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LAPLACIAN ON A QUANTUM HEISENBERG MANIFOLD

Hyun Ho Lee

Abstract. In this paper we give a definition of the Hodge type Laplacian
∆ on a non-commutative manifold which is the smooth dense subalgebra
of a C∗-algebra. We prove that the Laplacian on a quantum Heisenberg
manifold is an elliptic operator in the sense that (∆ + 1)−1 is compact.

1. Introduction

In non-commutative geometry, the Chevalley-Eilenberg complex is used to
produce a cyclic cocycle in Connes’ cyclic cohomology via a cycle over an
algebra A where a Lie-group action on A is given. The most important result
in this direction is the integrality of the pairing of a cyclic 2-cocycle and Rieffel’s
projection in the non-commutative torus Aθ [3, 6, 8].

In this paper, using the same framework, we investigate a metric aspect of
this complex. In fact, we define “Laplacian” on a non-commutative manifold
which is slightly different with the one given in [10] and establish a Hodge-
type theorem of the Laplacian on a quantum Heisenberg manifold. While
the non-commutative torus is simpler, quantum Heisenberg manifolds with the
non-commutative Heisenberg group action are tractable non-commutative man-
ifolds given by the stirct deformation quantization of the classical Heisenberg
manifold [7].

We emphasize that if the group action is commutative and a C∗-algebra A
is deformed from the group, this is not so interesting since the metric aspect
on A is almost commutative as we observe the non-commutative torus case
[3, 5]. Thus it seems natural to consider the Heisenberg group action and a
deformation from it. We show that in this case the Laplacian on zero forms or
“functions” is diagonalizable and eigenvalues form a discrete set of R+ which is
well-known for a connected, oriented Riemmanian manifold (see, for example,
[9]).
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2. Laplacian on a non-commutative manifold

Let G be a finite dimensional Lie-group and g its Lie-algebra. Let (A,G, α)
be a C∗-dynamical system that consists of a C∗-algebra A together with a ho-
momorphism α of G into the group of automorphisms of A. We always assume
that A is equipped with a G-invariant trace τ in the sense that τ(αg(a)) = τ(a)
for all g ∈ G and a ∈ A. It is said that a in A is of C∞ if and only if g → αg(a)
from G to the normed space is of C∞. Then A∞ = {a ∈ A | a is of C∞} is
norm dense in A. In this case we call A∞ the smooth dense subalgebra of A
[4]. Since a C∗-algebra with a smooth dense subalgebra is an analogue of a
smooth manifold, g plays a role of tangent space or directional derivatives via
the map δ which is the representation of g in the Lie-algebra of (unbounded)
derivations of A∞ given by

δX(a) = lim
t→0

1

t
(αgt(a)− a)

for X ∈ g and a ∈ A∞ where gt is the path in G such that ġ0 = X [4].
Then to do calculus we consider a A∞-module of alternating A∞-valued

forms on

k︷ ︸︸ ︷
g⊗ · · · ⊗ g denoted by Ωk = (Λk

g)∗ ⊗ A∞. The coboundary map
from Ωk to Ωk+1 is defined by

dω(X1, . . . , Xk+1) =

k+1∑

j=1

(−1)j−1δXj
(ω(X1, . . . , X̂j , . . . , Xk+1))

+
∑

i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1)

for k ≥ 1. In particular, the coboundary map from Ω0 = A∞ to Ω1 =
Hom(g, A∞) is defined by da(X) = δX(a) for X ∈ g, a ∈ A∞.

Proposition 2.1. d2 = 0.

Proof. For k ≥ 1, it follows from a general Cartan formula. We check the case
that

Ω0 d
→ Ω1 d

→ Ω2.

d(da)(X1, X2) = δX1
(da(X2))− δX2

(da(X1))− d(a)([X1, X2])

= δX1
(δX2

(a))− δX2
(δX1

(a))− δ[X1,X2](a)

= [δX1
, δX2

](a)− δ[X1,X2](a)

= 0

since δ : g → Der(A∞) is a Lie-algebra homomorphism, i.e., δ[X1,X2] = [δX1
, δX2

].
Here Der(A∞) means a set of derivations on A∞. �
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(Ωk, d) is called a “Chevalley-Eilenberg” (chain) complex. For ω ∈ Ωp and
η ∈ Ωq, we define a product ∧ by

ω ∧ η(X1, . . . , Xp+q) =
∑

(p, q)-shuffles

ω(Xσ(1), . . . , Xσ(p))η(Xσ(p+1), . . . , Xσ(p+q))

where a (p, q) shuffle means a permutation σ such that σ(1) < · · · < σ(p),
σ(p + 1) < · · · < σ(p + q). Since A∞ is a non-commutative algebra, this
product never commutes, i.e., it is not true that ω∧η = (−1)pqη∧ω. However,
d is an anti-derivation of degree 1.

