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A NOTE ON THE LORENTZIAN LIMIT CURVE THEOREM

Jong-Gug Yun

Abstract. In this paper, we extend the familiar limit curve theorem in
[2] to a situation where each causal curve lies in a sequence of compact
interpolating spacetimes converging to a limit Lorentz space in the sense
of Lorentzian Gromov-Hausdorff distance.

1. Introduction

The familiar limit curve theorem in [2] guarantees the existence of limit
causal curves for a sequence {γn} of causal curves having points of accumulation
in a given spacetime.

In general, the compactness of the space of causal curves between two points
of a spacetime plays an essential role in the study of global structure of the
spacetime. In fact, many of the singularity theorems in general relativity and a
recent proof of positive energy theorem as well as Lorentzian splitting theorem
depend on the compactness of the space of causal curves in the spacetime ([6]).

In 1996, R. Sorkin and E. Woolgar [7] introduced the concept of K-causal
relation and extended the standard compactness theorem of causal curves to a
situation where the differentiability of metric of the spacetime is only C0. From
the viewpoint of modern physics, there are strong evidences that our spacetime
is not smooth but just a structure which looks like a smooth manifold on a scale
larger than the Plank length. So lower degree of smoothness of spacetimes is
of importance in the study of modern model of spacetime including theories of
quantum gravity.

Another approach to spacetimes with lower degree of smoothness was in-
troduced by J. Noldus using Lorentzian Gromov-Hausdorff theory ([1], [3], [4],
[5]).

In [3], a Lorentzian notion of Gromov-Hausdorff distance dGH (GH) and the
generalized Gromov-Hausdorff uniformity (GGH) were first defined and some
properties of limit space M of GGH-Cauchy sequences of compact, interpolat-
ing spacetimes {Mα} were shown and proved.
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In general, the limit spaceM needs not to be a smooth manifold, but belongs
to a class of Lorentz spaces. Here, in connection with the compactness of
causal curves, a natural question which arises is whether we could guarantee
the existence of limit causal curve γ in the limit spaceM of a sequence of causal
curves {γα}, where each γα lies in Mα rather than a single spacetime M and
Mα converges to M in the sense of Lorentzian Gromov-Hausdorff distance.

The main purpose of this paper is to answer this question in an affirmative
way and investigate the type of the convergence of γα to γ.

In the next section, we introduce some definitions and notions which are
necessary to state our main result.

2. Preliminaries and main results

We begin with the notion of Gromov-Hausdorff distance dGH (GH) between
two globally hyperbolic compact interpolating (i.e., with spacelike future and
past boundaries) spacetimes.

Definition 2.1. We call (M, g) and (N, h) ǫ-close if and only if there exist
mappings ψ :M → N, ξ : N →M , not necessarily continuous, such that

|dh(ψ(p1), ψ(p2))− dg(p1, p2)| ≤ ǫ ∀p1, p2 ∈M,

|dg(ξ(q1), ξ(q2))− dh(q1, q2)| ≤ ǫ ∀q1, q2 ∈ N,

where dh and dg are the Lorentz distance defined from g and h, respectively.
The Gromov-Hausdorff distance dGH((M, g), (N, h)) is defined as the infi-

mum over all ǫ such that (M, g) and (N, h) are ǫ-close.

In [1], the author constructed a very useful metric DM for any compact
interpolating spacetime (M, g) such that every dg isometry is a DM isometry.

Definition 2.2. Let (M, g) be a compact interpolating spacetime. The strong
metric DM is defined as

DM (p, q) = max
r∈M

|dg(p, r) + dg(r, p)− dg(q, r) − dg(r, q)|.

It was shown in [3] that the manifold, strong, and Alexandrov topology
coincide for any compact interpolating spacetime.

