pF !
k=+1

14
21D ot[@n+ =3t +6)p” 2 + (2n+ £ — 3t + 4)p> ]

t=1
n+1 Yy
k=t t=1

(27’L+£ 3t+3 2t— 1 —|—Z €+1 2n+2_2k)pk+€
k=¢

p3

L
S ot[@n+ L3t +4)p* %+ (2n+ L — 3t +2)p™ ]
t=1

(L+1)(2n+ 1 — 2k)pF**

M:

+1

7

~

+

_ o
1

]

t[2n+€—3t+6)p* >+ (2n+€—3t+5)p* " + p*]

o~
Il

+ —
M~

n

t I:p2t _p2t+2} + Z (6 + 2)(271 + 92 _ Qk)pk-‘ré-‘rl

t=1 k=0+1
n n+1
+ Z (£+2) k+é+2+2g+1 )(2n + 3 — 2k)pkTE+2
k=0+1 k=0
Z(E +1)(2n+2— 2k)pk+e+2 _ Z(g 4 l)p’””g 11
k=t k=t
r+1
=) t[@n+-=3t+T)p* *+ (2n+L—3t+5)p** "]
t=1
n+1
+ ) (C+2)(2n+3 - 2k)pHHHL
k=0+1

Hence, together with Eq. (15) we have

0+1
bm,nt1,041 = Zt [(2n+€—3t+T)p* % + (2n + £ — 3t + 5)p*" ']

t=1
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n+1
+ > ((+2)(2n+3 — 2k)phHH
k=0+1
41 n+1
+ (m —n— 1) Zt [p2t—2 +p2t—1} + Z (f + 2)pk+€+1
t=1 k=0+1
l+1
=) t[m+n+L-3t+6)p"" >+ (m+n+L—3t+4)p" "]
t=1
n+1
+ > (C+2)(m+n+2 - 2k)pHr
k=£+1

Therefore, Eq. (1) holds for n 4+ 1. Consequently, we have proved Theorem 2.1.

In general, for the group Zpk, X Zpry X -+« X Zyk,, where ky, ko, ..., ke are
positive integers, ¢ is a positive integer such that ¢ > 4 and p is a prime
number, it seems not easy to obtain an explicit formula for the total number
of subgroups with the method used in this paper.
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