Proposition 2.2. Given ω ∈ Ωp and η ∈ Ωq,

d(ω ∧ η) = d(ω) ∧ η + (−1)pω ∧ d(η).

Proof. It is well-known. See [2, Chapter III]. �

Throughout the article, we set {θi} as a dual (orthonormal) basis of an
orthonormal basis {Xi} of g. Suppose that dim g = n. We introduce a notation
for a A∞-valued k-form in Ωk. Let I be an index set such that |I| = k, i.e.,
I = {i1 < · · · < ik} ⊂ {1, 2, . . . , n}. We define θI = θi1 ∧ · · · ∧ θik . Then
given ω ∈ Ωk we can write as ω =

∑
I aIθ

I where I runs over all size k subsets
of {1, 2, . . . , n} and aI = ω(Xi1 , . . . , Xik) since {θI} is a basis of (Λk

g)∗. As
usual, we define the graded (differential) algebra Ω =

∑
k=0 Ω

k.

Definition 2.3. The “exterior product” by X is the endomorphism ε(X) on
Ω defined by

ε(Xi)(aIθ
I) = aIθ

i ∧ θI .

The “interior product” by X is the endomorphism ι(X) on Ω defined by

ι(Xj)(aIθ
I) = aIι(Xj)(θ

I),

where the latter is the usual interior product on the exterior algebra of g∗.

Basically, viewing Ωk as the tensor product of (Λk
g)∗ and A∞, the operations

ε(X) and ι(X) are just ε(X)⊗ I and ι(X)⊗ I where the latter ε(X) and ι(X)
are the usual maps on the exterior algebra of g∗.

We also extend the maps δX for a vector X ∈ g to forms in Ω as follows.

Definition 2.4. The action of g on Ω is the map defined by

δX(aIθ
I) = δX(aI)θ

I .

Then the derivation δ commutes with ε and ι.

Lemma 2.5. For X,Y ∈ g

ε(X) · δY = δY · ε(X),(1)

ι(X) · δY = δY · ι(X).(2)
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Now we define an inner product structure on Ωk as we have the (global)
inner product on differential forms induced from a Riemannian metric on the
tangent space Tx(M) where M is a Riemannian manifold. We assume that g

is equipped with a metric 〈, 〉g corresponding to a Riemannian metric. Then
the induced metric on g

∗ is also denoted by 〈, 〉g. Since we assume g has
an orthonormal basis, we can give a definition of the inner product without
involving 〈, 〉g.

Definition 2.6. Given two k-forms ω and η, we define an inner product

〈ω, η〉 = τ

( ∑

i1<i2<···<ik

ω(Xi1 , . . . , Xik)
∗η(Xi1 , . . . , Xik)

)
,

where {Xi} is an orthonormal basis of g.

Since τ plays a role of
∫
M

dvol, our definition is a non-commutative analogue
of the global inner product on forms on a connected, oriented Riemmanian
manifold M , which is given by

∫
M
g(ω, η) dvol where g is a Riemannian metric.

We note that for a, b ∈ A∞

〈a, b〉 = τ(a∗b).

Since C∞(M) act as multiplications on the Hilbert space L2(M, g) where M is
a Riemannian manifold and its completion under the inner product

∫
M
f̄ g dvol

is L2(M, g), the appropriate completion of A∞ under τ is the GNS-construction
induced from τ . We denote it by L2(A∞, τ) by the Hilbert space produced by
GNS-construction.

Proposition 2.7. da =
∑

i δi(a)θ
i where δi = δXi

.

Proof. Write X =
∑

j λjXj where {Xj} is an orthonormal basis of g. Then

da(X) = δ∑
j
λjXj

(a) =
∑
λjδj(a) =

∑
θi(λjXj)δi(a) =

∑
δi(a)θ

i(X). �

Definition 2.8. For k ≥ 0, we define d∗ : Ωk+1 → Ωk as the formal adjoint
of d : Ωk → Ωk+1 with respect to the inner product 〈, 〉. Thus it follows that
(d∗)2 = 0.

We define a “Dirac” operator on forms as follows, which will be denoted by
D.

D = d+ d∗.

And we define the (non-commutative) “Laplacian” on forms using D.

Definition 2.9. We define ∆ : Ωk → Ωk to be D2, i.e., ∆ = (d+d∗)(d+d∗) =
dd∗ + d∗d.

The following is a useful lemma which is a non-commutative version of “in-
tegration by parts”.

