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PRICING OF QUANTO OPTION UNDER THE HULL AND

WHITE STOCHASTIC VOLATILITY MODEL

Jiho Park, Youngrok Lee, and Jaesung Lee

Abstract. We use a power series expansion method to get an analytic
approximation value for the quanto option price under the Hull and White
stochastic volatility model, which turns out to be accurate enough by
comparing with the simulation prices using Monte Carlo method.

1. Introduction

A quanto is a type of financial derivative whose pay-out currency differs from
the natural denomination of its underlying financial variable. Its main purpose
is to provide exposure to a foreign asset without taking the corresponding
exchange rate risk. A quanto option is a foreign currency stock option whose
payoff is converted into a domestic currency at maturity at a predetermined
foreign exchange rate. The profit of quanto option is worked out a particular
currency, but the pay-out of the quanto option is made by cash settlement of
fixed exchange rate for another currency.

Stochastic volatility models are frequently used in pricing various kinds of
European options. The most famous and popular stochastic volatility models
include the Hull and White [6], the Stein and Stein [7], the Heston [5] ones.
Their main purpose is to resolve a shortcoming that the Black-Scholes’ constant
volatility model which cannot explain long-observed features of the implied
volatility surface such as volatility smiles and skews. For that reason, in valuing
a quanto option it is natural to consider a stochastic volatility model.

Despite its importance, very little research has been done on pricing a quanto
option using a stochastic volatility model primarily due to the sophisticated
stochastic process for underlying assets and volatilities as well as the difficulty
of finding analytic form of a quanto option price.

To mention some of the related previous work, Ball and Roma [4] examined
alternative methods for pricing options when the underlying security volatility
is stochastic.
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Alós [1] used Malliavin Calculus to construct option pricing approximation
formulas under the Hull and White stochastic volatility model. Antonelli and
Scarlatti [2] developed the methods of Alós to find a new approach for solv-
ing the pricing equations of European call options under stochastic volatility
models by expressing the price in terms of a power series of the correlation
parameter between the processes driving the dynamics of the price and of the
volatility.

And then more recently, Antonelli, Ramponi and Scarlatti [3] adapted the
methods of expanding and approximating the theoretical evaluation formula
with respect to correlation parameters by Antonelli and Scarlatti [2] to find a
new and analytic method valuating exchange options with random volatilities,
which gave a strong motivation to our research.

This paper, we use the methods used in [1], [2] and [3] to find a series ex-
pansion formula to approximate the quanto option value with Hull and White
stochastic volatility model. The methods used in [1] and [2] find series expan-
sions of general option and exchange option with stochastic volatility models.
We derived a series expansion pricing formula of quanto option using Hull and
White stochastic volatility model with non-zero correlation. Then, we show
that this is a good approximation by comparing our results with Monte Carlo
simulation method.

We introduce some preliminary materials on Hull and White stochastic
volatility model in Section 2. Then, in Section 3, we find an approximate
value of the quanto option price by way of a PDE and a correlation expansion
method. Theorem 3.3 is the main result of the paper. In Section 4, we show
that simulation results using Monte Carlo method are close to our analytic
approximation in both zero correlation and non-zero correlation cases.

2. Preliminaries

2.1. Hull and White stochastic volatility model

Assume that St is a stock price,
√
ut is a volatility of the stock price and Bt

and Zt are standard Brownian motions. In risk-neutral world, using the Hull
and White stochastic volatility model, we have

(1) dSt = rStdt+
√
utStdBt, dut = µutdt+ ξutdZt,

where r is a riskless interest rate and µ and ξ are constants. Put σt =
√
ut and

applying Itô formula gives

dσt =
∂σt

∂ut
dut +

1

2

∂2σt

∂u2t
(dut)

2

=
1

2

(

µ− 1

4
ξ2
)

σtdt+
1

2
ξσtdZt.

We may rewrite the equation (1) as

(2) dSt = rStdt+ σtStdBt, dσt = µ̃σtdt+ ξ̃σtdZt.
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2.2. Quanto option with stochastic volatility

Let [0, T ] be a time interval, and let (Ω,F ,P) be a complete probability

space on which standard Brownian motions Wt, Zt, Bt and B̃t are defined.
Applying the modified Hull and White stochastic volatility model (2) to stock
and foreign exchange rate dynamics. Let St be a stock price in foreign currency
and Ft be a foreign exchange rate which is an amount of domestic currency
value per one foreign currency value. For some constants µS , µF , η1, η2, ξ1,
ξ2, we can obtain the following equations.

dSt = µSStdt+ vtStdWt, dvt = η1vtdt+ ξ1vtdBt,(3)

dFt = µFFtdt+ σtFtdZt, dσt = η2σtdt+ ξ2σtdB̃t.(4)

Here, for some constant correlations ρ, ν and β, the followings hold

Zt = ρWt +
√

1− ρ2W̄t, Bt = νWt +
√

1− ν2W̃t,

B̃t = βρWt + β
√

1− ρ2W̄t +
√

1− β2Ŵt,

where Wt, W̄t, W̃t, Ŵt are mutually independent standard Brownian motions.
And the payoff of the quanto option at maturity time T is

Payoff = F0 max [ST −K, 0] ,(5)

where F0 is a predetermined foreign exchange rate, ST is a foreign stock price
at maturity T and K is a strike price in foreign currency.