We also introduce the following definition ofGeneralized Lorentzian Gromov-

Hausdorff uniformity (GGH):

Definition 2.3. We call (M, g) and (N, h) (ǫ-δ) close if and only if there exist
mappings ψ :M → N, ξ : N →M such that

|dh(ψ(p1), ψ(p2))− dg(p1, p2)| ≤ ǫ ∀p1, p2 ∈M,

|dg(ξ(q1), ξ(q2))− dh(q1, q2)| ≤ ǫ ∀q1, q2 ∈ N

and DM (p, ξ ◦ ψ(p)) ≤ δ, DN (q, ψ ◦ ξ(q)) ≤ δ for all p ∈M and q ∈ N .
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As stated before, the limit space M of GH (or GGH)-Cauchy sequence of
compact interpolating spacetime need not to be a smooth manifold, but it
belongs to a class of Lorentz space which can be defined as follows:

Definition 2.4. Let M be a set. Lorentz distance is a function d :M ×M →
R

+ ∪ {∞} which satisfies for all x, y, z ∈M :
• d(x, x) = 0,
• d(x, y) > 0 implies d(y, x) = 0 (antisymmetry),
• if d(x, y)d(y, z) > 0, then d(x, z) ≤ d(x, y) + d(y, z) (reverse triangle in-

equality).

Definition 2.5. A Lorentz space is a pair (M,d), where M is a set and d is
a Lorentz distance on M such that (M,DM ) is a compact metric space with
DM the strong metric induced by d.

We also note that any limit Lorentz space (M,d) of a GH-Cauchy sequence
(Mi, di) of Lorentz spaces can be regarded as the limit space of GGH-Cauchy
sequence (Mi, di) as well (For details, see Theorem 26 in [4]).

In general, it is not easy problem how to define a natural causal relation on
the limit Lorentz space and it is difficult especially on the degenerate regions

of the limit space, which does not contain any set of the form I+(p)∩ I−(q) for
p ≪ q. Here, we used the standard notation ≪ for the chronological relation
between p and q and I+(p) = {r ∈ M | p ≪ r} for the chronological future of
p and I−(p) = {r ∈ M | r ≪ p} for the chronological past of p. In fact, as
was pointed in [4], it is not entirely clear whether defining a causal relation on
such regions is physically meaningful or not, and what degenerate region would
mean from the physical point of view.

To avoid these difficulties, a controlling mechanism was suggested in [4] to
prohibit the limit space from containing degenerate regions as follows.

Let α : R+ → R
+ be a strictly increasing, continuous function such that

α(x) ≤ x for all x ∈ R
+. We say that (M, g) has the C+

α or C−
α property if and

only if for any ǫ with 0 < ǫ ≤ tdiam(M)(:= maxp,q∈Md(p, q)) we have that,
respectively:

• α(ǫ) ≤ minp∈M↓ǫ [max
r∈BDM

(p,ǫ)dg(p, r)] ≤ ǫ,

• α(ǫ) ≤ minp∈M↑ǫ [max
r∈BDM

(p,ǫ)dg(r, p)] ≤ ǫ, where M↓ǫ = {p ∈ M | p /∈

(∂FM)ǫ} and M↑ǫ = {p ∈M | p /∈ (∂PM)ǫ}.
Here, we denoted the future (resp. past) boundary of M by ∂FM (resp.

∂PM) and used the notation Aǫ = {q ∈ M | ∃a ∈ A such that DM (a, q) < ǫ}
for any A ⊂M .

It was shown in [4] that the GGH-limit space (M,d) of a sequence {(Mi, gi)}
satisfying the C+

α property has the C+
α property too (and likewise for C−

α ). That
is, C+

α , C−
α properties are stable under GGH-convergence (See Theorem 21 in

[4]).
Furthermore, if the limit Lorentz space (M,d) satisfies the C+

α , C−
α property,

then a suitable causal structure on (M,d), which was first defined by R. Sorkin
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and E. Woolgar can be introduced. We call it K-causal relation on M and
introduce the definition of it here.

Recall first that the chronological relation ≪ on M can be defined by

p≪ q if and only if d(p, q) > 0.

Then K-causal relation ≺ on M is defined using the topology of M as follows.

Definition 2.6. We say p ≺ q if and only if q ∈ K+(p), where K+(p) is the
smallest, topologically closed, partial order inM×M containing I+(p) (K−(p)
can be defined dually).

Remark 2.1. We note that the requirement of “partial order” in Definition 2.6
contains additional conditions (i.e., reflexive and antisymmetric) when com-
pared with the original definition of K+ in [7] where only transitivity is re-
quired).

Now we introduce the concept of causal curves in a Lorentz space M with a
causal relation ≺ as in [4].

Definition 2.7. Let (M,d) be a Lorentz space. Assume a < b and let γ :
[a, b] → M be a continuous (with respect to the strong topology) mapping
such that for all a ≤ t < s ≤ b : γ(t) ≺ γ(s)(γ(t) ≪ γ(s)); then γ is called a
basic, causal (timelike) curve.