Lemma 2.10. For any a, b ∈ A∞

τ(δX(a)∗b) = −τ(a∗δX(b)).
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Proof. Recall that τ is g-invariant so that τ(δX(a)) = 0 for all X ∈ g and
a ∈ A∞. Then, since δX : A∞ → A∞ is a derivation,

τ(δX(a∗b)) = τ(δX(a)∗b+ a∗δX(b)) = 0.

So we have τ(δX(a)∗b) = −τ(a∗δX(b)). �

Proposition 2.11. d∗(ω) = −
∑

i δi(ω(Xi)) for ω ∈ Ω1.

Proof. Suppose ω is a one form, i.e., ω ∈ Ω1. Then we can write ω =∑
i ω(Xi)θ

i.

〈da, ω〉 =
∑

i

τ(δi(a)
∗ω(Xi))

=
∑

i

−τ(a∗δi(ω(Xi))) by Lemma 2.10

= τ(a∗(−
∑

i

δi(ω(Xi))))

= 〈a, d∗(ω)〉.

Thus d∗(ω) = −
∑

i δi(ω(Xi)). �

Now we introduce the “Clifford algebra variables/ Dirac symbols”

ei = ε(Xi)− ι(Xi),

which satisfies

{ei, ej} = ei · ej + ej · ei = −2δij .

Then on Ω0 ⊕ Ω1

(3) d+ d∗ =
∑

i

ei · δi.

We remark that the equation (3) does not hold on forms of higher order.

Proposition 2.12. In particular, the Laplacian on zero forms or “functions”

given by

∆(a) = d∗(d(a)) = −
∑

i

δi(δi(a))

for any a ∈ A∞.

Note that this definition of Laplacian coincides with the classical definition of
the Laplacian on a Riemannian manifold where A∞ = C∞(M), g = R

n. But,
in general, we do not know how complicated the Laplacian could be. Basically,
the coboundary map d in the Chevalley-Eilenberg complex reflects the non-
commutativity of the Lie-algebra action. Moreover, the C∗-algebra itself is a
non-commutative algebra so that the Laplacian on A∞-valued k-forms might be
quite different with the Laplacian on smooth forms of a manifold. Nonetheless,
Proposition 2.12 says that the Laplacian on zero forms is always analogous to
the Laplacian on functions on a manifold.
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3. A case study: Laplacian on a quantum Heisenberg manifold

In this section, we are going to work out detailed computations on a non-
commutative manifold which is a strict deformation quantization of the Heisen-
berg manifold. We begin with the definition of a quantum Heisenberg manifold
which will be denoted by Dh.

Definition 3.1. For any positive integer c let Sc denote the space of C∞

functions φ on R× T× Z which satisfy

(a) φ(x+ k, y, p) = e(ckpy)φ(x, y, p) for all k ∈ Z where e(x) is e2πix, and
(b) for every polynomial P on Z and for every partial differential operator

∂m+n

∂xm∂yn on R × T, P (p) ∂m+n

∂xm∂ynφ(x, y, p) is bounded on K × Z for any

compact set K of R× T.

For each ~ ∈ R let D∞

~
denote Sc with product and involution for each ~ ∈ R

defined by

(c) φ ∗ ψ(x, y, p) =
∑

q∈Z
φ(x − ~(q − p)µ, y − ~(q − p)ν, q)ψ(x − ~qµ, y −

~qν, p− q),
(d) φ∗(x, y, p) = φ(x, y,−p),

and with the norm coming from the representation on L2(R × T × Z) defined
by

φ(f)(x, y, p) =
∑

q

φ(x − ~(q − 2p)µ, y − ~(q − 2p)ν, q)f(x, y, p− q),

where µ, ν are non-zero real numbers. Then the norm closure of the involutive
algebra D∞

~
, to be denoted by D~, is called a quantum Heisenberg manifold

([7, Theorem 5.5]). Since we are going to work with the fixed parameters µ, ν,
we dropped them in the definition.

Let G be the Heisenberg group, parametrized by

(x, y, z) =




1 y z

0 1 x

0 0 1


 ,

so that when we identify G with R
3 the product is given by

(x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ + yx′).

Then there is a canonical action of G on D~, or D
∞

~
given by

α(r,s,t)(φ)(x, y, p) = e(p(t+ cs(x− r)))φ(x − r, y − s, p).

In addition, we have a faithful normal trace τ defined by

τ(φ) =

∫ 1

0

∫

T

φ(x, y, 0)dydx for φ ∈ D∞

~
.

It is easily checked that τ is invariant under the action of G. Let’s consider the
GNS-representation of (D∞

~
, τ), denoted by L2(D∞

~
, τ).
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Lemma 3.2 ([1, Proposition 6]). L2(D∞

~
, τ) is unitarily equivalent with L2

([0, 1]× [0, 1]× Z).