2.3. Qunato adjusted stock price dynamics

In risk-neutral world, the foreign exchange dynamics for domestic currency
with stochastic volatility σt has a form as follows

dFt = (rd − rf )Ftdt+ σtFtdZt,

where, rd is a riskless domestic interest rate and rf is a riskless foreign interest
rate. In real world, let vt be a volatility then by Itô lemma

d(StFt) = StFt(µS + µF + ρvtσt)dt+ StFt(vtdWt + σtdZt).

From the above equation, in risk-neutral world for domestic currency

(6) d(StFt) = rdStFtdt+ StFt(vtdWt + σtdZt).

On the other hand, in domestic currency

(7) d

(

1

Ft

)

=
(

rf − rd + σ2
t

) 1

Ft
dt− σt

Ft
dZt.

In risk-neutral world, using equations (6) and (7), we can find stock price
dynamics in domestic currency as follows

dSt = d

(

StFt ·
1

Ft

)

= StFtd

(

1

Ft

)

+
1

Ft
d(StFt) + d(StFt)d

(

1

Ft

)
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= (rf − ρvtσt)Stdt+ vtStdWt.(8)

2.4. Preliminary lemmas

The well-known Duhamel’s principle and the classical Feynman Kaĉ formula
play important roles in the paper. Using the Feynman Kaĉ formula, we get
the main PDE. After transforming inhomogeneous equations to the integral of
homogeneous equations by Duhamel’s principal, we can apply the Feynman Kaĉ
formula again to the homogeneous equations to get the integral of expectation of
random variables. Now, we introduce the Duhamel’s principle and the Feynman
Kaĉ formula.

Lemma 2.1 (Duhamel’s principle). Consider a inhomogeneous equation for a

function

c : [0, T ]×Rn → R

with a terminal value problem






∂

∂t
c(t, y) + Lc(t, y) = f(t, y)

c(T, y) = 0,

where L is a linear differential operator. The solution of this equation is

c(t, y) = −
∫ T

t

p(t, y; s)ds,

where p(t, y; s) is a solution of the following homogeneous equation with termi-

nal condition






∂

∂t
p(t, y; s) + Lp(t, y; s) = 0 for t < s,

p(s, y; s) = f(s, y) for t = s.

Lemma 2.2 (Feynman Kaĉ formula I). Suppose that f has a continuous de-

rivative of order 2 and q has a continuous derivative of order 1 on Rn. Assume

that q is lower bounded. Put

c(t, y) = E
[

e−
∫

T

t
q(Ys)dsf(YT )

]

,

where Yt is the n-dimensional Itô diffusion of the following form

dYt = b(Yt)dt+ σ(Yt)dBt, dBi
tdB

j
t = ρijdt.(9)

Then

∂c

∂t
+Ac = qc; t > 0, y ∈ Rn,(10)

c(T, y) = f(y); y ∈ Rn,(11)

where

Ac =
∑

i

bi
∂c

∂yi
+

1

2

∑

i,j

σiσjρij
∂2c

∂yi∂yj
.
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The following lemma is the converse version of Lemma 2.2.

Lemma 2.3 (Feynman Kaĉ formula II). Suppose that f has a continuous

derivative of order 2 and q has a continuous derivative of order 1 on Rn.

Assume that c(t, y) is bounded on [0, T ]×Rn, q is lower bounded and equations

(10) and (11) hold then the solution can be written as an expectation

c(t, y) = E
[

e−
∫

T

t
q(Ys)dsf(YT )

]

,

where Yt is the n-dimensional Itô diffusion of the form (9).

3. Quanto option value by correlation expansion

3.1. PDE for option price

Next we find a PDE for quanto option price c(t, x, v, σ, ρ, β, ν) in foreign
currency with terminal condition. In general, when we value a quanto option
price in domestic currency associated with the payoff equation (5), after cal-
culating the option price in foreign currency, we multiply the predetermined
foreign exchange rate F0 to the foreign currency option price. For easy calcu-
lating, the option price c(t, x, v, σ, ρ, β, ν) is just calculated in foreign currency
value. Or, we regard the predetermined foreign exchange rate as being fixed
by 1. Later, we will multiply the foreign exchange rate to the option price in
foreign currency in order to obtain the option price in domestic currency that
we want. We get the PDE by applying the Feynman Kaĉ formula directly.

Theorem 3.1. Let [0, T ] be a time interval. Under the model defined by (3) and
(4), the European quanto call option price c(t, x, v, σ, ρ, β, ν) with maturity T

and strike price K in foreign currency satisfies the following partial differential

equation.