For any topological space X , the basic open sets B(A0;A1; · · · ;An) (Ai’s
are open in X) of the Vietoris topology on the space 2X of nonempty closed
subsets can be defined as follows:

C ∈ B(A0;A1; · · · ;An) ⇐⇒ C ⊆ A0 and C meets Ai for i = 1, . . . , n.

It is known in [7] that 2X with the Vietoris topology is compact if X is
compact. It is also shown that the Viertoris limit of a sequence of K-causal
curves is a K-causal curve using only the topological arguments.

For any sequence of compact, interpolating spacetime {(Mα, dα)} converging
to a Lorentz space (M,d) in the sense of GH-distance, we can extend each

strong metric Dα on Mα and DM on M to an admissible metric D̃ on M̃ =
M

∐
(
∐

αMα) as in Theorem 17 of [4].
Keeping this extension of metric in mind, it makes sense to say that a se-

quence of causal curves {γα}, where γα ⊂ Mα, converges to a causal curve Γ

in M in the Vietoris topology on 2(M̃,D̃).
Now we are in a position to state our main result as follows.

Theorem 2.1. Let {Mα} be a sequence of compact, interpolating spacetimes

satisfy C±
α properties and γα : [a, b] → Mα be a causal curve in Mα. Assume

that {Mα} converges to a Lorentz space M with K-causal relation in the sense

of GH-distance. Then there exists a subsequence {γβ} of {γα} such that {γβ}

converges to a causal curve Γ in M in the Vietoris topology on 2(M̃,D̃), where

(M̃, D̃) is defined as above.
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In Section 4, we shall also investigate the convergence of the lengths of the
causal curves γα and obtain a result as we expected.

Theorem 2.2. Let {γβ} and Γ be as in Theorem 2.1. Then we have

lim sup
β→∞

L[γβ] ≤ L[Γ].

3. Proof of Theorem 2.1

We first note that for each α, we have a map ψα : Mα → M which makes
Mα and M (ǫα, ǫα)-close (ǫα → 0 as α → ∞), since M can be regard as the
GGH-limit space of {Mα}.

Let Γα = ψα ◦ γα and consider the closure Γα of Γα in M for each α. Since
{Γα} is a sequence of closed subsets of M which is compact, we have a closed
subset Γ in M such that a subsequence {Γβ} of {Γα} converges to Γ in the
Vietoris topology in M .

Now we claim that Γ is a basic, causal curve inM by showing that it satisfies
the hypotheses of the following theorem.

Theorem 3.1 ([7]). Let Γ be a set provided with both a linear order and a

topology such that

• with respect to the topology it is compact and connected and contains a

countable dense subset,

• with respect to the order it has both a minimal and a maximal element,

and

• (with respect to both) it has the property that ≪ x, y ≫= {r ∈ M | x ≺
r ≺ y} is topologically closed for all x, y ∈ Γ.
Then Γ is isomorphic to the interval [0, 1] ⊂ R by a simultaneous order and

topological isomorphism.

Note that we can apply the same arguments as in Theorem 20 in [7] to verify
that Γ has a countable dense subset, minimal and maximal elements and every
interval in Γ is topologically closed. Since Γ is compact clearly, we need only
to show that it is connected and linearly ordered to verify that Γ satisfies the
hypotheses in Theorem 3.1.

We first show that Γ is connected as follows. Note that the number of
components of Γ should be finite by the compactness of Γ, so we may let
{Γ1,Γ2, . . . ,Γn} be the finite components of Γ.

For simplicity, we assume n = 2 (we can argue similarly for the general
case) and we first claim Γ1 is closed in M . This can easily be seen by noting
that every accumulation point of Γ1 should be in Γ = Γ1

∐
Γ2 since Γ is

closed and it cannot be in Γ2. Consequently, every accumulation point of
Γ1 should be in Γ1 itself and this says that Γ1 is closed. Γ2 is closed by
the same arguments. Now we can choose x1 ∈ Γ1 and x2 ∈ Γ2 such that
DM (x1, x2) = min{DM (x, y) | x ∈ Γ1, y ∈ Γ2} > 0 which is possible, since
Γ1, Γ2 are compact and disjoint.
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Letting ǫ = DM (x1, x2) > 0, we know that V1 := N(Γ1,
ǫ
3 ) = {y ∈

M | DM (Γ1, y) <
ǫ
3} and V2 := N(Γ2,

ǫ
3 ) = {y ∈ M | DM (Γ2, y) <

ǫ
3} are

disjoint open sets containing Γ1 and Γ2 respectively and satisfy the following:

(3.1) DM (x, y) >
ǫ

3
for all x ∈ V1, y ∈ V2.

