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ON CONVERGENCE OF THE MODIFIED GAUSS-SEIDEL

ITERATIVE METHOD FOR H-MATRIX LINEAR SYSTEM

Shu-Xin Miao and Bing Zheng

Abstract. In 2009, Zheng and Miao [B. Zheng and S.-X. Miao, Two

new modified Gauss-Seidel methods for linear system with M-matrices,
J. Comput. Appl. Math. 233 (2009), 922–930] considered the modified
Gauss-Seidel method for solving M -matrix linear system with the pre-
conditioner Pmax. In this paper, we consider the modified Gauss-Seidel
method for solving the linear system with the generalized preconditioner
Pmax(α), and study its convergent properties when the coefficient ma-
trix is an H-matrix. Numerical experiments are performed with different
examples, and the numerical results verify our theoretical analysis.

1. Introduction

Consider the following linear system

(1.1) Ax = b,

where A = (ai,j) is an n × n nonsingular matrix, x and b are n-dimensional
vectors. Without loss of generality, throughout this paper, we assume that A
has the form A = I − L − U , where I is the identity matrix, −L and −U are
strictly lower-triangular and strictly upper-triangular parts of A, respectively.

If A has a splitting of the form A = M −N , where M is nonsingular, then
the splitting iterative method for solving (1.1) can be expressed as

(1.2) xi+1 = M−1Nxi +M−1b, i = 0, 1, 2, . . . .

It is well known that the iterative scheme (1.2) is convergent if and only if
ρ(M−1N) < 1, where ρ(M−1N) denotes the spectral radius of M−1N . The
smaller is ρ(M−1N), the faster is the convergence. For improving the con-
vergent rate of corresponding iterative method, preconditioning techniques are
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used [2]. Especially, we consider the following equivalent left preconditioned
linear system of (1.1)

(1.3) PAx = Pb,

where P , called the left preconditioner, is nonsingular. The corresponding
iterative method for solving (1.3) is given by

(1.4) xi+1 = M−1
P NPxi +M−1

P Pb, i = 0, 1, 2, . . . ,

based on the splitting PA = MP −NP , where MP is nonsingular. In particular,
if M = I − L and MP be the lower-triangular part of PA, then the iterative
scheme (1.2) is the Gauss-Seidel method and (1.4) is the modified Gauss-Seidel
(MGS) method.

Many left preconditioner P were proposed, see [6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 19] and references therein. In 2002, Kotakemori et al. [9] considered the
preconditioner PSmax

= I + Smax, where

(Smax)i,j =

{

−ai,ki
, i = 1, . . . , n− 1, j > i;

0, otherwise,

with ki = min{j | maxj |ai,j |, i < n}. Here and in the sequel, (·)i,j is used to
denote the i, j-element of the corresponding matrix. The preconditioner PSmax

is constructed only by the elements from the upper triangular part of A, the
preconditioning effect is not observed on the last row of matrix A. To provide
the preconditioning effect on the last row for the preconditioner PSmax

, Zheng
and Miao [19] presented the preconditioners

(1.5) Pmax = I + Smax +Rmax,

where

(Rmax)i,j =

{

−an,kn
, i = n, j = kn,

0, otherwise

with kn = min {j | |an,j| = max{|an,l|, l = 1, . . . , n− 1}}. It was shown in [19]
that the MGS method with the preconditioner Pmax is superior to the MGS
method with the preconditioner PSmax

and the classical Gauss-Seidel method
for solving the M -matrix linear system.

In this paper, we consider the generalized preconditioner

Pmax(α) = I + Smax(α) +Rmax(α),

where

(Smax(α))i,j =

{

−αiai,ki
, i = 1, . . . , n− 1, j > i,

0, otherwise,

and

(Rmax(α))i,j =

{

−αnan,kn
, i = n, j = kn,

0, otherwise

in which αi are positive real numbers for i = 1, . . . , n. When αi = 1 for
i = 1, 2, . . . , n, the preconditioner PR(α) reduces to the one considered in [19].
The basic purpose of the present paper is to prove the convergence of the MGS
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method with the preconditioner Pmax(α) for solving (1.1) in the case that the
coefficient matrix A is an H-matrix.

The remainder of the present paper is organized as follows. Next section is
the preliminaries. We study the convergence of the MGS method in Section 3.
In Section 4, numerical examples for different problems are given to confirm
our theoretical analysis.

2. Preliminaries

In this section, we give some of the notations, definitions and lemmas which
will be used in what follows.