(12)











































∂c

∂t
+

1

2

(

v2
∂2c

∂x2
+ ξ21v

2 ∂
2c

∂v2
+ ξ22σ

2 ∂
2c

∂σ2

)

+ νξ1v
2 ∂2c

∂x∂v
+ βρξ2vσ

∂2c

∂x∂σ
+ νβρξ1ξ2vσ

∂2c

∂v∂σ

+

(

rf − ρvσ − 1

2
v2
)

∂c

∂x
+ η1v

∂c

∂v
+ η2σ

∂c

∂σ
= rdc,

c (T, x, v, σ, ρ, β, ν) = max (ex −K, 0) .

Proof. We use the stock price dynamics (8) with the Hull and White stochastic
volatility model and put Xt = lnSt, we can find following SDEs

dXt =

(

rf − ρvtσt −
1

2
v2t

)

dt+ vtdWt,(13)

dvt = η1vtdt+ ξ1vtdBt,(14)

dσt = η2σtdt+ ξ2σtdB̃t.(15)
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The payoff of the option in foreign currency is

f (ST ) = max [ST −K, 0]

or
f
(

eXT
)

= max
[

eXT −K, 0
]

, K ∈ R.

In the absence of arbitrage opportunities, the option price c(t, x, v, σ, ρ, β, ν) at
initial time t is

c(t, x, v, σ, ρ, β, ν) = E
[

e−rd(T−t)f
(

eXT
)

]

= E
[

e−
∫

T

t
rdduf

(

eXT
)

]

.

Applying the Feynman Kaĉ formula (Lemma 2.2) to the above equation and
using equations (13)-(15), we can find following equations directly

∂c

∂t
+

(

rf − ρvσ − 1

2
v2
)

∂c

∂x
+ η1v

∂c

∂v
+ η2σ

∂c

∂σ

+
1

2

(

v2
∂2c

∂x2
+ ξ21v

2 ∂
2c

∂v2
+ ξ22σ

2 ∂
2c

∂σ2

)

+ νv2ξ1
∂2c

∂x∂v
+ βρξ2vσ

∂2c

∂x∂σ
+ νβρvξ1ξ2σ

∂2c

∂v∂σ
= rdc,

c (T, x, v, σ, ρ, β, ν) = f (ex) = max [ex −K, 0] . �

We want to calculate power series expansion formula of quanto option price
function c(t, x, v, σ, ρ, β, ν). From PDE (12) we can find the PDEs which are
derivatives for each correlations ρ, β, ν.

3.2. Taylor series expansion

Let [0, T ] be a finite time interval. For t, s ∈ [0, T ], t is initial time and less
than or equal to s. From (13), integral form of Xs is

Xs = x+ rf (s− t)−
∫ s

t

(

ρvuσu +
1

2
v2u

)

du+

∫ s

t

vudWu.

Let Fs be a filtration which is generated by the volatilities vu and σu (t ≤ u ≤ s)
then the distribution of Xs conditionally on Fs is, for a normal distribution N ,

Xs|Fs ∼ N

(

x+ rf (s− t)−
∫ s

t

ρvuσudu− 1

2
〈M〉s , 〈M〉s

)

,

where Ms is denoted by the martingale
∫ s

t vudWu and

〈M〉s =
∫ s

t

v2udu

is its quadratic variation.
A simple modification of the Black-Scholes formula gives explicitly the value

of a quanto call option. Since the underlying asset price St is lognormally
distributed conditionally on Ft. Let QBS be a Black-Scholes quanto option
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price formula in foreign currency. As we mentioned earlier, the option price
that we calculate is not for domestic currency but for foreign currency. And the
stock price dynamics for valuing option price is quanto adjusted. Therefore,
for the strike price K > 0, we have

QBS(t, x, v, σ) = E
[

e−rd(T−t) max(eXT −K, 0)
]

= ex+(rf−rd)(T−t)−
∫

T

t
ρvuσuduN (d1)−Ke−rd(T−t)N (d2) ,

where N(·) is the standard normal distribution function and

d1 =
x− lnK + rf (T − t)−

∫ T

t
ρvuσudu+ 1

2 〈M〉T
√

〈M〉T
,

d2 = d1 −
√

〈M〉T .

Moreover, if ρ = 0, then since 1
K e

x+rf (T−t)N ′(d1) = N ′(d2),

∂QBS

∂x
(t, x,Γ)

= ex+(rf−rd)(T−t)N (d1)

+ ex+(rf−rd)(T−t)N ′ (d1)
∂d1

∂x
−Ke(rf−rd)(T−t)N ′(d2)

∂d2

∂x

= ex+(rf−rd)(T−t)N (d1) .(16)

We may write

c0(t, x, v, σ) = c(t, x, v, σ, 0, 0, 0)

= E
[

e−rd(T−t) max
(

eXT −K, 0
)

]

= E
[

E
[

e−rd(T−t) max
(

eXT −K, 0
)

∣

∣

∣
FT

]]

= E
[

ex+(rf−rd)(T−t)N (d1)−Ke−rd(T−t)N (d2)
]

,

where

d1 =
x− lnK + rf (T − t) + 1

2 〈M〉T
√

〈M〉T
,

d2 = d1 −
√

〈M〉T .

