DOI QR코드

DOI QR Code

열차 증속에 따른 콘크리트 궤도 노반의 동적 응력 변화

Dynamic Change of Stresses in Subsoil under Concrete Slab Track Subjected to Increasing Train Speeds

  • 이태희 (경희대학교 사회기반시스템공학과) ;
  • 최찬용 (한국철도기술연구원) ;
  • ;
  • 정영훈 (경희대학교 사회기반시스템공학과)
  • 투고 : 2013.08.21
  • 심사 : 2013.10.04
  • 발행 : 2013.10.31

초록

보다 빠른 교통 수단에 대한 사회적 관심이 현재 운영 중인 KTX의 운행속도인 350km/h을 넘어서는 고속 열차의 운행을 요구하고 있다. 본 연구에서는 콘크리트 궤도 구조물에서 열차 속도 변화에 따른 노반 변위의 변화양상을 추적하고 비선형적인 노반 응력 변화를 살펴보기 위해 유한요소해석을 실시하였다. 궤도-차량 상호작용을 간단한 형태로 고려하기 위해 이동 하중의 질점 시스템을 개발하였다. 열차 하중의 이동 속도를 100km/h에서 700km/h까지 변화시켜 결과를 얻었다. 열차 속도 증가에 따라 레일과 노반 변위는 비선형적으로 증가하였으나 뚜렷한 임계 속도 효과는 나타나지 않았다. 낮은 열차 속도 대역에서는 열차 속도보다 노반에서 에너지를 전달하는 탄성파 속도가 빠르다. 하지만 400km/h 이상의 열차 속도 대역에서는 열차 속도와 에너지 전달 속도가 거의 일치하였다. 열차 속도 증가에 따라 노반 응력 이력이 크게 변하며 경로 의존적인 토질 재료에서 상당한 크기의 소성 변형률이 예상된다.

Societal interest on a faster transportation demands an increase of the train speed exceeding current operation speed of 350 km/h. To trace the pattern of variations in displacements and subsoil stresses in the concrete slab track system, finite element simulations were conducted. For a simple track-vehicle modeling, a mass-point system representing the moving train load was developed. Dynamic responses with various train speeds from 100 to 700 km/h were investigated. As train speeds increase the displacement at rail and subsoil increases nonlinearly, whereas significant dynamic amplification at the critical velocity has not been found. At low train speed, the velocity of elastic wave carrying elastic energy is faster than the train speed. At high train speed exceeding 400 km/h, however, the train speed is approximately identical to the elastic wave velocity. Nonlinearity in the stress history in subsoil is amplified with increasing train speeds, which may cause significant plastic strains in path-dependent subsoil materials.

키워드

참고문헌

  1. ABAQUS (2005), Simulia, Inc.
  2. Connolly, D., Forde, M. C., Giannopoulos and Woodward, P. K. (2012), "The effect of high speed rail embankments on vibration levels in the near and far field", Proc. of the 1st Annual Conference of Rail Research UK Association, London, UK.
  3. Esveld, C. (2001), Modern Railway Track, MRT-Production, The Netherlands.
  4. Frohling, R. D., Scheffel, H. and Ebersöhn, W. (1996), "The vertical dynamic response of a rail vehicle caused by track stiffness variations along the track", Int. J. of Vehicle Mechanics and Mobility, Vol. 25(Supplement), pp.175-187. https://doi.org/10.1080/00423119608969194
  5. Fryba, L. (1972), Vibration of solids and structures under moving loads, Noordhoff Pub.
  6. Heelis, M., Collop, A., Dawson, A., Chapman, D., and Krylov, V. (2000), "The 'Bow-wave' effect in soft subgrade beneath high speed rail lines", Performance confirmation of constructed geotechnical facilities, ASCE, pp.338-349.
  7. Jung, Y.-H., Hong, J.-H., and Cho, C.-Y. (2011), "Dynamic Responses in Roadbed of Concrete Track System subjected to Increasing Train Speed", Proc. of 2011 Autumn Conference of the Korean Society for Railway, Jeju, pp.853-860 (in Korean).
  8. Karoumi, R. (1998), Response of cable-stayed and suspension bridges to moving vehicles: Analysis methods and practical modeling techniques, Ph.D. Thesis, Royal Institute of Technology.
  9. Krylov, V. (1995), "Generation of ground vibrations by superfast trains", Applied Acoustics, Vol.44, pp.149-164. https://doi.org/10.1016/0003-682X(95)91370-I
  10. Lee, I.-W. (2013), "Dynamic Response for Critical Velocity Effect Depending on Supporting Stiffness of High-Speed Railway Trackbed", Journal of Korean Geotechnical Society, Vol.29, No.1, pp.5-12 (in Korean). https://doi.org/10.7843/kgs.2013.29.1.5
  11. Lee, J.-G. (2011), Study on Design Standards of Track Systems for the High-speed Railway at 400 km/h, Land Transport and Maritime R&D report, 10PRTD-B056522-01 (in Korean).
  12. Lysmer, J. M. and Kuhlemeyer, R. L. (1969), "Finite dynamic model for infinite media", Journal of the Engineering Mechanics Division, ASCE, Vol.95, No.EM4, pp.859-877.
  13. Madshus, C. and Kaynia, A. M. (2000), "High-speed railway lines on soft ground: dynamic behaviour at critical train speed", Journal of Sound and Vibration, Vol.231, No.3, pp.689-701. https://doi.org/10.1006/jsvi.1999.2647
  14. Nguyen, K., Goilcolea, J. M., and Galbadon, F. (2011), "Dynamic effect of high speed railway traffic loads on the ballast track settlement", Proc. of the Congress on Numerical Methods in Engineering 2011, Coimbra, Portugal.
  15. Prakash, S. (1981), Soil Dynamics, McGraw-Hill, New York.
  16. Saleeb, A. F. and Kumar, A. (2011), "Automated finite element analysis of complex dynamics of primary system traversed by oscillatory subsystem", Int. J. for Computational Methods in Engineering Science and Mechanics, Vol.12, No.4, pp.184-202. https://doi.org/10.1080/15502287.2011.580830
  17. Timoshenko, S. P. (1927), "Methods of analysis of statical and dynamical stresses in rails", Proc. of the 2nd Int. Congress of App. Mech., Zurich, Switzerland, pp. 407-420.
  18. Wiberg, J. (2009), Railway bridge response to passing trains: Measurements and FE model updating, Phd. Thesis, Royal Institute of Technology.