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REGULARITY FOR SEMILINEAR RETARDED

FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS

Jin-Mun Jeong and Su Jin Cheon

Abstract. The purpose of this paper is to establish existence, unique-
ness and a variation of constant formula of solutions for semilinear par-
tial functional differential equations with unbounded delays and nonlinear
part involving integrodifferetial terms.

1. Introduction

This paper is concerned with the existence, uniqueness and norm estimations
of solutions for a class of partial functional integrodifferential systems with
delay terms:











∂
∂tu(t, x) +A(x,Dx)u(t, x) +A1(x,Dx)u(t− h, x)

+
∫ 0

−h a(s)A2(x,Dx)u(t+ s, x)ds− f(t, x)

= F (t, u(t− h, x),
∫ t

0 k(t, s, u(s− h, x))ds), (t, x) ∈ [0, T ]× Ω.

(1.1)

Here, Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, A(x,Dx)
and Aι(x,Dx)(ι = 1, 2) are second order linear differential operators with
real coefficients, and A(x,Dx) is an elliptic operator in Ω. The function a(s)
is a real scalar function on [−h, 0], where h > 0 is a delay time and f is a
forcing function. The boundary condition attached to (1.1) is given by Dirichlet
boundary condition

(1.2) u|∂Ω = 0, 0 < t ≤ T,

and the initial condition is given by

(1.3) u(0, x) = g0(x), u(s, x) = g1(s, x) − h ≤ s ≤ 0.

Received September 26, 2012; Revised February 19, 2013.
2010 Mathematics Subject Classification. Primary 35F25, 35K55.
Key words and phrases. semilinear equation, retarded functional integrodifferential equa-

tion, existence of solution, uniqueness of solution, norm estimation.
This research was supported by Basic Science Research Program through the National

research Foundation of Korea(NRF) funded by the Ministry of Education, Science and
Technology(2012-0007560).

c©2013 The Korean Mathematical Society

559



560 JIN-MUN JEONG AND SU JIN CHEON

Set

G(t, u) = F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds).

The nonlinear term G(t, ·), which is a Lipschitz continuous operator from
L2(−h, T ;V ) to L2(−h, T ;H), is a semilinear version of the quasilinear one
considered in Yong and Pan [9]. Precise assumptions are given in the next
section.

The abstract formulations of many partial integrodifferential equations arise
in the mathematical description of the dynamical processes with heat flow
in material with memory, viscoelasticity, and many physical phenomena (see
[3, 4]). When F ≡ 0 in (1.1), this linear type of equations is studied extensively
by Di Blasio et al. [2], Tanabe [7] and Jeong, Nakagiri [5, 6]. Most parts of
previous results studied the regularity for nonlinear equations under conditions
of the uniform boundedness of the nonlinear terms and the compactness of the
principal operators.

The purpose of this paper is to establish a variation of constant formula
and regularity property of solutions for the equation (1.1) with the aid of in-
termediate theory and the regularity for the corresponding linear equation(in
case F ≡ 0). We can also see that the solution mapping f 7→ xu is compact
where xf is a solution of (1.1) corresponding to the forcing term f which is an
important rule to apply control and optimal problems.

In order to prove the solvability of the initial value problem (1.1) we establish
necessary estimates applying the result of [2] to (1.1) considered as an equation
in a Hilbert space. In this paper, we give preliminaries on linear equations, and
then prove the local existence and uniqueness for solution of (1.1)-(1.3) by using
the contraction principle. Finally, we establish the norm estimation of solutions
by using the regularity for solutions associated with the linear part of the given
equations and the global existence of solutions by the step by step method.

2. Preliminaries and local solutions

Let H and V be two complex Hilbert spaces such that V is a dense subspace
of H . The norm of H (resp. V ) is denoted by | · | (resp. || · ||) and the
corresponding scalar product by (·, ·) (resp. ((·, ·))). Assume that the injection
of V into H is continuous. The antidual of V is denoted by V ∗, and the norm
of V ∗ by || · ||∗. Identifying H with its antidual we may consider that H is
embedded in V ∗. Hence we have V ⊂ H ⊂ V ∗ densely and continuously.