On the other hand, the equation (12) can be separated by following differential
operators

Lc =
1

2

(

v2
∂2c

∂x2
+ ξ21v

2 ∂
2c

∂v2
+ ξ22σ

2 ∂
2c

∂σ2

)

+

(

rf − 1

2
v2
)

∂c

∂x

+ η1v
∂c

∂v
+ η2σ

∂c

∂σ
− rdc,
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Ac = vσ
∂c

∂x
, Bc = ξ1v

2 ∂2c

∂x∂v
,

A1c = ξ1ξ2vσ
∂2c

∂v∂σ
, A2c = ξ2vσ

∂2c

∂x∂σ
.

Then we can rewrite (12) in the following way

(17)







∂c

∂t
+ Lc− ρAc+ νBc+ νβρA1c+ βρA2c = 0,

c(T, x, v, σ, ρ, ν, β) = max (ex −K, 0) .

Consider the following first order Taylor series approximation

c(t, x, v, σ, ρ, β, ν) ≈ c(t, x, v, σ, 0, 0, 0) + ρ
∂c

∂ρ
(t, x, v, σ, 0, 0, 0)

+ ν
∂c

∂ν
(t, x, v, σ, 0, 0, 0) + β

∂c

∂β
(t, x, v, σ, 0, 0, 0).

(18)

Put

c0(t, x, v, σ) = c(t, x, v, σ, 0, 0, 0), c1(t, x, v, σ) =
∂c

∂ρ
(t, x, v, σ, 0, 0, 0),

φ1(t, x, v, σ) =
∂c

∂ν
(t, x, v, σ, 0, 0, 0), ψ1(t, x, v, σ) =

∂c

∂β
(t, x, v, σ, 0, 0, 0),

then we can rewrite approximation (18) as follows

c(t, x, v, σ, ρ, β, ν) ≈ c0(t, x, v, σ) + ρc1(t, x, v, σ)

+ νφ1(t, x, v, σ) + βψ1(t, x, v, σ).

By differentiating the equation (17) and for (ρ, ν, β) = (0, 0, 0), we can get the
following PDE problems for x ∈ R, y, z > 0 and t ∈ [0, T ]. Since the terminal
condition of ψ1(t, x, v, σ) is zero, the PDE for ψ1(t, x, v, σ) does not exist. Actu-
ally, the correlation between the foreign exchange rate and its volatility β does
not affect to the stock price dynamics. Thus we exclude the series expansion
for the correlation β. We just find the solutions for the following equations.







∂c0

∂t
+ Lc0(t, x, v, σ) = 0,

c0(T, x, v, σ) = max [ex −K, 0] ,
(19)







∂c1

∂t
+ Lc1(t, x, v, σ) = Ac0(t, x, v, σ),

c1(T, x, v, σ) = 0,
(20)







∂φ1

∂t
+ Lφ1(t, x, v, σ) = −Bc0(t, x, v, σ),

φ1(T, x, v, σ) = 0.
(21)

We can find the solution c0 directly from Black-Scholes option pricing for-
mula. To solve inhomogeneous equations (20) and (21) we use Duhamel’s
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principle which is a tool for finding solutions of inhomogeneous equation. Us-
ing Duhamel’s principle we can represent the inhomogeneous equation as the
integral of homogeneous equations.

Proposition 3.2. Let c(t, x, v, σ, ρ, β, ν) be a quanto option price at initial

time t. Then the first order Taylor series expansion is

c(t, x, v, σ, ρ, β, ν) ≈ c0(t, x, v, σ) + ρc1(t, x, v, σ) + νφ1(t, x, v, σ),(22)

where

c0(t, x, v, σ) = E
[

ex+(rf−rd)(T−t)N(d1)−Ke−rd(T−t)N(d2)
]

,

c1(t, x, v, σ) = −e−rd(T−t)

∫ T

t

E
[

vsσse
Xs+rf (T−s)N(d1)

]

ds,

φ1(t, x, v, σ) = −Kξ1e
−rd(T−t)d2N

′(d2)

〈M〉[t,T ]

∫ T

t

E

[

v2s

∫ T

s

vu
∂vu

∂v
du

]

ds.

Proof. We can find directly c0(t, x, v, σ) from c(t, x, v, σ, 0, 0, 0). We want to
find the solution of the equation (20),







∂c1

∂t
+ Lc1(t, x, v, σ) = Ac0(t, x, v, σ),

c1(T, x, v, σ) = 0.

Since the above equation is the inhomogeneous PDE, by the Duhamel’s prin-
ciple (Lemma 2.1), we know that

c1(t, x, v, σ) = −
∫ T

t

p1(t, x, v, σ; s)ds,

where t ∈ [0, s), x ∈ R, v, σ > 0 and p1(t, x, v, σ; s) is a solution of

(23)







∂p1

∂t
(t, x, v, σ; s) + Lp1(t, x, v, σ; s) = 0,

p1(s, x, v, σ; s) = Ac0(s, x, v, σ).
Using the Feynman Kaĉ formula, we can transform a PDE to an expectation
of random variables. Applying the Feynman Kaĉ formula (Lemma 2.3) to the
equation (23), we get the following expectation formula

(24) p1(t, x, v, σ; s) = E
[

e−rd(s−t)Ac0 (s,Xs, vs, σs)
]

.

