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ON A HYPERGEOMETRIC SUMMATION THEOREM DUE

TO QURESHI ET AL.

Junesang Choi and Arjun K. Rathie

Abstract. We first aim at proving an interesting easily derivable sum-
mation formula. Then it is easily seen that this formula immediately
yields a hypergeometric summation theorem recently added to the liter-
ature by Qureshi et al. Moreover we apply the main formulas to present
some interesting summation formulas, whose special cases are also seen
to yield the earlier known results.

1. Introduction and preliminaries

It is well known that the Chebyshev polynomials Tn(x) and Un(x) of the first
and second kind are the following special cases (α = β = − 1

2 and α = β = 1
2 ,

respectively) of the classical Jacobi polynomials P
(α,β)
n (x) defined by (see, for

example, [3, pp. 169–170] and [5])

(1.1) P (α,β)
n (x) :=

n
∑

k=0

(

n+ α

k

)(

n+ β

n− k

) (

x− 1

2

)n−k (
x+ 1

2

)k

.

Also, in terms of the generalized hypergeometric series pFq defined by (see [6,
p. 73]):

(1.2)
pFq

[

α1, . . . , αp ;

β1, . . . , βq ;
z

]

=

∞
∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z) (p, q ∈ N0) ,

where (λ)ν denotes the Pochhammer symbol or the shifted factorial, since

(1)n = n! (n ∈ N0 := N ∪ {0}; N := {1, 2, 3, . . .}) ,
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which is defined (for λ, ν ∈ C), in terms of the familiar gamma function Γ, by

(1.3) (λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

{

1 (ν = 0; λ ∈ C \ {0})
λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1 and C the set of complex
numbers, (1.1) can be written as

(1.4) P (α,β)
n (x) =

(

n+ α

n

)

2F1

[−n, n+ α+ β + 1 ;

α+ 1 ;

1− x

2

]

.

In fact, we have the following relationships (see, for example, [8, p. 125] and
[5]):

(1.5) Tn(x) =

(

n− 1
2

n

)−1

P
(− 1

2
,− 1

2 )
n (x)

and

(1.6) Un(x) =
1

2

(

n+ 1
2

n+ 1

)−1

P
( 1

2
, 1
2 )

n (x).

Moreover, upon setting x = cos θ in Equations (1.5) and (1.6), it is easily seen
that (see, for example, [8, p. 71, Equation 1.8(10)] and [5])

(1.7) Tn(cos θ) = cos(n θ)

and

(1.8) Un(cos θ) =
sin [(n+ 1)θ]

sin θ
.

Also, for the Chebyshev polynomials Tn(x) and Un(x) defined by Equations
(1.5) and (1.6), it is known that (see, for example, [4, p. 468, Entries 7.3.1(209)
and 7.3.1(211)])

(1.9) 2F1







−n

2
, −n

2
+

1

2
;

1

2
;

x






= (1 − x)

n

2 Tn

(

1√
1− x

)

and

(1.10) 2F1







−n

2
, −n

2
+

1

2
;

3

2
;

x






=

(1− x)
n

2

n+ 1
Un

(

1√
1− x

)

.

Upon setting x = − b2

a2 in Equations (1.9) and (1.10), recently Qureshi et al. [5,
Equations (18) and (19)] obtained two interesting hypergeometric summation
formulae given in the following theorem.
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Theorem 1. For n ∈ N0, we have

(1.11)

2F1







−n

2
,
1− n

2
;

1

2
;

− b2

a2






=

(

a2 + b2
)

n

2

an
cos(nϑ)

(

nϑ 6= 2κ+ 1

2
π; κ ∈ Z

)

and

(1.12)
2F1







−n

2
,
1− n

2
;

3

2
;

− b2

a2






=

(

a2 + b2
)

n+1

2

(n+ 1) an b
sin [(n+ 1)ϑ]

((n+ 1)ϑ 6= κπ; κ ∈ Z) ,

where Z denotes the set of integers and ϑ is given by

(1.13) ϑ :=



























arctan
(

b
a

)

(a, b ∈ R+)

π − arctan
(

b
|a|

)

(a ∈ R−; b ∈ R+)

arctan
(

|b|
|a|

)

− π (a, b ∈ R−)

− arctan
(

|b|
a

)

(a ∈ R+; b ∈ R−) ,

R+ and R− being the sets of positive and negative real numbers, respectively.