We realize the operator A(x,Dx), Aι(x,Dx), ι = 1, 2, in Hilbert spaces by

A0v = −A(x,Dx)v, Aιv = −Aι(x,Dx)v, ι = 1, 2, v ∈ V
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in the distribution sense. The mixed problem (1.1) can be formulated abstractly
as
(SLE)











d
dtu(t) = A0u(t) +A1u(t− h) +

∫ 0

−h a(s)A2u(t+ s)ds

+F (t, u(t− h),
∫ t

0 k(t, s, u(s− h))ds) + f(t), 0 ≤ t ≤ T

u(0) = g0, u(s) = g1(s), −h ≤ s ≤ 0.

Let b(·, ·) be a bounded sesquilinear form defined in V × V and satisfying
G̊arding’s inequality

(2.1) Re b(v, v) ≥ c0||v||2 − c1|v|2, c0 > 0, c1 ≥ 0.

Let A0 be the operator associated with the sesquilinear form −b(·, ·):
(A0v1, v2) = −b(v1, v2), v1, v2 ∈ V.

A0 is a bounded linear operator from V to V ∗, and its realization in H which
is the restriction of A0 to

D(A0) = {v ∈ V ;A0v ∈ H}
is also denoted by A0. Then A0 generates an analytic semigroup in both of H
and V ∗(see [7]).

The operators A1 and A2 are bounded linear operators from V to V ∗ such
that their restrictions to D(A0) are bounded linear operators from D(A0)
equipped with the graph norm of A0 to H . The function a(·) is assumed
to be real valued and belongs to L2(−h, 0).

First, we consider some basic results on the following linear functional dif-
ferential initial value problem:

{

d
dtu(t) = A0u(t) +A1u(t− h) +

∫ 0

−h a(s)A2u(t+ s)ds+ f(t),

u(0) = g0, u(s) = g1(s) − h ≤ s ≤ 0.
(LE)

By assumption there exists a positive constant M0 such that

(2.2) |v| ≤ M0||v||.
Then, for any f ∈ H we have

(2.3) ||f ||∗ ≤ M0|f |.
It follows from (2.1) that for u ∈ V

Re ((c1 −A0)v, v) ≥ c0||v||2.
Hence there exists a constant C0 such that

(2.4) ||v|| ≤ C0||v||1/2D(A0)
|v|1/2

for every v ∈ D(A0), where

||v||D(A0) = (|A0v|2 + |v|2)1/2

is the graph norm of D(A0).
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If X is a Banach space and 1 < p < ∞, Lp(0, T ;X) is the collection of all
strongly measurable functions from (0, T ) into X whose p-th powers of norms
are integrable and Wm,p(0, T ;X) is the set of all functions f whose derivatives
Dαf up to degree m in the distribution sense belong to Lp(0, T ;X).

By virtue of Theorem 3.3 of [2] we have the following result on the corre-
sponding linear equation of (LE).

Proposition 2.1. Suppose that the assumptions stated above are satisfied.

Then the following properties hold:
1) Let X = (D(A0), H)1/2,2 where (D(A0), H)1/2,2 is the real interpolation

space between D(A0) and H (see [8, Section 1.3.3]). For (g0, g1) ∈X×L2(−h, 0;
D(A0)) and f ∈ L2(0, T ;H), T > 0, there exists a unique solution u of (LE)
belonging to

W0(T ) ≡ L2(−h, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];X)

and satisfying

(2.5) ||u||W0(T ) ≤ C1(||g0||X + ||g1||L2(−h,0;D(A0)) + ||f ||L2(0,T ;H)),

where C1 is a constant depending on T .
2) Let (g0, g1) ∈ H ×L2(−h, 0;V ) and f ∈ L2(0, T ;V ∗), T > 0. Then there

exists a unique solution u of (LE) in case G(·, u) ≡ 0 belonging to

W1(T ) ≡ L2(−h, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

(2.6) ||u||W1(T ) ≤ C1(|g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T ;V ∗)),

where C1 is a constant depending on T .