Since {Γβ} converges to Γ in the Vietoris topology, we may assume that

{Γβ} ⊂ V1
∐
V2 for all β (by taking a subsequence if necessary).

Now we let U1 = {x ∈ γβ|[a,b] | ψβ(x) ∈ V1}, U2 = {x ∈ γβ|[a,b] | ψβ(x) ∈ V2}
and claim that inf{Dα(x, y) | x ∈ U1, y ∈ U2} = 0.

Suppose that τ = inf{Dα(x, y) | x ∈ U1, y ∈ U2} > 0 and consider U ,
a family of open balls with centers on γβ |[a,b] and radius τ

3 . That is, U =
{Bβ(z,

τ
3 ) | z ∈ γβ |[a,b]}.

By the compactness of γβ |[a,b], we have a family of finite open balls {Bβ(z1,
τ
3 ),

. . . , Bβ(zn,
τ
3 )} and each Bβ(zi,

τ
3 ) contains an element in U1 or U2 exclusively.

But this gives a disconnection of γβ |[a,b] which is a contradiction.
We now note from the proof of Theorem 16 in [4] that

|DM (ψβ(x), ψβ(y))−Dβ(x, y)| < 4ǫβ ∀x, y ∈ γβ |[a,b].

So arbitrary closeness between x1 ∈ U1 ⊂ γβ |[a,b] and x2 ∈ U2 ⊂ γβ |[a,b]
implies arbitrary closeness between ψβ(x1) ∈ V1 and ψβ(x2) ∈ V2 in M .

But this contradicts to (3.1) and we conclude that Γ is connected.
Next, we show that Γ is a linearly ordered set. For this purpose, we need to

show that for any p, q ∈ Γ, they are related by ≺.
In case that p or q is the minimal or maximal element, we have nothing to

prove and assume that the two points are neither minimal nor maximal. Then
we can say that neither point is in the future or past boundary ofM . For, if q is
in the future boundary ∂FM , then we have I+(q) = ∅ and K+(q) = {q} by the
definition of K-causal relation, which implies that q is the maximal element.
The same argument holds for the past boundary of M .

Now since {Γβ} converges to Γ in the Vietoris topology, we may consider se-
quences {ψβ(pβ)} and {ψβ(qβ)}, where pβ, qβ ∈ γβ and ψβ(pβ) → p, ψβ(qβ) →
q in (M,DM ) (passing to a subsequence if necessary). We may also assume
that qβ is in the causal future of pβ without loss of generality.

From now on, we claim that there is a sequence {rβk
}, where {βk} ⊂ {β}

such that {ψβk
(rβk

)} → q in (M,DM ) and ψβk
(pβk

) ≪ ψβk
(rβk

) for each βk.
Note first that for sufficiently large N1 ∈ N, we have BM (q, 1

N1

)∩∂FM = φ,

since q /∈ ∂FM . Then by the C+
α property, there exists an r′ ∈ BM (q, 1

2N1

)

such that d(q, r′) = α( 1
2N1

) > 0. Let {rβ} be a sequence in (M̃, D̃) such that

rβ ∈Mβ (∀β) and {rβ} → r′ in (M̃, D̃). Then there exists a β1,1 > 0 such that

D̃(rβ , r
′) < 1

N1

for all β with β ≥ β1,1.
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On the other hand, since dβ(qβ , rβ) converges to d(q, r′) = α( 1
2N1

) > 0 as

β → ∞ (Refer to the proof of Theorem 17 in [4] for details), we know that
there exists a β1,2 such that qβ ≪ rβ for all β with β ≥ β1,2.

Thus, by the reverse triangle inequality, we have

dβ(pβ, rβ) ≥ dβ(qβ , rβ) ∼ α(
1

2N1
) for all β with β ≥ β1,2.

