DOI QR코드

DOI QR Code

증기추출법과 결합된 공기주입법을 이용한 비수용성액체 해양퇴적물의 TPHs, TCE, PCE 및 BTEX 정화

Degradation of TPHs, TCE, PCE, and BTEX Compounds for NAPLs Contaminated Marine Sediments Using In-Situ Air Sparging Combined with Vapor Extraction

  • 이준호 (한국외국어대학교 환경학과) ;
  • 한선향 (한국외국어대학교 환경학과) ;
  • 박갑성 (한국외국어대학교 환경학과)
  • Lee, Jun-Ho (Department of Environmental Science and Engineering, Hankuk University of Foreign Studies) ;
  • Han, Sun-Hyang (Department of Environmental Science and Engineering, Hankuk University of Foreign Studies) ;
  • Park, Kap-Song (Department of Environmental Science and Engineering, Hankuk University of Foreign Studies)
  • 투고 : 2013.05.18
  • 심사 : 2013.10.06
  • 발행 : 2013.10.28

초록

이 연구는 공기주입법(in-situ air sparging; IAS)이 결합된 증기추출법(vapor extraction; VE)을 이용한 실내 실험 연구로 비수용성액체 유기물(non-aqueous phase liquids; NAPLs)의 총유류계탄화수소(total petroleum hydrocarbons; TPHs), 트리클로에틸렌(trichloroethylene; TCE), 퍼클로로에틸렌(perchloroethylene; PCE), 벤젠(benzene), 톨루엔(toluene), 에틸벤젠(ethylbenzene) 및 크실렌(xylenes)을 제거하기 위한 목적으로 국내 만돌, 하전, 상암, 부산만내 해양 퇴적물들을 대상으로 실험 하였다. 만돌 퇴적물은 사질(sand; S) 특성(평균입도 1.789 ${\Phi}$), 하전은 모래실트(sandy Silt; sZ) 특성(평균입도 5.503 ${\Phi}$) 및 상암은 실트(Silt; Z) 특성(평균입도 5.835 ${\Phi}$)을 나타내었다. 그리고 부산지역 퇴적물은 점토(Clay; C) 특성(평균입도 8.528 ${\Phi}$)을 나타내었다. 48시간 동안 공기를 주입하지 않은 B1 (0 L/min) 컬럼에서 남아있는 TPHs는 만돌, 하전, 상암지역 및 부산지역 샘플퇴적물에서 각각 약 2,459, 6,712, 4,348, 14,279 ppm으로 분석 되었다. 그리고 만돌, 하전, 상암지역 및 부산지역 샘플퇴적물의 B2 (3 L/min)-B5 (5 L/min) 컬럼에서 TCE는 99.5-100.0% 제거되었으며, PCE는 93.2-100.0%까지 제거된 결과를 보였다. 입자크기에 따른 각 성분의 제거량과의 상관관계는 TCE, PCE, toluene, etylbenzene, xylene, BTEX에서 모두 0.90-0.99의 밀접한 상관계수를 보였다. 그러나 TPHs에서는 0.76, Benzene에서는 0.71의 낮은 상관계수를 보였다.

This study was carried out in order to determine the remediation of total petroleum hydrocarbons (TPHs), trichloroethylene (TCE), perchloroethylene (PCE), benzene, toluene, ethylbenzene and xylenes (BTEX) compounds for non-aqueous phase liquids (NAPLs) using in-situ air sparging (IAS) / vapor extraction (VE) with the marine sediments of Mandol, Hajeon, Sangam and Busan, South Korea. Surface sediment of Mandol area had sand characteristics (average particle size, 1.789 ${\Phi}$), and sandy silt characteristics (average particle size, 5.503 ${\Phi}$), respectively. Sangam surface sediment had silt characteristics (average particle size, 5.835 ${\Phi}$). Sediment characteristics before experiment in the Busan area showed clay characteristics (average particle size, 8.528 ${\Phi}$). TPHs level in the B1 column of Mandol, Hajeon, Sangam, and Busan sediments were 2,459, 6,712, 4,348, and 14,279 ppm. B2 (3 L/min) to B5 (5 L/min) columns reduced 99.5% to 100.0% of TCE and 93.2% to 100.0% of PCE. Removal rates of TCE, PCE, and BTEX are closely correlated (0.90-0.99) with particle sizes and organic carbon concentrations. However, TPHs (0.76) and benzene (0.71) showed the poorer but moderate correlations with the same parameters.