Given u ∈ L2(0, T ;V ) we extend it to the space L2(−h, T ;V ) by setting
u(s) = g1(s) for s ∈ (−h, 0).

We assume the following hypotheses on the nonlinear mappings F , k in
(SLE):
(A1) F : [0, T ] × L2(0, T ;V ) × H → H is a nonlinear mapping such that
for φ ∈ L2(0, T ;V ) and x ∈ H , F (t, φ, x) is strongly measurable on [0, T ] and
there exist positive constants L0, L1, L2 and L3 such that

|F (t, φ1, x1)− F (t, φ2, x2)| ≤ L1||φ1 − φ2||+ L2|x1 − x2|, t ∈ [0, T ].

(A2) Let ∆T = {(s, t) : 0 ≤ s ≤ t ≤ T }. Then k : ∆T × L2(0, T ;V ) → H is

a nonlinear mapping such that for x ∈ H , k(t, s, x) is strongly measurable on
∆T and there exists positive constant L3 such that

|k(t, s, x1)− k(t, s, x2)| ≤ L3||x1 − x2||, (s, t) ∈ ∆T .

(A3) |F (t, 0, 0)| ≤ L0, |k(t, s, 0)| ≤ L0.

Remark 2.2. The above operator F is the semilinear case of the nonlinear part
of quasilinear equations considered by Yong and Pan [9].
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For u ∈ L2(−h, T ;V ), T > 0 we set

G(t, u) = F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds).

Lemma 2.3. Let u ∈ L2(−h, T ;V ) T > 0. Then G(·, u) ∈ L2(0, T ;H) and

(2.7) ||G(·, u)||L2(0,T ;H) ≤ L0

√
T + (L1 + L2L3T/

√
2)||u||L2(−h,T−h;V ).

Moreover if u1, u2 ∈ L2(−h, T ;V ), then

(2.8) ||G(·, u1)−G(·, u2)||L2(0,T ;H) ≤ (L1+L2L3T/
√
2)||u1−u2||L2(−h,T−h;V ).

Proof. For u ∈ L2(−h, T ;V ), since
∫ T

0

|
∫ t

0

k(t, s, u(s− h))ds|2dt ≤ L2
3

∫ T

0

(

∫ t

0

||u(s− h)||ds)2dt

≤ L2
3

∫ T

0

t

∫ t

0

||u(s− h)||2dsdt

≤ L2
3

T 2

2

∫ T

0

||u(s− h)||2ds,

from (A1) and (A2), it is easily seen that

||G(·, u)||L2(0,T ;H) =

{

∫ T

0

|F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds)|2dt
}1/2

=

{

∫ T

0

|F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds) − F (t, 0, 0) + F (t, 0, 0)|2dt
}1/2

≤
{

∫ T

0

|F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds) − F (t, 0, 0)|2dt
}1/2

+ L0

√
T

≤ L0

√
T + L1||u||L2(−h,T−h;V ) + L2

{

∫ T

0

|
∫ t

0

k(t, s, u(s− h))ds|2dt
}1/2

.

The proof of (2.8) is similar. �

Now we are ready to give the following result on the local solvability of
(SLE).

Theorem 2.4. Suppose that the assumptions (A1), (A2) and (A3) are satisfied.
Then for any (g0, g1) ∈ H × L2(−h, 0;V ) and f ∈ L2(0, T ;V ∗), T > 0, there
exists a time T0 > 0 such that the functional differential equation (SLE) admits

a unique solution u in W1(T0) ≡ L2(−h, T0;V ) ∩W 1,2(0, T0;V
∗).

