DOI QR코드

DOI QR Code

고속도로 건설현장의 산성배수 발생개연성평가 및 피해저감대책: ○○고속도로건설현장

Assessment and Damage Reduction Strategy of Acid Rock Drainage in Highway Construction Site: ○○ Highway Construction Site

  • 투고 : 2013.08.02
  • 심사 : 2013.10.17
  • 발행 : 2013.10.28

초록

${\bigcirc}{\bigcirc}$고속도로 건설현장 ${\bigcirc}$공구에 분포하는 암석에 대하여 산성배수 발생개연성을 평가하고 피해 저감대책을 검토하였다. 고속도로건설구간의 지반은 이천리층에 해당하는 사암과 중성내지 산성 화산암으로 구성되어 있으며 이들은 주변의 화강암관입에 수반된 열수 용액에 의해 황화광물을 산점상으로 함유하고 있다. 황화광물의 함량이 높은 화산암과 사암은 산성배수 발생개연성이 높고 중금속(Zn, Pb, As)을 많이 함유한 산성배수가 주변지역으로 유출되어 환경오염을 유발할 개연성이 높은 것으로 나타났다. 건설공사과정중 산성배수가 발생될 개연성이 높은 구역에서 배출되는 배수는 중화 및 중금속 제거처리 후 배수가 이루어져야 하며, 절취면의 안정성 확보를 위하여 산성배수의 발생을 근원적으로 억제할 수 있는 코팅처리기술을 적용한 후 숏크리트, 앵커 등 사면보강공법이 적용되어야 할 것으로 판단된다. 화산암과 사암은 골재로서 활용이 어려우며 지반성토재로 사용할 경우 지하수와 우수의 접촉을 최소화할 수 있는 성토층의 구조를 갖춘 후 활용하여야 한다.

Assessment and damage reduction strategy of acidic rock drainage were conducted in a section of ${\bigcirc}{\bigcirc}$ highway construction site. The geology of the studied section consists of Icheonri sandstone and intermediate to acidic volcanic rocks. Sulfides occur as a disseminated type in sandstone and volcanics which were altered by the hydrothermal solution of granite intrusion. Volcanics and sandstone with a high content of sulfide were classified as a potentially acid rock drainage(ARD) forming rock. The drainage originated from those rocks may acidify and contaminate the surrounding area during the highway construction. Therefore, the drainage should be treated before it is discharged. A slope landslide hazard due to the ARD was also expected and the coating technology was recommended for the reduction of ARD generation as a preemptive measure before reinforcement work for enhancing slope stability such as shotcrete and anchor. According to the ARD risk analysis, those rocks should not be used as cement aggregate, but only to be used as a bank fill material of a filling-up system that allows minimal contact with rainfall and groundwater.