키워드

참고문헌

  1. Adams, J.A., Reddy K.R. and Tekola. L. (2011) Remediation of chlorinated solvent plumes using in-situ air sparging: A 2-D laboratory study. Int. J. Environ. Res. Public Health, v.8, p.2226-2239. https://doi.org/10.3390/ijerph8062226
  2. Albergaria, J.T., Alvim-Ferraz M.D.C.M. and Delerue- Matos. C. (2012) Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction. Journal of Environmental Management, v.104, p.195-201. https://doi.org/10.1016/j.jenvman.2012.03.033
  3. Al-maamari, R.S., Hirayama A.T., Shiga M., Sueyoshi M. and Al-Shuely O.A.E. (2011) Fluids' dynamics in transient air sparging of a heterogeneous unconfined aquifer. Environmental Earth Sci., v.63, p.1189-1198. https://doi.org/10.1007/s12665-010-0793-y
  4. Carter, M.R and Gregorich E.G. (2006) Soil Sampling and Methods of Analysis. 2nd (ed.), CRC Press, Canadian Society of Soil Science, p.101-130.
  5. Folk, R.L. (1968) Petrology of Sedimentary Rocks. The university of Texas Hemphill's draver M, university station Austin, Texas, 170p.
  6. Google map. (2013) http://maps.google.co.kr.
  7. Han, J.S. (2000) Underground Water Environment and Pollution. 2nd (ed.), Bakyeongsa, Seoul, 2p. (in Korea).
  8. Herbes, S.E., Southworth G.R. and Ghers C.W. (1976) Organic Contamination in Aqueous Coal Conversion Effluents: Environmental Consequences and Research Priorities (Technical report). University of Missouri, Columbia, p.20-24.
  9. Japan Society on Water Envionment. (2011) Administration of Water Environment in Japan, Academy Press, 184p. (in Korea).
  10. Jeong, C.J. (2008) Behavior and clean-up technique of spilled oil at sea and shoreline. J. Kor. Soc. Environ. Eng., v.30, p.136-145. (in Korea).
  11. Johnston, C.D., Rayne J.L. and Briegel D. (2002) Effectiveness of in-situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia. Journal of Contaminant Hydrology, v.59, p.87-111. https://doi.org/10.1016/S0169-7722(02)00077-3
  12. Jonn, W. (2003) How to clean a beach. Nature, v.422, p.464-466. https://doi.org/10.1038/422464a
  13. Kim, H.M. and Lee K.G. (2003) Numerical simulation and laboratory test analysis of air sparging for TCE remediation, The general meeting and the spring seminar. J. Soil & Groundwater Env., p.348-351. (in Korea).
  14. Kim, J.D., Kim Y.R., Hwang K.Y. and Lee. S.C. (2000) A study on recovery of gasoline-polluted soil site by the soil vapor extraction method. J. Soil & Groundwater Env., v.5, p.13-23. (in Korea).
  15. Kim, S.J. (2008) Herbei sprit oil spill accident. J. Kor. Soc. Environ. Eng., v.30, p.146-152. (in Korea).
  16. Krumbein, W.C. (1934) Size frequency distributions of sediments. Journal of Sedimentary Petrology, v.4, p.65-77.
  17. KS M ISO 16703. (2005) Content Measurement of Hydrocarbons in the Range of C10-C40 using Soil Quality-gas Chromatograph. (in Korea).
  18. Lee, J.H. and Park. K.S. (2007) Oil pollution degree on the Gurumpo beach, Taean, using SCAT evaluation technique. J. Environ. Sci. Eng., v.9, p.19-25. (in Korea).
  19. Lee, J.H., Cho B.C. and Park K.S. (2008) The recovery method of Uheundol north area, Taean, using the coastal pollution evaluation technology of Canada. J. Environ. Sci. Eng, v.10, p.24-32. (in Korea).
