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ON M-SUBHARMONICITY IN THE BALL

Ern Gun Kwon and Jong Hee Park

Abstract. We establish an easy proof of an integral identity using the
unitary invariance, which is applied to compare harmonicity and M-
harmonicity.

1. Introduction

1.1. Let B = Bn denote the open unit ball of the complex n-dimensional space
Cn and S denote the boundary of B: S = {z ∈ Cn : |z| = 1}. Let M denote
the group of all automorphisms, that is, one to one biholomorphic onto maps,
of B. Let ν and σ denote respectively the Lebesgue volume measure on B and
the surface measure on S normalized to be ν(B) = σ(S) = 1, and τ denote the
M-invariant volume measure of B: dτ(z) = (1 − |z|2)−(n+1)dν(z).

1.2. M consists of all maps of the form Uϕa, where U is a unitary transfor-
mation of Cn and ϕa is defined by

(1.1) ϕa(z) =

{
a−Paz−

√
1−|a|2Qaz

1−〈z,a〉 , if a 6= 0

0, if a = 0.

Here 〈, 〉 is the Hermitian inner product of Cn: 〈z, w〉 = ∑n
j=1 zjw̄j , z, w ∈ Cn,

Paz is the projection of Cn onto the subspace generated by B:

Paz =
〈z, a〉
〈a, a〉a, if a 6= 0 and P0z = 0,

and Qa(z) = z − Paz.

1.3. An upper semicontinuous function f : B → [−∞, ∞), f 6≡ −∞, satisfying
the inequality

f(a) ≤
∫

S

f(a+ rζ) dσ(ζ)
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for all a ∈ B and for all r such that a+ rB̄ ⊂ B is called subharmonic (in B).
An upper semicontinuous function f : B → [−∞, ∞), f 6≡ −∞, satisfying

f(a) ≤
∫

S

f ◦ ϕa(rζ) dσ(ζ)

for all a ∈ B and for all r sufficiently small is called M-subharmonic. Also, an
upper semicontinuous function f : B → [−∞, ∞), is called plurisubharmonic
if the functions

λ → f(a+ λb)

are subharmonic in neighborhoods of the origin in C for all a ∈ B, b ∈ Cn.

1.4. Let ∆ denote the complex Laplacian of Cn and ∆̃ denote the Laplace-
Beltrami operator associated with the Bergman kernel of B, that is, for f ∈
C2(B)

∆f = 4

n∑

j=1

DjD̄jf

and

∆̃f(a) = 4(1− |a|2)
n∑

i,j=1

(δi,j − āiaj)(D̄iDjf)(a), a = (a1, a2, . . . , an) ∈ B,

where Dj = ∂
∂zj

and D̄j = ∂
∂z̄j

, j = 1, 2, . . . , n. Let fa, for a ∈ B, be defined

by fa(λ) = f(λa), λ ∈ B1. Then ∆̃f(a) is equivalently expressible as

(1.2) ∆̃f(a) = (1− |a|2) {∆f(a)−∆fa(1)} .
See [1, Theorem 4.1.3-(iii)].

1.5. A C2(B) function f is said to be harmonic if ∆f ≡ 0, M-harmonic if

∆̃f ≡ 0, pluriharmonic if ∆f ≡ 0 ≡ ∆̃f in B. For real valued f ∈ C2(B),

∆f ≥ 0 if and only if f is subharmonic, and ∆̃f ≥ 0 if and only if f is
M-subharmonic (see [1, Proposition 4.1]).

It is generally known on B that the harmonicity and the M-harmonicity are

neither inclusive nor exclusive when n ≥ 2. Also ∆f ≥ 0 and ∆̃f ≥ 0 does not
imply that f is plurisubharmonic (see [1, 7.2.1]).

2. Harmonicity vis M-harmonicity

2.1. In B, that ∆f ≡ 0 does not imply ∆̃f ≡ 0 when n ≥ 2. Neither is the
converse. But harmonicity and M-harmonicity are equal in the following sense
of mean:

Theorem 2.1. Let f ∈ C2(B). Then, for a fixed r : 0 < r < 1,
∫

rB

∆f dν = 0 ⇐⇒
∫

rB

∆̃f dτ = 0.
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2.2. As in 1.5, a C2(B) function harmonic and simultaneously M-harmonic
is pluriharmonic. But 1.5 also says that this is no more true when ‘har-
monic’ replaced by ‘subharmonic’, that is, subharmonicity together with M-
subharmonicity can not imply plurisubharmonicity. Between these two differ-
ent qualities, we have:

Theorem 2.2. A C2(B) function harmonic and simultaneously M-subhar-

monic is pluriharmonic; a C2(B) function M-harmonic and simultaneously

subharmonic is pluriharmonic.

Theorem 2.1 and Theorem 2.2 will be proven in Section 3.

3. Consequence of the unitary invariance

3.1. We note that the measure σ is unitary invariant in the sense that
∫

S

f(Uζ) dσ(ζ) =

∫

S

f(ζ) dσ(ζ)

for unitary transformations U of Cn. ∆ and ∆̃ are also unitary invariant as
in the following lemma, whose simple proof we include for the reader’s conve-
nience.

Lemma 3.1. Let f ∈ C2(B). Then ∆f and ∆̃f are unitary invariant in the

sense that

(3.1) (∆f) (Ua) = ∆(f ◦ U)(a)

and

(3.2)
(
∆̃f

)
(Ua) = ∆̃(f ◦ U)(a)

for all unitary transformations U of Cn and a ∈ B.