The internal expectation is actually conditioned by general filtration up to time
s. From equation (16),

∂c0

∂x
(t, x, v, σ) =

∂

∂x
E

[

QBS

(

t, x+ rf (T − t),
√

〈M〉T
)]

= E
[

ex+(rf−rd)(T−t)N (d1)
]

,
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we can compute c1 as follows

c1(t, x, v, σ)

= −
∫ T

t

E
[

e−rd(s−t)Ac0 (s,Xs, vs, σs)
]

ds

= −
∫ T

t

E

[

e−rd(s−t)vsσs
∂c0

∂x
(s,Xs, vs, σs)

]

ds

= −
∫ T

t

E
[

e−rd(s−t)vsσsE
[

eXs+(rf−rd)(T−s)N(d1)
]]

ds

= −e−rd(T−t)

∫ T

t

E
[

vsσse
Xs+rf (T−s)N(d1)

]

ds.

Similarly applying the Duhamel’s principle to equation (21)

φ1(t, x, v, s) = −
∫ T

t

q1(t, x, v, σ; s)ds,

where t ∈ [0, s), x ∈ R, v, σ > 0 and q1(t, x, v, σ; s) is a solution of






∂q1

∂t
(t, x, v, σ; s) + Lq1(t, x, v, σ; s) = 0,

q1(s, x, v, σ; s) = −Bc0(s, x, v, σ).

Then by the Feynman-Kaĉ formula (Lemma 2.3)

q1(t, x, v, σ; s) = E
[

e−rd(s−t)(−Bc0)(s,Xs, vs, σs)
]

and

φ1(t, x, v, s) = −
∫ T

t

q1(t, x, v, σ; s)ds

=

∫ T

t

E
[

e−rd(s−t)Bc0(s,Xs, vs, σs)
]

ds

=

∫ T

t

E

[

e−rd(s−t)ξ1v
2
s

∂2c0

∂x∂v
(s,Xs, vs, σs)

]

ds,

we can calculate the partial derivative of c0(t, x, v, σ) for v as follows

∂

∂v
c0(t, x, v, σ)

= ex+(rf−rd)(T−t)N ′(d1)
∂d1

∂v
−Ke−rd(T−t)N ′(d2)

∂d2

∂v

= N ′(d2)Ke
−rd(T−t)

(

∂

∂v
d1 −

∂

∂v
d2

)

= Ke−rd(T−t)N ′(d2)
∂

∂v

√

〈M〉T .
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Here

∂

∂v

√

〈M〉T =
1

2
〈M〉−

1
2

T

∂

∂v
〈M〉T

=
1

2
√

〈M〉T
∂

∂v

∫ T

t

v2udu

=
1

√

〈M〉T

∫ T

t

vu
∂vu

∂v
du.

Thus

∂2

∂x∂v
QBS

(

t, x,

√

〈M〉T
)

=
∂

∂x

(

Ke−rd(T−t)N ′(d2)
∂

∂v

√

〈M〉T
)

= N ′′(d2)
∂d2

∂x
Ke−rd(T−t) ∂

∂v

√

〈M〉T

=
−d2N ′(d2)
√

〈M〉T
Ke−rd(T−t) ∂

∂v

√

〈M〉T

= Ke−rd(T−t)−d2N ′(d2)

〈M〉T

∫ T

t

vu
∂vu

∂v
du.

Therefore,

φ1(t, x, v, σ)

=

∫ T

t

e−rd(s−t)E

[

ξ1v
2
sE

[

∂2

∂x∂v
QBS

(

s,Xs,
√

〈M〉[s,T ]

)

]]

=

∫ T

t

e−rd(s−t)E

[

ξ1v
2
sE

[

Ke−rd(T−s)−d2N ′(d2)

〈M〉[s,T ]

∫ T

s

vu
∂vu

∂v
du

]]

ds

=

∫ T

t

Ke−rd(T−t)E

[

ξ1v
2
sE

[

−d2N ′(d2)

〈M〉[s,T ]

∫ T

s

vu
∂vu

∂v
du

]]

ds.

Let FT be a filtration generated by vu and σu (t ≤ u ≤ T ). Then
∫ T

t

Ke−rd(T−t)E

[

ξ1v
2
sE

[

−d2N ′(d2)

〈M〉[s,T ]

∫ T

s

vu
∂vu

∂v
du

]]

ds

= −
∫ T

t

Ke−rd(T−t)E

[

ξ1v
2
s

d2N
′(d2)

〈M〉[s,T ]

∫ T

s

vu
∂vu

∂v
du

]

ds

= −
∫ T

t

Ke−rd(T−t)E

[

ξ1v
2
s

〈M〉[s,T ]

∫ T

s

vu
∂vu

∂v
duE [d2N

′(d2)|FT ]

]

ds,

where

d2 = d2

(

s,Xs,
√

〈M〉[s,T ]

)

=
Xs − lnK + rf (T − s)− 1

2 〈M〉[s,T ]
√

〈M〉[s,T ]

.
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We already know that

Xs|FT ∼ N

(

x− lnK + rf (s− t)− 1

2
〈M〉[t,s] , 〈M〉[t,s]

)

.