Here, in this paper, we aim at presenting an interesting easily derivable sum-
mation formula (2.1) involving the exponential and hypergeometric functions

2F1. Moreover, it is easily seen that our summation formula immediately yields
Equations (1.11) and (1.12).

2. Main result

The main result to be established here is as in the following theorem.

Theorem 2. The following summation formula holds true.

(2.1)

∞
∑

n=0

(

a2 + b2
)

n

2 einϑ
xn

n!
=

∞
∑

n=0

an xn

n!
2F1







−n

2
,
1− n

2
;

1

2
;

− b2

a2







+ ib

∞
∑

n=0

an xn+1

n!
2F1







−n

2
,
1− n

2
;

3

2
;

− b2

a2






,

provided that the series on the left-hand side is absolutely convergent and a, b,

x and ϑ are real numbers, and i =
√
−1.
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Proof. We begin by considering

(2.2) S := e(a+ib)x.

Now let us express a+ ib in the polar coordinate and then Euler’s formula:

(2.3) a+ ib = r (cosϑ+ i sinϑ) = r ei ϑ,

where

r =
√

a2 + b2 and ϑ = arctan

(

b

a

)

.

By using the Maclaurin expansion, we find from (2.2) and (2.3) that

(2.4)

S = e(a+ib)x = e(r ei ϑ)x =

∞
∑

n=0

rn xn

n!
ei ϑ n

=
∞
∑

n=0

(

a2 + b2
)

n

2

n!
cos (nϑ) xn + i

∞
∑

n=0

(

a2 + b2
)

n

2

n!
sin (nϑ) xn.

On the other hand, we have

(2.5)

S = e(a+ib)x = eax eibx =

(

∞
∑

m=0

am

m!
xm

) (

∞
∑

n=0

(ib)n

n!
xn

)

=
∞
∑

m=0

∞
∑

n=0

am (ib)n

m!n!
xm+n := Se + So,

where, upon separating the second sum into the even and odd parts, for con-
venience,

Se :=

∞
∑

m=0

∞
∑

n=0

am (ib)2n

m! (2n)!
xm+2n and So :=

∞
∑

m=0

∞
∑

n=0

am (ib)2n+1

m! (2n+ 1)!
xm+2n+1.

Using the following easily-derivable formula (see, for example, [7, p. 6,
Equation (28)]):

(2.6) (λ)2n = 22n
(

1

2
λ

)

n

(

1

2
λ+

1

2

)

n

(n ∈ N0)

and the following well known formal manipulation of double series (see, for
example, [6, p. 57, Equation (7)]; for other manipulations, see also [2]):

(2.7)

∞
∑

m=0

∞
∑

n=0

A(n,m) =

∞
∑

m=0

[m2 ]
∑

n=0

A(n,m− 2n),
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we have

(2.8)

Se =

∞
∑

m=0

∞
∑

n=0

(−1)n am b2n

m! (2n)!
xm+2n =

∞
∑

m=0

∞
∑

n=0

(−1)n am b2n

m! 22n n!
(

1
2

)

n

xm+2n

=

∞
∑

m=0

[m2 ]
∑

n=0

(−1)n am−2n b2n

(m− 2n)! 22n n!
(

1
2

)

n

xm.

Using the following formula:

(2.9) (n− k)! =
(−1)k n!

(−n)k
(0 ≦ k ≦ n; n, k ∈ N0)

and (2.6), after a little simplification, we get

Se =

∞
∑

m=0

[m2 ]
∑

n=0

(−1)n am−2n b2n (−m)2n

m! 22n n!
(

1
2

)

n

xm

=

∞
∑

m=0

am xm

m!

[m2 ]
∑

n=0

(

− 1
2m
)

n

(

− 1
2m+ 1

2

)

n
(

1
2

)

n
n!

(−1)n
(

b

a

)2n

.

Using (1.2) for the inner sum, we finally obtain

(2.10) Se =
∞
∑

m=0

am xm

m!
2F1







−m

2
,
1−m

2
;

1

2
;

− b2

a2






.

Similarly as in getting (2.10), we also have

(2.11) So = i x b

∞
∑

m=0

am xm

m!
2F1







−m

2
,
1−m

2
;

3

2
;

− b2

a2






.