Proof. Let us fix T0 > 0 so that

(2.9) M := C0C1(L1 + L2L3T0/
√
2)(T0/

√
2)1/2 < 1,
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where C0 and C1 are constants in (2.4) and (2.5) respectively. Let w be the
solution of

d

dt
w(t) =A0w(t) +A1w(t − h)(2.10)

+

∫ 0

−h

a(s)A2w(t+ s)ds+G(t, v) + f(t),

w(0) =g0, w(s) = g1(s), s ∈ [−h, 0).(2.11)

We are going to show that v 7→ w is strictly contractive from L2(0, T0;V ) to
itself if the condition (2.9) is satisfied. Let w1, w2 be the solutions of (2.10),
(2.11) with v replaced by v1, v2 ∈ L2(0, T0;V ), respectively. From (2.5) and
(2.8) it follows that

||w1 − w2||L2(0,T0;D(A0))∩W 1,2(0,T0;H) ≤ C1||G(·, v1)−G(·, v2)||L2(0,T0;H)

≤ C1(L1 + L2L3
T0√
2
)||v1 − v2||L2(0,T0;V ),

and hence in view of (2.4) we have

||w1 − w2||L2(0,T0;V )(2.12)

≤ C0||w1 − w2||
1
2

L2(0,T0;D(A0))
||w1 − w2||

1
2

L2(0,T0;H)

≤ C0||w1 − w2||
1
2

L2(0,T0;D(A0))
(
T0√
2
)

1
2 ||w1 − w2||

1
2

W 1,2(0,T0;H)

≤ C0(
T0√
2
)

1
2 ||w1 − w2||L2(0,T0;D(A0))∩W 1,2(0,T0;H)

≤ C0C1(L1 + L2L3
T0√
2
)(

T0√
2
)1/2||v1 − v2||L2(0,T0;V ).

Here we used the following inequality

||w1 − w2||L2(0,T0;H) =

{

∫ T0

0

|w1(t)− w2(t)|2dt
}

1
2

=

{

∫ T0

0

|
∫ t

0

(ẇ1(τ)− ẇ2(τ))dτ |2dt
}

1
2

≤
{

∫ T0

0

t

∫ t

0

|ẇ1(τ) − ẇ2(τ)|2dτdt
}

1
2

≤ T0√
2
||w1 − w2||W 1,2(0,T0;H).

So by virtue of (2.9) the contraction mapping principle gives that equation
(SLE) has a unique solution in [−h, T0]. �
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3. Global existence and behavior of solution

In this section we give norm estimate of the solution of (SLE) and which
is helpful to establish the global existence of solutions with the aid of norm
estimations.

Theorem 3.1. Suppose that the assumptions (A1), (A2) and (A3) are satisfied.
Then for any (g0, g1) ∈ H×L2(−h, 0;V ) and f ∈ L2(0, T ;V ∗), T > 0, the solu-
tion u of (SLE) exists and is unique in W1(T ) ≡ L2(−h, T ;V )∩W 1,2(0, T ;V ∗),
and there exists a constant C2 depending on T such that

(3.1) ||u||W1(T ) ≤ C2(1 + |g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T ;V ∗)).

Proof. Let u(·) be the solution of (SLE) in the interval [−h, T0] where T0 is a
constant in (2.9) and w(·) be the solution of the following equation

d

dt
w(t) =A0w(t) +A1w(t− h) +

∫ 0

−h

a(s)A2w(t+ s)ds+ f(t),

w(0) =g0, w(s) = g1(s), −h ≤ s < 0.

Then in view of (2.5), (2.7)

||u− w||L2(0,T0;D(A0))∩W 1,2(0,T0;H)

≤ C1||G(·, u)||L2(0,T0;H)

≤ C1{L0

√
T 0 + (L1 + L2L3T0/

√
2)(||u||L2(0,T0;V ) + ||g1||L2(−h,0;V ))}.

≤ C1{L0

√
T 0 + (L1 + L2L3T0/

√
2)(||u− w||L2(0,T0;V ) + ||w||L2(0,T0;V )

+ ||g1||L2(−h,0;V ))}.