Hence d2 is distributed as follow

d2|FT ∼ N

(

x− lnK + rf (T − t)− 1
2 〈M〉[t,T ]

〈M〉[s,T ]

,
〈M〉[t,s]
〈M〉[s,T ]

)

.

If z ∼ N(µ, σ), then

E[zN ′(z)] =
µ√

2π(1 + σ2)3/2
e
−

µ2

2(1+σ2) .(25)

Since

E
[

d2

(

s,Xs,
√

〈M〉[s,T ]

)∣

∣

∣
FT

]

= d2(t, x, v, σ)×
〈M〉[s,T ]

〈M〉[t,T ]

by using the formula (25)

E
[

d2

(

s,Xs,
√

〈M〉[s,T ]

)

N ′

(

d2

(

s,Xs,
√

〈M〉[s,T ]

))∣

∣

∣
FT

]

=
〈M〉[s,T ]

〈M〉[t,T ]

d2

(

t, x,
√

〈M〉[t,T ]

)

N ′(d2

(

t, x,
√

〈M〉[t,T ]

)

)

we can calculate φ1 as follow

φ1(t, x, v, σ)

= −
∫ T

t

Ke−rd(T−t)d2N
′(d2)

〈M〉[t,T ]

E

[

ξ1v
2
s

∫ T

s

vu
∂vu

∂v
du

]

ds

= −Kξ1e
−rd(T−t)d2N

′(d2)

〈M〉[t,T ]

∫ T

t

E

[

v2s

∫ T

s

vu
∂vu

∂v
du

]

ds.
�

Since 〈M〉T is a random variable sufficiently concentrated around its mean
in general, one may think of approximating it by its expectation. This idea
was first introduced by Alós [1]. The next theorem is the main result of the
paper.

Theorem 3.3. Replacing 〈M〉T by E [〈M〉T ] in Proposition 3.2, the approxi-

mate quanto option formula becomes

c(t, x, v, σ, ρ, β, ν) ≈ c̄0(t, x, v, σ) + ρc̄1(t, x, v, σ) + νφ̄1(t, x, v, σ),

where

c̄0(t, x, v, σ) = ex+(rf−rd)(T−t)N(d̄1)−Ke−rd(T−t)N(d̄2),

c̄1(t, x, v, σ) = −e
x+(rf−rd)(T−t)N(d̄1)vσ

η1 + η2 +
1
2 (ξ

2
1 + ξ22)

(

e(η1+η2+
1
2 (ξ

2
1+ξ22))(T−t) − 1

)

,
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φ̄1(t, x, v, σ) = −Ke
−rd(T−t)d̄2N

′(d̄2)ξ1v

2η1 + ξ21

(

e(2η1+ξ21)(T−t) − 1
)

.

Proof. If we replace 〈M〉T by E [〈M〉T ], then we rewrite d1 by d̄1. We have to

calculate E
[

eXs+rf (T−s)N
(

d1

(

s,Xs,
√

〈M〉[s,T ]

))]

in equation c1(t, x, v, σ),

but we take an expectation of random variable Xs instead of solving the ex-
pectation as follow

E
[

eXs+rf (T−s)
]

= ex+rf(T−t).

Otherwise we cannot figure out the expectation problem. Thus we rewrite c1
and φ1 like follows

c̄1(t, x, v, σ) = −ex+(rf−rd)(T−t)

∫ T

t

E [vsσs]N(d̄1(s))ds,(26)

φ̄1(t, x, v, σ) = −Kξ1e
−rd(T−t)d̄2(t)N

′(d̄2(t))
〈

M̄
〉

[t,T ]

∫ T

t

E

[

v2s

∫ T

s

vu
∂vu

∂v
du

]

ds,

(27)

where, for t ≤ u ≤ T

d̄i(u) = di

(

u,Xu,
√

〈

M̄
〉

[u,T ]

)

i = 1, 2,

〈

M̄
〉

[u,T ]
= E

[

〈M〉[u,T ]

]

.

In the equation (26), we have to calculate the integral of N(d̄1) but N(·) is an
integral form itself. It is difficult to handle this formula, so we can choose an
adjustment factor α which is approximate the integral of N(d̄1) such that

∫ T

t

E [vsσs]N(d̄1(s))ds = N(d̄1(α))

∫ T

t

E [vsσs] ds.

Therefore, for some α ≥ 0

c̄1(t, x, v, σ) = −ex+(rf−rd)(T−t)N(d̄1(α))

∫ T

t

E [vsσs] ds.

In the risk-netral world and the uncorrelated case (ν = 0 and β = 0) with
Xt = lnSt, we have

dXt =

(

rf − ρvtσt −
1

2
v2t

)

dt+ vtdWt,

dvt = η1vtdt+ ξ1vtdBt,

dσt = η2σtdt+ ξ2σtdB̃t.