키워드

참고문헌

  1. Belzile, N., Maki, S., Chen, Y. and Goldsack, D. (1997) Inhibition of pyrite oxidation by surface treatment. The Science of the Total Environment, v.196, p.177-186. https://doi.org/10.1016/S0048-9697(96)05410-1
  2. Chen Y., Li, Y., Cai, M., Belzile, N. and Dang. Z. (2006) Preventing oxidation of iron sulfide minerals by polyethylene polyamines. Minerals Engineering, v.19, p.19-27. https://doi.org/10.1016/j.mineng.2005.04.007
  3. Evangelou, V.P. (2001) Pyrite microencapsulation technologies: principles and potential field application. Ecological Engineering, v.17, p.165-178. https://doi.org/10.1016/S0925-8574(00)00156-7
  4. Golez, N.V. and Kyuma, K. (1997) Influence of pyrite oxidation and soil acidification on some essential nutrient elements. Aquacultural Engineering, v.15, p.107-124.
  5. Hillwood, A.L., Horwitz, P., Appleyard, S., Barton, C. and Wajrak, M. (2006) Acid sulfate soil distribution and metals in groundwater: implications for human exposure through grown produce. Environ. Pollution., v.143, p.100-105. https://doi.org/10.1016/j.envpol.2005.11.014
  6. Jennings, S.R.. Dollhopf, D.J. and Inskeep, W.P. (2000) Acid production from sulfide minerals using hydrogen peroxide weathering. Applied Geochem., v.15, p.235-243. https://doi.org/10.1016/S0883-2927(99)00041-4
  7. Jennings, S.R. and Dollhopf, D.J. (1995) Acid-base account effectiveness for determination of mine waste potential acidity. J. of Hazardous Material, v.41, p.161-175. https://doi.org/10.1016/0304-3894(95)00003-D
  8. Jiang, C.L., Wang, X.H. and Parekh, B.K. (2000) Effect of sodium oleate on inhibiting pyrite oxidation. Int. J. Miner. Process, v.58, p.305-318. https://doi.org/10.1016/S0301-7516(99)00045-9
  9. Johnson, D.B. and Hallberg, K.B. (2005) Acid mine drainage remediation options: a review. Science of the Total Envirnment, v.338, p.3-14. https://doi.org/10.1016/j.scitotenv.2004.09.002
  10. Kalin, M., Wheeler, W.N. and Olaveson, M.M. (2006) Response of phytoplankton to ecological engineering remediation of a Canadian shield lake affected by acid mine drainage. Ecological Engineering, v.28, p.296-310. https://doi.org/10.1016/j.ecoleng.2006.08.010
  11. Kim, J.G. (2007) Acid drainage and damage reduction strategy in construction site: an introduction. Econ. Environ, Geol., v.50, p.651-660.
  12. Kirby, C.S., Thomas, H.M., Southam, G. and Donald, R. (1999) relative contributions of abiotic and biotic factors in Fe(II) oxidation in mine drainage. Applied Geochem., v.14, p.511-530. https://doi.org/10.1016/S0883-2927(98)00071-7
  13. Kock, D. and Schippers, A. (2006) Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage. Hydrometallurgy, v.83, p.167-175. https://doi.org/10.1016/j.hydromet.2006.03.022
  14. Koryak, M., Shapiro, M.A. and Sykora, J.L. (1972) Riffle zoobenthos in streams receiving acid mine drainage. Water Research, v.6, p.1239-1274. https://doi.org/10.1016/0043-1354(72)90024-3
  15. Lan, Y., Huang, X. and Deng, B. (2002) Suppression of pyrite oxidation by iron 8-hydroxyquinoline. Archives of Environmental Contamination and Technology, v.43, p.168-174. https://doi.org/10.1007/s00244-002-1178-3
  16. Lawrence, R.W. and Scheske, M. (1997a) A method to calculate the eutralization potential of mining wastes. Env. Geol., v.32, p.100-106. https://doi.org/10.1007/s002540050198
  17. Lawrence, R.W. and Wang, Y. (1997b) Determination of Neutralization Potential in the prediction of Acid Rock Drainage. Proc. 4th International Conference on Acid Rock Drainage, Vancouver, BC, p.449-464.
  18. Lawrence, R.W., Jaffe, S. and Broughton, L.M. (1988) In-House Development of the Net Acid Production Test Method, Coastech Research.
  19. Lee, G.H., Kim, J.G., Lee, J.S., Chon, C.M., Park, S.G., Kim, T.H., Ko, G.S. and Kim, T.K. (2005) Generation characteristics and prediction of acid rock drainage( ARD) of cut slope. Econ. Environ. Geol., v.38, p.91-99.
  20. Matlock, M.M., Howerton, B.S. and Atwood, D.A. (2003) Covalent coating of coal refuse to inhibit leaching. Advances in Environmental Research, v.7, p.495-501. https://doi.org/10.1016/S1093-0191(02)00019-9
  21. Muhrizal, S., Shamshuddin, J., Fauziah, I. and Husmi, M.A.H. (2006) Changes in iron-poor acid sulfate soil upon submergence. Geoderma, v.131, p.110-122. https://doi.org/10.1016/j.geoderma.2005.03.006
  22. National Institute of Agricultural Science and Technology( 2000) Taxonomical classification of Korean soils. NIAST, Suwon, Korea.
  23. Nordstrom, D.K. (1982) Aqueous pyrite oxidation and the subsequently formation of secondary minerals, In Hossner, L.R., J.A. Kittrick, and D.F. Fanning (eds), Acid sulphate weathering, SSSA, Madison, WI. p.37-56.
  24. Nyavor, K., Egiebor, N.O. and Fedrak, P.M. (1996) Suppression of microbial pyrite oxidation by fatty acid amine treatment. The Science of the Total Environment, v.182, p.75-83. https://doi.org/10.1016/0048-9697(95)05052-3
  25. Shamshuddin, J., Muhrizal, S., Fauziah, I. and Husni, M.H.A. (2004) Effects id adding irganic material an acid sulfate soil on the growth of cocoa (Theobroma cacao L.) seedlings. The Science of the Total Environment, v.323, p.33-45. https://doi.org/10.1016/j.scitotenv.2003.10.003
  26. Sobek, A.A., Rastogi, V. and Bendetti, D.A. (1990) Prevention of water pollution problems in minning: the bactericide technology. Mine Water and the Environment, v.9, p.133-148. https://doi.org/10.1007/BF02503688
  27. Son, C.M., Lee, S.M., Kim, Y.K., Kim, S.W. and Kim, H.S. (1978) Geological map of Dongrae and Weolnae sheets. Geological Survey of Korea. 27p.
  28. Stum, W. and Morgan, J.J. (1995) Aquatic chemistry: Chemical equilibria and rates in natural waters, 3th edition. John Wiley and Sons Inc., New York.
  29. Zhang, Y.L. and Evangelou, V.P. (1998) Formation of ferric hydroxide-silica coatings on pyrite and its oxidation behavior. Soil Science, v.163, p.53-62. https://doi.org/10.1097/00010694-199801000-00008