A vector x = (x1, x2, . . . , xn)
T is called nonnegative (positive) and denoted

by x ≥ 0 (x > 0), if xi ≥ 0 (xi > 0) for all i. Similarly, a matrix A = (ai,j) is
called nonnegative (positive) and denoted by A ≥ 0 (A > 0), if ai,j ≥ 0 (ai,j >
0) for all i, j. The absolute value of a matrix A is denoted by |A| = (|ai,j |).
The comparison matrix of A is defined as 〈A〉 = (ãi,j), where ãi,j satisfies

ãi,j =

{

|ai,j |, i = j,
−|ai,j|, i 6= j.

Definition 2.1 ([1, 17]). A matrix A is called an M -matrix if A = sI − B,
B ≥ 0 and s > ρ(B).

Definition 2.2 ([1, 17]). A matrix A is an H-matrix if its comparison matrix
〈A〉 is an M -matrix.

Definition 2.3 ([4]). The splitting A = M − N is called an H-splitting if
〈M〉 − |N | is an M -matrix.

Lemma 2.1 ([4]). Let A = M −N be a splitting. If it is an H-splitting. Then

A and M are H-matrices and ρ(M−1N) ≤ ρ(〈M〉−1|N |) < 1.

Lemma 2.2 ([3]). Let A have nonpositive off-diagonal entries. Then a real

matrix A is an M -matrix if and only if there exists some vector u = (u1, u2, . . .,
un)

T > 0 such that Au > 0.

3. Convergence analysis

Assume that ai,ki
6= 0, consider the preconditioned matrix AP = Pmax(α)A,

then we have

AP = Pmax(α)A

= MP −NP

= [I −D − L− E +Rmax(α) −D′ − E′]

− [U − Smax(α) + F + Smax(α)U ],

where D, E and F are the diagonal, strictly lower triangular and strictly upper
triangular parts of Smax(α)L, while D′, E′ are the diagonal, strictly lower
triangular parts of Rmax(α)(L + U), respectively. And now MP and −NP are
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the lower-triangular and strictly upper triangular parts of Pmax(α)A, hence, if
MP is nonsingular, the MGS iterative matrix is TP = M−1

P NP .
Similar to Theorem 3.2 in [19], one can obtain the convergent theorem of the

MGS method with the preconditioner Pmax(α) for solving M -matrices linear
system. We state this as the following theorem without proof.

Theorem 3.1. Let A be a nonsingular M -matrix. Assume that αi ∈ [0, 1]
for i = 1, 2, . . . , n. Then AP = MP − NP is the convergent splitting, i.e.,

ρ(TP ) < 1.

From Theorem 3.1, we known that the MGS method with the precondi-
tioner Pmax(α) for solving M -matrix linear system (1.1) is convergent when
the parameters αi are located in the interval [0, 1] for i = 1, 2, . . . , n.

In what follows, the convergence of the MGS method with the preconditioner
Pmax(α) for solving H-matrix linear system will be studied. For this purpose,
we first give the following theorem.

Theorem 3.2. Let A be an n × n H-matrix with unit diagonal elements,

u = (u1, u2, . . . , un)
T be a positive vector such that 〈A〉u > 0. Assume that

ai,ki
6= 0, i = 1, 2, . . . , n. Then for i = 1, 2, . . . , n− 1

βi =
ui −

∑i−1

j=1
|ai,j |uj −

∑n

j=i+1,j 6=ki
|ai,j |uj + |ai,ki

|uki

|ai,ki
|
∑n

j=1
|aki,j|uj

and

βn =
un −

∑n−1

j=1,j 6=kn
|an,j|uj + |an,kn

|ukn

|an,kn
|
∑n

j=1
|akn,j|uj

are well defined and βi > 1 (i = 1, 2, . . . , n).

Proof. As A is an H-matrix, 〈A〉 is an M -matrix. From Lemma 2.2, we known
that there exists a positive vector u = (u1, u2, . . . , un)

T , such that 〈A〉u > 0.
It follows from the definition of 〈A〉 that

(3.1) ui −

n
∑

j=1,j 6=i

|ai,j |uj > 0 for i = 1, 2, . . . , n− 1

and

(3.2) un −

n−1
∑

j=1

|an,j|uj > 0.