  20. Lundegard, P.D. and Labrecque D.J. (1995) Air spaging in a sandy aquifer (Florence, Oregon, U.S.A.): Actual and apparent radius of influence. Journal of Contaminant Hydrology, v.19, p.1-27. https://doi.org/10.1016/0169-7722(95)00010-S
  21. Mcmanus, J. (1988) Grain Size Determination and Interpretation. M. Tucker (Ed.), Techniques in Sedimentology, Blackwell, Oxford, p.63-85.
  22. Meegoda. J.N. and Hu. L. (2011) A review of centrifugal testing of gasoline contamination and remediation. Int. J. Environ.l Res. Public Health, v.8, p.3496-3513. https://doi.org/10.3390/ijerph8083496
  23. NOAA. (2002) Ocean Service Office of Response and Restoration. Shoreline assessment job aid, U.S. Departmnt of commerce, p.20-44.
  24. Oh, I.S., Jang S.W. and Lee S.J. (2002) Natural purification technology of BTEX-polluted soil and underground water, Collection of Essays. Industrial Technology Comprehensive Institute, v.24, p.135-154. (in Korea).
  25. Park, J.S., Nam G.W. and Hwang E.Y. (2000) The effect of air supply on removal of phenol compounds. J. Soil & Groundwater Env., v.5, p.3-12. (in Korea).
  26. Percy, R.J. (2008) Shoreline Clean-up Assessment Technology (SCAT). Polaris applied sciences, Inc., Environment Canada, p.5-20.
  27. Peterson, J.W., Murray K.S., Tulu Y.I. and Peuler B.D. (2001) Air-flow geometry in air sparging of finegrained sands. Hydrogeology Journal, v.9, p.168-176. https://doi.org/10.1007/s100400000104
  28. Peterson, J.W., DeBoer M.J. and Lake. K.L. (2000) A laboratory simulation of toluene cleanup by air sparging of water-saturated sands. Journal of Hazardous Materials, v.72, p.167-178. https://doi.org/10.1016/S0304-3894(99)00139-9
  29. Peterson, J.W., Lepczyk P.A. and Lake. K.L. (1999) Effect of sediment size on area of influence during groundwater remediation by air sparging: A laboratory approach. Environmental Geol., v.38, p.1-6. https://doi.org/10.1007/s002540050394
  30. Reddy, K.R. and Adams J.A. (1996) In-situ Air Sparging: A new approach for groundwater remediation. Geotech. News, v.14, p.27-32.
  31. Rivett, M.O., Wealthall G.P., Dearden R.A. and Mcalary T.A. (2011) Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. Journal of Contaminant Hydrology, v.132, p.130-156.
  32. Rockne, K.J. and Stuart E.S. (1998) Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. Environ. Sci. Technol., v.32, p.3962-3967. https://doi.org/10.1021/es980368k
  33. Umfleet, D.A., Sims R.C. and Pano A. (1984) Reclamation of PAH Contaminated Soils. ASCE Envir. Engrg, Specialty Conf., Los Angeles, Calif.
  34. US EPA. (1992) A Technology Assessment of Soil Vapor Extraction and Air Sparging. EPA/600/R-92/173, p.214-215.
  35. US EPA. (1996) Assessing UST Corrective Action Technologies: Diagnostic Evaluation of In-situ SVE-based System Performance. EPA/600/R-96/041, p.250-251.
  36. US EPA Method 8021B. (1996) Aromatic and Halogenated Volatiles by Gas Chromatography using Photoionization and/or Electrolytic Conductivity Detectors.
  37. US EPA Method 8260B. (1996) Volatile Organic Compounds by Gas Chromatography/mass Spectrometry (GC/MS).
  38. Wentworth, C.K. (1922) A scale of grade and class terms for clastic sediments. Journal of Geology, v.30, p.377-392. https://doi.org/10.1086/622910