Now we obtain

d(ψβ(pβ), ψβ(rβ)) ≥ d(pβ , rβ)− ǫβ

≥ dβ(qβ , rβ)− ǫβ

∼ α(
1

2N1
)− ǫβ > 0 for all sufficiently large β.

Consequently, there exists a β1,3 > 0 such that ψβ(pβ) ≪ ψβ(rβ) for all β

with β ≥ β1,3. Now we let β1 = max{β1,1, β1,2, β1,3} and note that D̃(rβ1
, r′) <

1
N1

, r′ ∈ BM (q, 1
2N1

) and ψβ1
(pβ1

) ≪ ψβ1
(rβ1

).

Let Nk = N1+(k−1) (k = 2, 3, . . .) and proceed the same process to obtain

rk ∈ BM (q, 1
2Nk

) and βk such that ψβk
(pβk

) ≪ ψβk
(rβk

) (k = 2, 3, . . .) and

D̃(rk, rβk
) < 1

Nk

= 1
N1+(k−1) .

We now have

D̃(q, ψβk
(rβk

)) ≤ D̃(q, rk) + D̃(rk, rβk
) + D̃(rβk

, ψβk
(rβk

)),

where the three terms of the right hand side of the above inequality con-
verge to zero as k → ∞ by the construction of rk, rβk

and the inequality

D̃(xα, ψα(xα)) < ǫα + 3ǫα
2 = 5ǫα

2 for all xα ∈ Mα (See p. 70 in [4] for refer-
ence).

Thus we obtain that ψβ(rβk
) converges to q in (M,DM ). Now p ≺ q follows

from the closeness of K+, which proves that Γ is a linearly ordered set.

Now we claim that {γβ} converges to Γ in the Vietoris topology on (M̃, D̃).
Recall that our claim is equivalent to show that {γβ} converges to Γ in the

both “upper” and “lower” topology on (M̃, D̃) ([7]).
In the lower topology, {γβ} converges to Γ if and only if the {γβ} eventually

“meet” every open set U ⊆ M̃ which meets Γ. In the upper topology (also called
the C0 topology), {γβ} converges to Γ if and only if the {γβ} are eventually

“included” in every open set U ⊆ M̃ which includes Γ itself (For details, refer
to p. 32 in [7]).

We start with the convergence in the lower topology on (M̃, D̃).

Let U ⊆ M̃ be any open set which meets Γ at p and consider an ǫ-ball
B

M̃
(p, ǫ) with (p ∈)B

M̃
(p, ǫ) ⊂ U . Since {Γβ} converges to Γ in the Vietoris

topology on (M,DM ), we can easily see that there exists a β1 > 0 such that
BM (p, ǫ2 )∩Γβ 6= ∅ for all β with β ≥ β1, where we note BM (p, ǫ2 ) = B

M̃
(p, ǫ

2 )∩
M .
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We denote an element in BM (p, ǫ2 )∩Γβ by ψβ(pβ), where pβ ∈ γβ for β ≥ β1
Since {Mβ} converges to M in the GGH-sense, we also know that there

exists a β2 > 0 such that D̃(pβ, ψβ(pβ)) <
ǫ
2 for all β ≥ β2.

We now have D̃(pβ , p) ≤ D̃(pβ, ψβ(pβ)) + D̃(ψβ(pβ), p) <
ǫ
2 + ǫ

2 = ǫ for all
β with β ≥ max{β1, β2}. This means that B

M̃
(p, ǫ) ∩ γβ 6= ∅ for all β with

β ≥ max{β1, β2}, which implies that U ∩γβ 6= ∅ for all β with β ≥ max{β1, β2}
since B

M̃
(p, ǫ) ⊂ U . Thus we conclude that {γβ} converges to Γ in the lower

topology on (M̃, D̃) (In the terminology in [2], Γ is the limit curve of {γα}).
We next show that {γβ} converges to Γ in the upper topology (C0-topology)

on (M̃, D̃). Let U ⊆ M̃ be any open set which contains Γ and for each point

p ∈ Γ consider open balls B
M̃
(p, δ(p)), B

M̃
(p, δ(p)2 ) for some δ(p) > 0 such that

(p ∈)B
M̃
(p, δ(p)2 ) ⊂ B

M̃
(p, δ(p)) ⊂ U .