For i = 1, 2, . . . , n− 1, one can get that

ui −
i−1
∑

j=1

|ai,j |uj −
n
∑

j=i+1,j 6=ki

|ai,j |uj + |ai,ki
|uki

− |ai,ki
|

n
∑

j=1

|aki,j |uj

= ui −
n
∑

j=1,j 6=i

|ai,j |uj + |ai,ki
|



uki
−

n
∑

j=1,j 6=ki

|aki,j |uj



 .
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From (3.1), we known that

ui −

n
∑

j=1,j 6=i

|ai,j |uj > 0 and uki
−

n
∑

j=1,j 6=ki

|aki,j |uj > 0,

therefore,

ui −

i−1
∑

j=1

|ai,j |uj −

n
∑

j=i+1,j 6=ki

|ai,j |uj + |ai,ki
|uki

− |ai,ki
|

n
∑

j=1

|aki,j |uj > 0,

which is equivalent to

ui −

i−1
∑

j=1

|ai,j |uj −

n
∑

j=i+1,j 6=ki

|ai,j |uj + |ai,ki
|uki

> |ai,ki
|

n
∑

j=1

|aki,j |uj

> 0.

Hence,

βi =
ui −

∑i−1

j=1
|ai,j |uj −

∑n

j=i+1,j 6=ki
|ai,j |uj + |ai,ki

|uki

|ai,ki
|
∑n

j=1
|aki,j|uj

are well defined and βi > 1 for i = 1, 2, . . . , n− 1.
Similarly, for i = n, we can deduce from (3.2) that

un −

n−1
∑

j=1,j 6=kn

|an,j |uj + |an,kn
|ukn

> |an,kn
|

n
∑

j=1

|akn,j |uj

> 0,

that is to say

βn =
un −

∑n−1

j=1,j 6=kn
|an,j|uj + |an,kn

|ukn

|an,kn
|
∑n

j=1
|akn,j|uj

is well defined and βn > 1. The proof is completed. �

Remark 3.1. It should be remark that βi (i = 1, 2, . . . , n) in Theorem 3.2
depends on the positive vector u. There are many such vectors u satisfying
u > 0, how to choose applicable u is very important for practical computation.
In general, we can let u = (1, 1, . . . , 1)T when A is the strictly diagonally
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dominantH-matrix, while when A is not strictly diagonally dominant, it follows
from [18] that the elements mi,j of 〈A〉−1 satisfies

n
∑

j=1

mi,j ≥ 1, i = 1, 2, . . . , n,

hence we can let ui =
∑n

j=1
mi,j for i = 1, 2, . . . , n and u = (u1, u2, . . . , un)

T .

However, finding out βi (i = 1, 2, . . . , n) which are independent of the vector u
is still an open problem and need further study.

Now we are in the position to establish the convergence of the MGS method
with the preconditioner Pmax(α) for solving H-matrix linear system.

Theorem 3.3. Let A be an H-matrix with unit diagonal elements, Pmax(α)A =
MP − NP with MP = I − D − L − E + Rmax(α) − D′ − E′ and NP = U −
Smax(α) + F + Smax(α)U . If for i = 1, 2, . . . , n, αiai,ki

aki,i 6= 1 and βi are

defined as in Theorem 3.2, then for 0 ≤ αi < βi, i = 1, 2, . . . , n, the splitting

Pmax(α)A = MP −NP is an H-splitting and ρ(TP ) < 1.

Proof. In order to prove that the splitting Pmax(α)A = MP − NP is an H-
splitting, we only need to show that 〈MP 〉 − |NP | is an M -matrix.

Let u = (u1, u2, . . . , un)
T be a given positive vector, [(〈MP 〉 − |NP |)u]i be

the ith element of the vector (〈MP 〉 − |NP |)u for i = 1, 2, . . . , n. Then for
i = 1, 2, . . . , n− 1, we known that

[(〈MP 〉 − |NP |)u]i = |1− αiai,ki
aki,i|ui −

n
∑

j=1,j 6=i

|ai,j − αiai,ki
aki,j|uj

≥ ui − αi|ai,ki
aki,i|ui −

i−1
∑

j=1

|ai,j |uj

− αi

i−1
∑

j=1

|ai,ki
aki,j |uj −

n
∑

j=i+1,j 6=ki

|ai,j |uj

− αi

n
∑

j=i+1,j 6=ki

|ai,ki
aki,j|uj − |1− αi||ai,ki

|uki
,(3.3)

and for i = n, it hold that

[(〈MP 〉 − |NP |)u]n = |1− αnan,kn
akn,n|un −

n−1
∑

j=1

|an,j − αnan,kn
akn,j|uj

≥ un − αn|an,kn
akn,n|un −

n−1
∑

j=1,j 6=kn

|an,j |uj

− αn

n−1
∑

j=1,j 6=kn

|an,kn
akn,j |uj − |1− αn||an,kn

|ukn
.(3.4)
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In what follows, for the choices of the parameters αi (i = 1, 2, . . . , n), we
consider two cases.