Proof. We define a map Γ : L2(D∞

~
, τ) → L2(R× T× Z) by

Γφ(x, y, p) =

{
e(−cxyp)φ(x, y, p) for y < 1,

φ(x, y, p) for y = 1,

for φ ∈ L2(D∞

~
, τ). Note that Γφ(x + k, y, p) = Γφ(x, y, p). It follows that

L2(D∞

~
, τ) ≃ L2(T× T× Z) ≃ L2([0, 1]× [0, 1]× Z). �

Since τ is invariant under the Heisenberg group action, the action is lifted
to L2(D∞

~
, τ). We shall denote the action by the same symbol. To compute

the Laplacian on D∞

~
, we need to transform L2([0, 1]× [0, 1]×Z) under a map

η : L2([0, 1]× [0, 1]× Z) → L2([0, 1]× [0, 1]× Z) given by

η(f)(x, y, p) =

{
e(−cxyp)f(x, y, p) for y < 1,

f(x, y, p) for y = 1.

For a technical reason, consider a particular basis of g given by

X1 =




0 0 0
0 0 1
0 0 0


 , X2 =




0 1 0
0 0 0
0 0 0


 , X3 =




0 0 cα

0 0 0
0 0 0




for some α > 1. Then δi’s on L
2([0, 1]× [0, 1]× Z) are given by

δ1(f)(x, y, p) = −2πicypf(x, y, p)−
∂f

∂x
(x, y, p),(4)

δ2(f)(x, y, p) = −
∂f

∂y
(x, y, p),(5)

δ3(f)(x, y, p) = 2πipcαf(x, y, p)(6)

under Γ and η [1, Proposition 9].
Let T and S be (unbounded) operators on a Hilbert space H . We say that

S is T -bounded, with relative bound s ≥ 0, if

(1) dom(T ) ⊂ dom(S),
(2) for some b ≥ 0 and for all ξ ∈ H ,

‖Sξ‖ ≤ s‖Tξ‖+ b‖ξ‖.

For example, a bounded operator S is T -bounded for any T , with relative
bound s = 0.

Lemma 3.3 (Kato-Rellich). Let T be a self-adjoint operator and S be a sym-

metric operator. If S is T -bounded with relative bound < 1, then T + S is a

self-adjoint operator on dom(T ).
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Now we are ready to prove the main theorem which is a version of non-
commutative Hodge theory for a quantum Heisenberg manifold. We borrow
the idea of our proof from [1, Proposition 9], though the setting and aim are
quite different.

Theorem 3.4. Suppose that δi’s are given as above (see equations (3), (4), (5)).
Let the “Laplacian” ∆ be defined by −

∑
i δ

2
i on D∞

~
. Then there exists an

orthonormal basis of L2(D∞

~
, τ) consisting of eigenvectors of the Laplacian. All

the eigenvalues are positive, except that zero is an eigenvalue with multiplicity

one. Each eigenvalue has finite multiplicity, and the eigenvalues accumulate

only at infinity.

Proof. First, note that the domain of D on L2([0, 1]× [0, 1]×Z) is given by all
those square integrable functions f that satisfy the boundary conditions

(i) f(0, y, p) = f(1, y, p),
(ii) f(x, 0, p) = f(x, 1, p),
(iii) ∂

∂x
f, ∂

∂y
f, pf are square integrable.

Let T = −e1 ·
∂
∂x

− e2 ·
∂
∂y

+ e3 · 2πicαMp and S = −e1 · 2πicMyp where

Mp(f)(x, y, p) = pf(x, y, p), and Myp(f)(x, y, p) = ypf(x, y, p). Then D =
d+ d∗ = T + S and dom(T ) = dom(D) ⊂ dom(S).

Viewing L2([0, 1]× [0, 1]× Z) as L2([0, 1]× [0, 1])⊗ l2(Z), we can see T 2 =

−( ∂2

∂x2 +
∂2

∂y2 )⊗id− id⊗(4π2c2α2Mp2). Observe that after taking Fourier trans-

form on the first two variables, T 2 is nothing but N2
1 +N2

2 +4π2c2α2N2
3 where

each Ni is the number (multiplication) operator on the appropriate copy of Z.
It follows that (T 2+1)−1 is compact operator or T has compact resolvents. In
other words, (T ±i)−1 are compacts. Since S is T -bounded with relative bound
less that 1

α
< 1, D is self-adjoint on dom(T ) by the Kato-Rellich lemma. From

−((D ± i)−1 − (T ± i)−1) = (D ± i)−1(D − T )(T ± i)−1,

(D± i)−1 are compacts too. Consequently, (∆+ 1)−1 = (D+ i)−1(D− i)−1 is
compact. �
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