Proof. Fix a ∈ B. Taylor expansion of C2(B) function f(z) about z = a gives

f(a+ρη)−f(a) =

n∑

j=1

(
ρηjDjf+ρη̄jD̄jf

)
(a)+

1

2

n∑

j,k=1

ρ2ηj η̄k
(
DjD̄kf

)
(a+δρη)

for some δ provided a+ ρη ∈ B, ρ > 0. Integrating with respect to dσ(η) over
S and dividing by ρ2, we have

1

ρ2

∫

S

{f(a+ ρη)− f(a)} dσ(η) = 1

2

n∑

j,k=1

∫

S

ηj η̄k
(
DjD̄kf

)
(a+ δρη) dσ(η).

By letting ρ → 0, we obtain

lim
ρ→0

1

ρ2

∫

S

{f(a+ ρη)− f(a)} dσ(η) = 1

2

n∑

j,k=1

(
DjD̄kf

)
(a)

∫

S

ηj η̄k dσ(η).

Straightforward calculation of the last integral (see [1, 1.4.8 and 1.4.9]) gives

(3.3) ∆f(a) = lim
ρ→0

4n

ρ2

∫

S

{f(a+ ρη)− f(a)} dσ(η).
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Now, applying the unitary invariance of the measure σ to (3.3), we have (3.1).
Also, by a process similar to the process we used to obtain (3.3), we have

the representation

(3.4) ∆̃f(a) = lim
ρ→0

4n

ρ2

∫

S

{f ◦ ϕa(ρη)− f(a)} dσ(η)

(see [1, 4.1.3-(a)]). Applying the identity UϕaU
−1 = ϕUa, which is obvious

from (1.1), to the equation (3.4), we have (3.2). �

3.2. By help of Lemma 3.1, we can have an identity linking ∆ and ∆̃ as the
following.

Theorem 3.2. If f ∈ C2(B) and 0 < r < 1, then

(3.5)

∫

rB

∆f(z) dν(z) = (1− r2)n−1

∫

rB

∆̃f(z) dτ(z).

Proof. Let U denote the group of unitary transformations of Cn. Since f ◦U ∈
C2(B) for U ∈ U , it follows from Lebesgue’s dominated convergence theorem
that

DiD̄j

(∫

U

f ◦ U(z) dU

)
=

(∫

U

DiD̄j (f ◦ U) (z) dU

)

for z ∈ B and i, j = 1, 2, . . . , n. Thus, by [1, Proposition 1.4.7] and Lemma 3.1
∫

S

(∆f) (|z|ζ) dσ(ζ) =
∫

U

(∆f) (Uz) dU

=

∫

U

∆(f ◦ U) (z) dU

= ∆

(∫

U

(f ◦ U) (z) dU

)

= ∆

(∫

S

f(|z|ζ) dσ(ζ)
)
.

Similarly,
∫

S

(
∆̃f

)
(|z|ζ) dσ(ζ) = ∆̃

(∫

S

f(|z|ζ) dσ(ζ)
)
.

Therefore to obtain (3.5), we are sufficient to prove

(3.6)

∫ r

0

ρ2n−1∆φ(ρ) dr = (1− r2)n−1

∫ r

0

ρ2n−1

(1− ρ2)n+1
∆̃φ(ρ)dρ,

where

φ(ρ) =

∫

S

f(ρζ) dσ(ζ), 0 < ρ < r.

It follows from a straightforward differentiation that

∆φ(ρ) = φ′′(ρ) +
2n− 1

ρ
φ′(ρ)



ON M-SUBHARMONICITY IN THE BALL 515

and

∆̃φ(ρ) = (1− ρ2)2∆φ(ρ) + 2(n− 1)ρ(1− ρ2)φ′(ρ).

Now elementary calculation gives
∫ r

0

ρ2n−1∆φ(ρ)dr

=

∫ r

0

ρ2n−1

{
φ′′(ρ) +

2n− 1

ρ
φ′(ρ)

}
dρ

=

∫ r

0

d

dρ

{
ρ2n−1φ′(ρ)

}
dρ

= r2n−1φ′(r)

= (1− r2)n−1

∫ r

0

d

dρ

{
1

(1− ρ2)n−1
ρ2n−1φ′(ρ)

}
dρ

= (1− r2)n−1

∫ r

0

1

(1− ρ2)n

{
(1− ρ2)

d

dρ

(
ρ2n−1φ′(ρ)

)
+ 2(n− 1)ρ2nφ′(ρ)

}
dρ

= (1− r2)n−1

∫ r

0

ρ2n−1

(1− ρ2)n+1
∆̃φ(ρ)dρ,

which verifies (3.6). �

3.3. Theorem 2.1 now follows from Theorem 3.2.

3.4. Theorem 2.2 follows from Theorem 2.1 by noting that a non-negative
continuous function whose values integrated to be zero should be zero function.

4. Further remarks

4.1. More extensively, Theorem 2.1 and the formula (1.2) gives the followings.
Here ‘g has same sign in B’ means that g(a) ≥ 0 for all a ∈ B or g(a) ≤ 0 for
all a ∈ B or g(a) = 0 for all a ∈ B.

Theorem 4.1. Let f be real-valued and f ∈ C2(B). If ∆f = 0 in B, then

each one of the following property are equivalent.

(a) f is pluriharmonic in B.

(b) ∆̃f has same sign in B.

(c) ∆fa(1) has same sign in B.

4.2. Exactly same way, we have a similar result with ∆f and ∆̃f interchanged
in Theorem 4.1.
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