Case (I). αi ∈ [0, 1], i = 1, 2, . . . , n.
For i = 1, 2, . . . , n− 1, it follows from (3.3) that

[(〈MP 〉 − |NP |)u]i

≥ ui − αi|ai,ki
aki,i|ui −

i−1
∑

j=1

|ai,j |uj − αi

i−1
∑

j=1

|ai,ki
aki,j|uj

−

n
∑

j=i+1,j 6=ki

|ai,j |uj − αi

n
∑

j=i+1,j 6=ki

|ai,ki
aki,j |uj − (1− αi)|ai,ki

|uki

= ui −

n
∑

j=1,j 6=i

|ai,j |uj + αi|ai,ki
|uki

− αi|ai,ki
|

n
∑

j=1,j 6=ki

|aki,j |uj

=



ui −

n
∑

j=1,j 6=i

|ai,j |uj



+ αi|ai,ki
|



uki
−

n
∑

j=1,j 6=ki

|aki,j |uj



 ,

and for i = n, from (3.4) we have

[(〈MP 〉 − |NP |)u]n

≥ un − αn|an,kn
akn,n|un −

n−1
∑

j=1,j 6=kn

|an,j|uj

− αn

n−1
∑

j=1,j 6=kn

|an,kn
akn,j|uj − (1 − αn)|an,kn

|ukn

=



un −
n−1
∑

j=1

|an,j|uj



+ αn|an,kn
|



ukn
−

n−1
∑

j=1,j 6=kn

|akn,j |uj



 .

As ui−
∑n

j=1,j 6=i |ai,j |uj > 0 and uki
−
∑n

j=1,j 6=ki
|aki,j |uj > 0 for i = 1, 2, . . . , n,

we get that

(3.5) [(〈MP 〉 − |NP |)u]i > 0 for i = 1, 2, . . . , n.

Case (II). αi ∈ (1, βi), i = 1, 2, . . . , n.
When i = 1, 2, . . . , n− 1, from (3.3) and the definition of βi, we have

[(〈MP 〉 − |NP |)u]i ≥ ui − αi|ai,ki
aki,i|ui −

i−1
∑

j=1

|ai,j |uj

− αi

i−1
∑

j=1

|ai,ki
aki,j |uj −

n
∑

j=i+1,j 6=ki

|ai,j |uj
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− αi

n
∑

j=i+1,j 6=ki

|ai,ki
aki,j|uj − (αi − 1)|ai,ki

|uki

= ui −

i−1
∑

j=1

|ai,j |uj −

n
∑

j=i+1,j 6=ki

|ai,j |uj

+ |ai,ki
|uki

− αi|ai,ki
|

n
∑

j=1

|aki,j |uj

> 0.(3.6)

For i = n, if follows from (3.4) and the definition of βn that

[(〈MP 〉 − |NP |)u]n ≥ un − αn|an,kn
akn,n|un −

n−1
∑

j=1,j 6=kn

|an,j |uj

− αn

n−1
∑

j=1,j 6=kn

|an,kn
akn,j |uj − (αn − 1)|an,kn

|ukn

= un −
n−1
∑

j=1,j 6=kn

|an,j |uj + |an,kn
|ukn

− αn|an,kn
|

n
∑

j=1

|akn,j |uj

> 0.(3.7)

Therefore, from (3.5), (3.6) and (3.7), we have

(〈Mα〉 − |Nα|)u > 0 for 0 ≤ αi < βi (i = 1, 2, . . . , n).

By Lemma 2.2, we know that 〈Mα〉 − |Nα| is an M -matrix for 0 ≤ αi <
βi (i = 1, 2, . . . , n). From Definition 2.3, Aα = Mα − Nα is an H-splitting for
0 ≤ αi < βi (i = 1, 2, . . . , n). Hence, Lemma 2.2 yields ρ(M−1

α Nα) < 1 for
0 ≤ αi < βi (i = 1, 2, . . . , n). �

Remark 3.2. From Theorem 3.3, we can see that the MGS method is convergent
for all 0 ≤ αi < βi, i = 1, 2, . . . , n− 1 with the preconditioner PSmax

(α) when
the coefficient matrix A of (1.1) is an H-matrix. The convergence condition
when A is an H-matrix is much weaker than the ones, studied in [19] and
Theorem 3.1 in this paper, when A is an M -matrix.