Hence, upon replacing Se and So in (2.5) by (2.10) and (2.11), we immedi-
ately arrive at the desired formula (2.1). This completes the proof of Theorem
2. �

Remark 1. Writing the Euler formula ei n ϑ = cos(nϑ) + i sin(nϑ) in (2.1) and
equating the real and imaginary parts, and then comparing the coefficients of
xn in each of two resulting identities, we easily see the formulas in Theorem 1.

3. Applications

Here we consider some interesting applications of the results (1.11) and
(1.12). The results to be established are asserted by the following theorem.
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Theorem 3. Each of the following formulas holds true.

(3.1) ex 0F1





− ;

1

2
;
− b2

4 a2
x2



 =

∞
∑

m=0

xm

m!

(

a2 + b2
)

m

2

am
cos(mϑ);

(3.2) ex 0F1





− ;

3

2
;
− b2

4 a2
x2



 =

∞
∑

m=1

xm−1

m!

(

a2 + b2
)

m

2

am−1 b
sin(mϑ);

(3.3)

(1− x)−2α
2F1







α, α+
1

2
;

1

2
;

− b2 x2

a2 (1− x)2







=

∞
∑

m=0

(2α)m xm

m!

(

a2 + b2
)

m

2

am
cos(mϑ);

(3.4)

(1− x)−2α
2F1







α, α+
1

2
;

3

2
;

− b2 x2

a2 (1− x)2







=

∞
∑

m=0

(2α)m xm

m!

(

a2 + b2
)

m+1

2

am b
[sin(m+ 1)ϑ] ,

where ϑ is the same as given in (1.13).

Proof. Denoting, for simplicity, the left-hand side of (3.1) by L and expressing
the two involved functions as series, after a little simplification, we have

L =
∞
∑

m=0

∞
∑

n=0

(

− b2

a2

)n

xm+2n

(

1
2

)

n
m!n! 22n

.

Using (2.7), we obtain

L =

∞
∑

m=0

[m2 ]
∑

n=0

(

− b2

a2

)n

xm

(

1
2

)

n
n! 22n (m− 2n)!

.

Using the following easily-derivable identities (see Equations (2.6) and (2.9)):

(m− 2n)! =
m!

(−m)2n
and (−m)2n = 22n

(

−m

2

)

n

(

−m

2
+

1

2

)

n

,

after a little simplification, we get

L =

∞
∑

m=0

xm

m!

[m2 ]
∑

n=0

(

−m
2

)

n

(

−m
2 + 1

2

)

n
(

1
2

)

n
n!

(

− b2

a2

)n

.
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Expressing the inner series by using the functions pFq as in (1.2), we have

L =

∞
∑

m=0

xm

m!
2F1







−m

2
,
1−m

2
;

1

2
;

− b2

a2






.

Finally, using the known summation formula (1.11), we arrive at the right-
hand side of (3.1). This completes the proof of (3.1). The same argument as
in proving (3.1) will easily establish the other three formulas (3.2) to (3.4). �

If we take b = a in Equations (3.1) to (3.4), we get the following known (see
[1]) results asserted by the following theorem.

Theorem 4. Each of the following identities holds true.

(3.5) ex 0F1





− ;

1

2
;
− x2

4



 =

∞
∑

m=0

xm

m!
2

m

2 cos
(mπ

4

)

;

(3.6) ex 0F1





− ;

3

2
;
− x2

4



 =

∞
∑

m=1

xm−1

m!
2

m

2 sin
(mπ

4

)

;

(3.7)

(1 − x)−2α
2F1







α, α+
1

2
;

1

2
;

− x2

(1− x)2






=

∞
∑

m=0

(2α)m xm

m!
2

m

2 cos
(mπ

4

)

;

(3.8)

(1−x)−2α
2F1







α, α+
3

2
;

1

2
;

− x2

(1− x)2






=

∞
∑

m=0

(2α)m xm

(m+ 1)!
2

m+1

2 sin

[

(m+ 1)π

4

]

.

Remark 2. Here it is interesting to point out that, in Equations (3.3) and (3.4),
if we replace x by x

α
and let α → ∞, after a little simplification, we get the

results (3.1) and (3.2), respectively.
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