Hence, the volatilities are

vu = ve(η1−
1
2 ξ

2
1)(u−t)+ξ1(Bu−Bt),

σu = σe(η2−
1
2 ξ

2
2)(u−t)+ξ2(B̃u−B̃t)
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and

E
[

v2u
]

= E
[

v2e2(η1−
1
2 ξ

2
1)(u−t)+2ξ1(Bu−Bt)

]

= v2e2(η1−
1
2 ξ

2
1)(u−t)E

[

e2ξ1(Bu−Bt)
]

= v2e2(η1−
1
2 ξ

2
1)(u−t)e2ξ

2
1(u−t)

= v2e(2η1+ξ21)(u−t).

This leads to the following approximations

E
[

〈M〉[s,T ]

]

= E

[

∫ T

s

v2udu

]

=

∫ T

s

E
[

v2u
]

du

=

∫ T

s

v2e(2η1+ξ21)(u−t)du

= v2
e(2η1+ξ21)(T−t) − e(2η1+ξ21)(s−t)

2η1 + ξ21
.

If we apply the above equation to (26) and (27) then we can find the followings

c̄0(t, x, v, σ) = ex+(rf−rd)(T−t)N(d̄1)−Ke−rd(T−t)N(d̄2),

c̄1(t, x, v, σ) = −e
x+(rf−rd)(T−t)N(d̄1)vσ

η1 + η2 +
1
2 (ξ

2
1 + ξ22)

(

e(η1+η2+
1
2 (ξ

2
1+ξ22))(T−t) − 1

)

,

φ̄1(t, x, v, σ) = −Ke
−rd(T−t)d̄2N

′(d̄2)ξ1v

2η1 + ξ21

(

e(2η1+ξ21)(T−t) − 1
)

,

where

E [vsσs] = E
[

vσe(η1+η2−
1
2 (ξ

2
1+ξ22))(s−t)+ξ1(Bs−Bt)+ξ2(B̃s−B̃t)

]

= vσe(η1+η2−
1
2 (ξ

2
1+ξ22))(s−t)e(ξ

2
1+ξ22)(s−t)

= vσe(η1+η2+
1
2 (ξ

2
1+ξ22))(s−t),

∫ T

t

E [vsσs] ds =

∫ T

t

vσe(η1+η2+
1
2 (ξ

2
1+ξ22))(s−t)ds

= vσ
e(η1+η2+

1
2 (ξ

2
1+ξ22))(T−t) − 1

η1 + η2 +
1
2 (ξ

2
1 + ξ22)

and

∂vu

∂v
= e(η1−

1
2 ξ

2
1)(u−t)+ξ1(Bu−Bt),
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E

[

∫ T

s

vu
∂vu

∂v
du

]

= E

[

∫ T

s

ve2(η1−
1
2 ξ

2
1)(u−t)+2ξ1(Bu−Bt)du

]

=

∫ T

s

ve2(η1−
1
2 ξ

2
1)(u−t)E

[

e2ξ1(Bu−Bt)
]

du

=

∫ T

s

ve(2η1+ξ21)(u−t)du

= v
e(2η1+ξ21)(T−t) − e(2η1+ξ21)(s−t)

2η1 + ξ21
.

�

4. Numerical examples

Now we can find the approximated value of the quanto option price by using
the formula in Theorem 3.3. Using the main theorem, we choose the half value
of the time to maturity as the adjustment factor α. We compare the result
between the approximation value and the Monte Carlo simulation value. We
suppose that there is a quanto European call option of S&P500 index with
strike 1,200 and maturity date 13-Jun-2011. The information of the quanto
option is showed in Table 1.

Table 1. Quanto option information sample

Information

Name Quanto option sample

Underlying S&P500

Issue Volume 100

Amount per point in [Currency] 50 [USD]

Currency / quote KRW / Unit

Option Type European Call

Strike Value 1,200

Exchange Rate 1,100 (KRW/USD)

Maturity Date 2011-06-13

The model parameters are set to Table 2. The data are viewed at 2010-10-
13. The number of the sample data which are used in making the constant
volatilities and correlations is 250 from the view date. The volatilities and
correlations are calculated by the moving average method which is the same as
computing the standard deviation of historical market data. We use the USD
riskless rate as 1 year USD LIBOR and the KRW riskless rate as 1 year KRW
treasury bond rate at the view date.
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Table 2. Market Data Set

Data set

View Date 2010-10-13

S&P500 1,169.77

FX Rate (KRW/USD) 1,127

Volatility of S&P500 18.58%

Volatility of FX Rate 11.83%

Correlation between S&P500 and FX Rate -0.2297

Correlation between S&P500 and its volatility -0.55

Volatility of volatility of S&P500 11.72%

Volatility of volatility of FX Rate 16.8%

USD LIBOR(1Y) 0.77%

KRW Treasury Rate(1Y) 2.91%

The Monte Carlo estimates of the price were obtained by simulating 250,000
paths with 1,000 time-grid points on the interval [0, T ]. From the Table 3 to
the Table 7, the upper value is from our approximation formula, the lower
value is from Monte Carlo simulation method and the right side of each entry
percent point is a ratio between the approximation value and the simulation
value. In the Table 3 that is the first example, we fix all the correlations zero
(ρ = ν = 0) and move the time to maturity and the strike value. In the Table
4, time to maturity is 1 and correlation ν is 0. We move the correlation ρ and
the strike price. In the Table 5, 6, and 7, we fix the correlation between stock
and stock volatility ν = −0.55 and move the correlation ρ and the strike price
K. The prices of our approximation method and the Monte Carlo method are
calculated in domestic currency. In our approximation method, we first cal-
culate the option price c(t, x, v, σ, ρ, β, ν) in foreign currency then we multiply
the predetermined exchange rate to the price.