Remark 3.3. Comparing Theorem 3.3 with Theorem 3.1, we note that there is
the larger range of the parameters αi when A is an H-matrices. In general, the
chosen range of αi is wider than that of the parameter ω of the SOR iterative
method [17].
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4. Examples

In this section, we use some examples to verify our theoretical analysis in
Section 3.

It is well known that the Toeplitz matrices arise in many applications, such
as solutions to differential and integral equations, spline functions, and prob-
lems and methods in physics, mathematics, statistics, and signal processing [5].
Therefore, the first example, we consider the case that the coefficient matrix
of (1.1) is a Toeplitz matrix.

Example 4.1. Let the coefficient matrix of (1.1) be a symmetric Toeplitz
matrix as

A =















a b c · · · b
b a b · · · c
c b a · · · b
...

...
...

. . .
...

b c b · · · a















n×n

,

where a = 1, b = 1/n and c = 1/(n− 2). It is clear that A is an H-matrix, and
not strictly diagonally dominant. From Remark 3.1, we can let ui =

∑n

j=1
mi,j

for i = 1, 2, . . . , n and u = (u1, u2, . . . , un)
T , here mi,j is the (i, j) element of

〈A〉−1, then according Theorem 2 to compute βi. After some calculations, we
find that βi < n− 2 for i = 1, 2, . . . , n.

The spectral radii of MGS iteration matrix with various values of αi for
i = 1, 2, . . . , n are listed in Table 1.

Table 1. The spectral radii of MGS iteration matrix for Ex-
ample 4.1

n = 90 n = 180 n = 200 n = 300
αi = 0.8 0.2095 0.2129 0.2132 0.2142
αi = 1.0 0.2078 0.2121 0.2125 0.2137
αi = 1.3 0.2052 0.2108 0.2113 0.2129
αi = 2.0 0.1993 0.2079 0.2087 0.2112
αi = 55 0.6175 0.3035 0.2740 0.1985

Example 4.2. When the central difference scheme on a uniform grid with
N × N interior nodes (N2 = n) is applied to the discretization of the two-
dimension convection-diffusion equation

−△u+
∂u

∂x
+ 2

∂u

∂y
= f

in the unit squire Ω with Dirichlet boundary conditions, we obtain a system of
linear equations (1.1) with the coefficient matrix

A = I ⊗ C +D ⊗ I,
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where ⊗ denotes the Kronecker product,

C = tridiag(−
2 + h

8
, 1, −

2− h

8
) and D = tridiag(−

1 + h

4
, 0, −

1− h

8
)

are N ×N tridiagonal matrices, and the step size is h = 1/N .
It is clear that the matrix A is an M -matrix, see for example [19], so it is an

H-matrix. Moreover, A is strictly diagonally dominant, from Remark 3.1, we
can let u = (1, 1, . . . , 1)T , and then according Theorem 2 to compute βi. After
some calculations, we see that βi < 4 for i = 1, . . . , n. We list the spectral radii
of MGS iteration matrix with various values of αi for i = 1, 2, . . . , n in Table 2.

Table 2. The spectral radii of MGS iteration matrix for Ex-
ample 4.2

n = 16 n = 81 n = 100 n = 256
αi = 0.8 0.5017 0.8507 0.8754 0.9464
αi = 1.0 0.4579 0.8350 0.8621 0.9405
αi = 1.5 0.2980 0.7836 0.8190 0.9217
αi = 2.0 0.2844 0.7006 0.7505 0.8928
αi = 3.8 0.8304 0.9152 0.9158 0.9261

From Tables 1 and 2, it can be seen that the MGS method is convergent for
Examples 4.1 and 4.2 when α1 ∈ [0, βi), i.e., ρ(TP ) < 1. This confirm the result
of Theorem 3.3 in Section 3. In particular, if we take αi = 1 for i = 1, . . . , n−1,
then the preconditioner PSmax

(α) reduces to the one considered in [19].
We also note that the MGS method with the preconditioner PSmax

(α) for
H-matrices linear system is convergent even if αi > 2. This confirms that the
chosen range of αi is wider than that of the parameter ω of the SOR iterative
method [17].
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