DOI QR코드

DOI QR Code

Skin Pigmentation Detection Using Projection Transformed Block Coefficient

투영 변환 블록 계수를 이용한 피부 색소 침착 검출

  • 류양 (부경대학교 IT융합응용공학과) ;
  • 이석환 (동명대학교 정보보호학과) ;
  • 권성근 (경일대학교 전자공학과) ;
  • 권기룡 (부경대학교 IT융합응용공학과)
  • Received : 2013.04.09
  • Accepted : 2013.08.19
  • Published : 2013.09.30

Abstract

This paper presents an approach for detecting and measuring human skin pigmentation. In the proposed scheme, we extract a skin area by a GMM-EM clustering based skin color model that is estimated from the statistical analysis of training images and remove tiny noises through the morphology processing. A skin area is decomposed into two components of hemoglobin and melanin by an independent component analysis (ICA) algorithm. Then, we calculate the intensities of hemoglobin and melanin by using the projection transformed block coefficient and determine the existence of skin pigmentation according to the global and local distribution of two intensities. Furthermore, we measure the area and density of the detected skin pigmentation. Experimental results verified that our scheme can both detect the skin pigmentation and measure the quantity of that and also our scheme takes less time because of the location histogram.

본 논문에서는 피부 색소 침착 영역을 검출하고 침착 정도를 측정하는 알고리즘을 제안한다. 제안한 알고리즘에서는 먼저 훈련 영상(training image)의 통계적 분석을 통해 피부 영역에 대한 GMM-EM 클러스터링 기반 컬러 모델을 구축하고 이를 통해 피부 영역을 추출한 후, 형태학적 처리(morphological processing)를 통해 피부 영역에 존재하는 잡음을 제거한다. 이후 ICA (independent component analysis) 알고리즘을 통해 피부 영역을 헤모글로빈 및 멜라닌 성분으로 분리하고, 각 성분에 대한 투영 변환 블록 계수에 의하여 색소 침착 영역 및 크기를 결정한다. 성능 평가를 위한 모의실험으로부터 제안한 색소 침착 검출 알고리즘은 피부 색소 침착 영역의 크기 및 침착 정도를 정확하게 검출할 수 있음을 확인하였다.

Keywords

References

  1. K.M. Clawson, P.J. Morrow, B.W. Scotney, D.J. Mckenna, and O.M. Dolan, "Computerised Skin Lesion Surface Analysis for Pigment Asymmetry Quantification," International Machine Vision and Image Processing Conference, pp. 75-82, 2007.
  2. V.K. Madasu and B.C. Lovell, "Blotch Detection in Pigmented Skin Kesions using Fuzzy Co-Clustering and Texture Segmentation," Digital Image Computing: Techniques and Applications, pp. 25-31, 2009.
  3. H. Zhou, J.M. Rehg, and M. Chen, "Exemplar- Based Segmentation of Pigmented Skin Lesions from Dermoscopy Images," IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 225-228, 2010.
  4. G. Sforza, G. Castellano, R.J. Stanley, W.V. Stoecker, and J. Hagerty, "Adaptive Segmentation of Gray Areas in Dermoscopy Images," IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA) , pp. 628-631, 2011.
  5. O. Sarrafzade, M.H.M. Baygi, and P. Ghassemi, "Skin Lesion Detection in Dermoscopy Images using Wavelet Transform and Morphology Operations," 17th Iranian Conference of Biomedical Engineering (ICBME) , pp. 1-4, 2010.
  6. L. Yang, S.K. Lee, S.G. Kwon, and K.R. Kwon, "Detection of Skin Pigmentation using Independent Component Analysis," Journal of Korea Multimedia Society, Vol. 16, No. 1, pp. 1-10, 2013. https://doi.org/10.9717/kmms.2013.16.1.001
  7. K. Aravind and V.G.B. Gladimir, "A Study on Skin Optics, School of Computer Science," Technical Report CS-2004-01, University of Waterloo, 2004.
  8. H. Nugroho, A.F.M. Hani, R. Jolivot, and F. Marzani, "Melanin Type and Concentration Determination using Inverse Model," National Postgraduate Conference (NPC) , pp. 1-7. 2011.
  9. J. Lu, J.H. Manton, E. Kazmierczak, and R. Sinclair, "Erythema Detection in Digital Skin Images," IEEE International Conference on Image Processing (ICIP) , pp. 2545-2548, 2010.
  10. R. Hassanpour, A. Shahbahrami, and S. Wong, "Adaptive Gaussian Mixture Model for Skin Color Segmentation," Proc. World Academy of Science, Engineering and Technology, Vol. 31, pp. 1-6, 2008.
  11. Z. Yu and H.S. Wong, "Fast Gaussian Mixture Clustering for Skin Detection," IEEE International Conference on Image Processing (ICIP) , Vol. 4, pp. 341-344, 2007.
  12. W.R. Tan, C.S. Chan, P. Yogarajah, and J. Condell, "A Fusion Approach for Efficient Human Skin Detection," IEEE Transactions on Industrial Informatics, Vol. 8, No. 1, pp. 138-147, 2012. https://doi.org/10.1109/TII.2011.2172451
  13. M. Shoyaib, M. Abdullah-Al-Wadud, O. Chae, and R. Byungyong, "Skin Detection using Statistics of Small Amount of Training Data," Electronics Letters, Vol. 48, No. 2, pp. 87-88, 2012. https://doi.org/10.1049/el.2011.2812
  14. L. Liu, N. Sang, S. Yang, and R. Huang, "Real-Time Skin Color Detection under Rapidly Changing Illumination Conditions," IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, pp. 1295-1302, 2011. https://doi.org/10.1109/TCE.2011.6018887
  15. C. Kim and G. Lee, "An Image Segmentation Method using Morphology Reconstruction and Non-Linear Diffusion," Journal of KISS : Software and Applications, Vol. 32, No. 6, pp. 523-531, 2005.
  16. Z.X. Lin and X.R. Sun, "Chinese People Face Natural Color Gamut Color Range and Color Typical Kind of Research," ACTA psychologica sinica, Vol. 29, No. 4, pp.337-343, 1997.
  17. N. Tsumura, H. Haneishi, and Y. Miyake, "Independent Component Analysis of Skin Color Image," Journal of Optical Society of America A, Vol. 16, No. 9, pp. 2169-2176, 1999.
  18. Y. Liu, K.R. Kwon, K.S. Moon, S.H. Lee, and S.G. Kwon, "Broken Traffic Sign Recognition Based on Local Histogram Matching," Computing, Communications and Applications Conference (ComComAp) , pp. 415-419, 2012.

Cited by

  1. Measurement of Blood Oxygen Saturation System and LavVIEW Program Using Broad-band Light Source vol.18, pp.2, 2015, https://doi.org/10.9717/kmms.2015.18.2.128
  2. Effective Pigmentation Detection using Component Image R of RGB Color Model vol.20, pp.2, 2013, https://doi.org/10.9728/dcs.2019.20.2.307
  3. Acne Detection Methods and Performance Analysis using Component Images of Various Color Spaces vol.22, pp.9, 2013, https://doi.org/10.9728/dcs.2021.22.9.1529