Table 3. Monte Carlo estimations with zero correlations

T \K 1100 1150 1200

0.25
478,095,931

(0.1%)
300,060,155

(0.5%)
171,427,534

(0.4%)
478,511,402 301,560,208 172,055,249

0.5
563,712,483

(0.2%)
400,465,433

(0.7%)
272,467,837

(0.0%)
562,721,490 397,836,079 272,569,146

1
693,286,693

(0.3%)
543,019,112

(0.4%)
417,477,621

(1%)
691,414,566 540,906,951 413,576,358
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Table 4. T = 1 and correlation ν = 0

ρ \K 1100 1150 1200

-0.4
733,707,680

(0.3%)
576,592,257

(0.3%)
443,918,065

(0.6%)
731,661,695 574,916,009 446,471,872

-0.2
713,497,186

(0.6%)
559,805,685

(0.2%)
430,697,843

(0.8%)
709,296,252 560,643,025 427,309,852

0
693,286,692

(0.5%)
543,019,112

(0.0%)
417,477,621

(0.3%)
696,555,194 542,959,975 418,666,951

0.2
673,076,198

(0.3%)
526,232,539

(0.3%)
404,257,398

(0.3%)
671,322,203 527,710,228 402,994,168

0.4
652,865,704

(0.2%)
509,445,966

(0.1%)
391,037,176

(0.7%)
654,211,596 508,860,038 388,483,249

Table 5. T = 1 and correlation ν = −0.55

ρ \K 1100 1150 1200

-0.4
741,267,477

(0.8%)
577,758,979

(0.2%)
438,198,881

(0.8%)
735,422,927 576,855,830 441,735,145

-0.2
721,056,983

(1.3%)
560,972,406

(0.6%)
424,978,659

(0.4%)
711,396,749 557,444,046 426,850,549

0
700,846,489

(1.0%)
544,185,833

(0.6%)
411,758,436

(0.1%)
693,801,357 540,942,983 412,306,861

0.2
680,635,995

(0.4%)
527,399,260

(0.7%)
398,538,214

(0.8%)
678,278,286 523,628,976 401,668,459

0.4
660,425,501

(0.3%)
510,612,687

(0.1%)
385,317,992

(0.2%)
662,302,097 509,932,660 385,985,981

Table 6. T = 0.5 and correlation ν = −0.55

ρ \K 1100 1150 1200

-0.4
591,062,599

(1.0%)
418,916,637

(0.0%)
280,957,939

(0.4%)
585,208,735 418,990,946 282,192,769

-0.2
580,193,189

(0.7%)
410,382,665

(0.1%)
274,963,478

(0.4%)
575,986,769 409,915,669 276,180,713

0
569,323,779

(0.9%)
401,848,692

(0.5%)
268,969,017

(0.3%)
564,492,060 399,865,410 269,768,467

0.2
558,454,369

(0.2%)
393,314,720

(0.1%)
262,974,557

(0.6%)
557,417,509 392,798,704 264,546,984

0.4
547,584,959

(0.3%)
384,780,747

(0.1%)
256,980,096

(0.6%)
545,888,148 385,181,826 258,396,671
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Table 7. T = 0.25 and correlation ν = −0.55

ρ \K 1100 1150 1200

-0.4
493,683,947

(0.5%)
310,057,723

(0.3%)
174,428,313

(0.7%)
491,028,807 309,051,984 175,726,849

-0.2
487,756,160

(0.6%)
305,643,449

(0.6%)
171,803,006

(0.8%)
484,732,343 303,809,470 173,237,309

0
481,828,372

(0.6%)
301,229,174

(0.1%)
169,177,699

(0.2%)
479,168,812 300,851,576 168,923,701

0.2
475,900,585

(0.4%)
296,814,899

(0.3%)
166,552,393

(0.4%)
473,986,942 295,859,291 167,293,256

0.4
469,972,798

(0.3%)
292,400,624

(0.2%)
163,927,086

(0.0%)
471,260,262 292,879,602 163,996,976

From the result tables, the difference ratio between our series expansion
formula result and the Monte Carlo simulation result is less then 1.3%. This
results show that our series expansion formula value is very close to the expected
present value of the quanto option payoff. Monte Carlo simulation method is
common used in pricing or calculating financial product which is not known its
closed form formula. But this method is too much computation time needed
for obtaining accurate pricing value. In calculating the quanto option value
with the Hull and White stochastic volatility model, the correlation expansion
method is a nice alternative to the Monte Carlo simulation method.
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