Thus, arguing as in the proof of (2.12)

||u− w||L2(0,T0;V )

≤ C0(
T0√
2
)

1
2 ||u− w||L2(0,T0;D(A0))∩W 1,2(0,T0;H)

≤ C0(
T0√
2
)

1
2C1{L0

√
T 0 + (L1 + L2L3T0/

√
2)(||u− w||L2(0,T0;V )

+ ||w||L2(0,T0;V ) + ||g1||L2(−h,0;V ))}.
For brevity, set

M := C0C1(L1 + L2L3T0/
√
2)(T0/

√
2)1/2

in the sense of (2.9). Therefore, we have

||u− w||L2(0,T0;V )

≤ C0C1L0

√
T0(T0/

√
2)1/2 +M(||w||L2(0,T0;V ) + ||g1||L2(−h,0;V ))

1−M
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and hence, with the aid of 2) of Proposition 2.1

||u||L2(0,T0;V )

(3.2)

≤ C0C1L0

√
T0(T0/

√
2)1/2

1−M
+

||w||L2(0,T0;V ) + ||g1||L2(−h,0;V )

1−M

≤ C0C1L0

√
T0(T0/

√
2)1/2

1−M

+
1

1−M
{C1(|g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T0;V ∗)) + ||g1||L2(−h,0;V )}.

On the other hand using (2.6), (2.3), (2.7) we get

||u||W1(T0)(3.3)

≤ C(|g0|+ ||g1||L2(−h,0;V ) + ||G(·, u) + f ||L2(0,T0;V ∗))

≤ C(|g0|+ ||g1||L2(−h,0;V ) +M0||G(·, u)||L2(0,T0;H) + ||f ||L2(0,T0;V ∗))

≤ C[|g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T0;V ∗)

+M0{L0

√
T 0 + (L1 + L2L3T0/

√
2)(||u||L2(0,T0;V ) + ||g1||L2(−h,0;V ))}]

for some constant C. Combining (3.2), and (3.3) we obtain

(3.4) ||u||W1(T0) ≤ C(1 + |g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T0;V ∗))

for some constant C2. Since the condition (2.9) is independent of the initial
values, the solution of (SLE) can be extended to the interval [−h, nT0] for every
natural number n. An estimate analogous to (3.4) holds for the solution in
[−h, nT0], and hence for the initial value (u(nT0), unT0) in the interval [nT0, (n+
1)T0]. �

Theorem 3.2. Suppose that the assumptions (A1), (A2) and (A3) are satisfied.
If (g0, g1) ∈ X × L2(−h, 0;D(A0)) and f ∈ L2(0, T ;H), then u ∈ W0(T ) ≡
L2(−h, T ;D(A0))∩W 1,2(0, T ;H), and the mapping (g0, g1, f) 7→ u ∈ W0(T ) is
continuous.

Proof. It is easy to show that if (g0, g1) ∈ X × L2(−h, 0;D(A0)) and f ∈
L2(0, T ;H), then from Proposition 2.1 it follows that u belongs to W0(T ). Let
(g0i , g

1
i , fi)∈X×L2(−h, 0;D(A0)) ×L2(0, T ;H), and ui be the solution of (SLE)

with (g0i , g
1
i , fi) in place of (g0, g1, f) for i = 1, 2. Then in view of Proposition

2.1 and Lemma 2.3 we have

||u1 − u2||W0(T ))(3.5)

≤ C1{||g01 − g02 ||X
+ ||g11 − g12 ||L2(−h,0:D(A0)) + ||G(·, u1)−G(·, u2)||L2(0,T ;H)

+ ||f1 − f2||L2(0,T ;H)}
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≤ C1{||g01 − g02 ||X + ||g11 − g12 ||L2(−h,0:D(A0)) + ||f1 − f2||L2(0,T ;H)

+ (L1 + L2L3T/
√
2)(||u1 − u2||L2(0,T :V ) + ||g11 − g12 ||L2(−h,0;V ))}.

Since

u1(t)− u2(t) = g01 − g02 +

∫ t

0

(u̇1(s)− u̇2(s))ds,

we get

||u1 − u2||L2(0,T ;H) ≤
√
T |g10 − g02 |+

T√
2
||u1 − u2||W 1,2(0,T ;H).