Since {BM (p, δ(p)2 ) | p ∈ Γ} is an open covering of Γ in M and Γ is compact,

we have finite p1, . . . , pn on Γ such that Γ ⊂ ∪n
i=1BM (pi,

δ(p)
2 ) ⊂ U .

By the convergence of {Γβ} to Γ in the Vietoris topology on (M,DM ) we

know that there exists a β3 > 0 such that Γβ ⊂ ∪n
i=1BM (pi,

δ(p)
2 ) for all β with

β ≥ β3.
Let δ0 = 1

2min{δ(p1), . . . , δ(pn)} and note that there exists a β4 > 0 such

that D̃(pβ , ψβ(pβ)) < δ0 for all pβ ∈ γβ and β ≥ β4.
Now, for any pβ ∈ γβ where β ≥ max{β3, β4}, take pi(1 ≤ i ≤ n) such

that ψβ(pβ) ∈ BM (pi,
δ(pi)
2 ), which is possible since ψβ(pβ) ∈ Γβ ⊂ Γβ ⊂

∪n
i=1BM (pi,

δ(pi)
2 ) for all β ≥ β3.

We then have the following inequalities, for all β ≥ max{β3, β4},

D̃(pβ , pi) ≤ D̃(pβ, ψβ(pβ)) + D̃(ψβ(pβ), pi)

≤ δ0 +
δ(pi)

2
≤ δ(pi).

Thus if β ≥ max{β3, β4}, then every pβ on γβ is contained in some ball

B
M̃
(pi, δ(pi)) in (M̃, D̃). This means that γβ ⊂ ∪n

i=1BM̃
(pi, δ(pi)) ⊂ U for

all β ≥ max{β3, β4} in (M̃, D̃). So we conclude that {γβ} converges to Γ in the
upper topology. Consequently, {γβ} converges to Γ in the Vietoris topology on

(M̃, D̃) and we complete the proof of Theorem 2.1.

4. Proof of Theorem 2.2

The main point of the proof of Theorem 2.2 is the following Lemma 4.1,
which can be easily shown by the similar arguments in the proof of Lemma 22
in [7].

Lemma 4.1. {γβ(a)} (resp. {γβ(b)}) converges to the initial (resp. final)

point of Γ in (M̃, D̃).
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Proof. Since we know D̃(γβ(a), ψβ(γβ(a))) → 0 as β → ∞ from p. 70 in [4], it
suffices to show that ψβ(γβ(a)) converges to the initial point of Γ in (M,DM )
(The same is true for the final point).

Note that we may assume without loss of generality that {ψβ(γβ(a))} con-
verges to a point Γ0 in M , since (M,DM ) is compact.

We now claim that Γ0 is the initial point of Γ. Because Γ is the Vietoris-
limit of {ψβ(γβ)} and Γ is a closed set, it is easy to check that Γ0 should be
contained in Γ itself.

For any p in Γ and {ψβ(qβ)} converging to q in (M,DM ), we know that qβ
is in the causal future of γβ(a) since γβ is a causal curve and qβ ∈ γβ. Recall
that Γ is linearly ordered, so we have either Γ0 ≺ q or q ≺ Γ. But we can apply
the same arguments as in the proof of Theorem 2.1 to show that Γ0 ≺ q is true
noting that qβ is in the causal future of pβ := γβ(a) and ψβ(pβ) converges to

Γ0 in (M̃, D̃) (In case that q is in the future boundary ofM it is the final point
of Γ automatically as stated previously in the proof of Theorem 2.1, so there
is nothing to prove).

Thus we conclude that Γ0 is the initial point of Γ. �

Now for any partition ∆ of [a, b], ∆ = {ti | a = t0 < t1 < · · · < tn = b} and

for each Γ(ti) (i = 0, 1, . . . , n), consider a sequence {piβ} in M̃ such that piβ ∈ γβ
and piβ → Γ(ti) as β → ∞. Note that we can put p0β = γβ(a), p

n
β = γβ(b) by

the above Lemma 4.1.
Then we have

n∑

i=1

d(Γ(ti−1),Γ(ti)) = lim
β→∞

n∑

i=1

dβ(p
i−1
β , piβ) ≥ lim sup

β→∞

L[γβ ].

Since L[Γ] = inf∆{
∑n

i=1 d(Γ(ti−1, ti)}, we conclude that L[Γ] ≥ lim supβ→∞

L[γβ].
This completes the proof of Theorem 2.2.
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