Hence, arguing as in (2.12) we get

||u1 − u2||L2(0,T ;V )(3.6)

≤ C0||u1 − u2||1/2L2(0,T ;D(A0))
||u1 − u2||1/2L2(0,T ;H)

≤ C0||u1 − u2||1/2L2(0,T ;D(A0))

× {T 1/4|g01 − g02 |1/2 + (
T√
2
)1/2||u1 − u2||1/2W 1,2(0,T ;H)}

≤ C0T
1/4|g01 − g02 |1/2||u1 − u2||1/2L2(0,T ;D(A0))

+ C0(
T√
2
)1/2||u1 − u2||W0(T )

≤ 2−7/4C0|g01 − g02 |+ 2C0(
T√
2
)1/2||u1 − u2||W0(T ).

Combining (3.5) and (3.6) we obtain

||u1 − u2||W0(T )(3.7)

≤ C1{||g01 − g02 ||X + ||g11 − g12 ||L2(−h,0:D(A0))

+ ||f1 − f2||L2(0,T ;H) + (L1 + L2L3T/
√
2)||g11 − g12||L(−h,0;V ))}

+ 2−7/4C0C1(L1 + L2L3T/
√
2)|g01 − g02 |+ 2C0C1(

T√
2
)1/2

× (L1 + L2L3T/
√
2)||u1 − u2||W0(T ).

Suppose that (g0n, g
1
n, fn) → (g0, g1, f) in X×L2(−h, 0;D(A0))×L2(0, T ;H),

and let un and u be the solutions (SLE) with (g0n, g
1
n, fn) and (g0, g1, f) respec-

tively. Let 0 < T1 ≤ T be such that

2C0C1(T1/
√
2)1/2(L1 + L2L3T1/

√
2) < 1.

Then by virtue of (3.7) with T replaced by T1 we see that un → u in W0(T1).
This implies that (un(T1), (un)T1) 7→(u(T1), uT1) inX×L2(−h, 0;D(A0)). Hence
the same argument shows that un → u in

L2(T1,min{2T1, T };D(A0)) ∩W 1,2(T1,min{2T1, T };H).

Repeating this process we conclude that un → u in W0(T ). �
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Theorem 3.3. For f ∈ L2(0, T ;H) let uf be the solution of equation (SLE).
Let us assume that the embedding D(A0) ⊂ V is compact. Then the mapping

f 7→ uf is compact from L2(0, T ;H) to L2(0, T ;V ).

Proof. If f ∈ L2(0, T ;H), then in view of Theorem 3.1

(3.8) ||uf ||W1(T ) ≤ C2(1 + |g0|+ ||g1||L2(−h,0;V ) +M0||f ||L2(0,T ;H)).

Since uf ∈ L2(0, T ;V ), G(·, uf ) ∈ L2(0, T ;H). Consequently uf ∈ L2(0, T ;
D(A0)∩W 1,2(0, T ∗;V ) and with aid of Proposition 2.1, Lemma 2.3, and (3.8),

||uf ||L2(0,T ;D(A0)∩W 1,2(0,T ;V )(3.9)

≤ C1(||g0||X + ||g1||L2(−h,0;D(A0)) + ||G(·, uf ) + f ||L2(0,T ;H))

≤ C1{||g0||X + ||g1||L2(−h,0;D(A0)) + L0

√
T

+ (L1 + L2L3T/
√
2)||u||L2(−h,T−h;V ) + ||f ||L2(0,T ;H)}

≤ C1[||g0||X + ||g1||L2(−h,0;D(A0)) + L0

√
T

+ (L1 + L2L3T/
√
2){||g1||L2(−h,0;V ) + C2(1 +M0||f ||L2(0,T ;H))}

+ ||f ||L2(0,T ;H)].

Hence if f is bounded in L2(0, T ;H), then so is uf in L2(0, T ;D(A0)) ∩
W 1,2(0, T ;H). Since D(A0) is compactly embedded in V by assumption, the
embedding

L2(0, T ;D(A0) ∩W 1,2(0, T ;V ) ⊂ L2(0, T ;V )

is compact in view of Theorem 2 of J. P. Aubin [1]. �
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