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ON POLYNOMIAL-STRUCTURE OF RINGS OF MODULAR

FORMS FOR Γ0(N)

Daeyeoul Kim and Yan Li

Abstract. In this note, we show that M(Γ0(N)) is a weighted polyno-
mial ring if and only if N = 1, 2, 4, where M(Γ0(N)) is the graded ring
of integral-weighted modular forms for the congruence subgroup Γ0(N).

1. Introduction

Let H = {τ ∈ C | Imτ > 0} be the complex upper half plane and Γ be a
congruence subgroup of SL2(Z). Denote N, Z, Q the set of natural numbers,
the ring of rational integers and the field of rational numbers. For k ∈ Z,
denote Mk(Γ) the finite dimensional vector space of modular forms of weight
k for Γ. Since Mk(Γ) ·Ml(Γ) ⊂ Mk+l(Γ), the direct sum

M(Γ) =
⊕

k∈Z

Mk(Γ)

forms a graded ring. For Γ = SL2(Z), it is well-known that M(Γ) = C[E4, E6]
is a weighted polynomial ring generated by E4 and E6, that is,

Mk(SL2(Z)) =
⊕

4a+6b=k

C · Ea
4E

b
6,

where, for k ≥ 4 and even, Ek ∈ Mk(SL2(Z)) is the normalized Eisenstein
series of weight k defined by

Ek(τ) = 1−
2k

Bk

∞
∑

n=1

σk−1(n)q
n, τ ∈ H,

with

q = e2πiτ , σk−1(n) =
∑

d|n,d>0

dk−1,
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and Bk the k-th Bernoulli number, i.e., Bk-s satisfy

t

et − 1
=

∞
∑

k=0

Bk

tk

k!
.

The structure of graded ring M(SL2(Z)) is simple and elegant. So it is natural
to ask the following interesting question.

Question. For which congruence subgroup Γ, M(Γ) is a weighted polynomial
ring?

In this note, we will give a complete answer to the above question for the
case: Γ = Γ0(N).

Theorem 1.1. M(Γ0(N)) is a weighted polynomial ring if and only if N =
1, 2, 4.

The congruence subgroup Γ0(4) is very important. It plays the same role
in the theory of half-integral weighted modular forms as SL2(Z) does in the
theory of integral weighted modular forms (For details, see Chapter 4 of [3]
and Section 1.3 of [4]). As a consequence of Proposition 4 (p. 184) of [3], or
equivalently, Theorem 1.49 of [4], we know that M(Γ0(4)) = C[θ4, F ] is also a
weighted polynomial ring generated by θ4, F ∈ M2(Γ0(4)), where, for τ ∈ H,

θ(τ) =

+∞
∑

n=−∞

qn
2

,

F (τ) =
∑

n>0,odd

σ1(n)q
n,

with

σ1(n) =
∑

d|n,d>0

d.

It is less well-known that M(Γ0(2)) = C[E2,2, E4] is a weighted polynomial
ring, where, for τ ∈ H,

E2,2(τ) = 1 + 24

∞
∑

n=1

σ1,1(n; 2)q
n,

(see p. 19 of [1]) with

σ1,1(n; 2) =
∑

d|n,2∤d

d

(see Exercise (2) on p. 55 of [2] and note that our notation E2,2(τ) equals to
their notation −E∗

2(q)).
To prove Theorem 1.1, it remains to show that these are the only cases. This

will be done in the next section.
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2. Proof of the main result

We need several lemmas to prove Theorem 1.1, especially, the dimension
formula of Mk(Γ0(N)). To state them, we introduce some notations first.

Let H∗ = H ∪ Q ∪ {∞}. Then GL+
2 (Q) acts on H∗ by linear fractional

transformation, i.e.,

α(τ) =
aτ + b

cτ + d
, for τ ∈ H and α =

(

a b
c d

)

∈ GL+
2 (Q).

For a congruence subgroup, the quotient space Γ\H∗ is a Riemmanian surface,
which is usually called a modular curve, and denoted by X(Γ). Let g(Γ) be
the genus of X(Γ) as a Riemannian surface.

To compute the dimension of Mk(Γ), we need several other quantities d(Γ),
ǫ2(Γ), ǫ3(Γ) and ǫ∞(Γ). Now we explain their meanings. We denote d(Γ) the
degree of the morphism of Riemmanian surfaces X(Γ) → X(SL2(Z)), which is
explicitly given by

d(Γ) = [SL2(Z) : {±I}Γ],

where I is the identity matrix of SL2(Z). For each point τ ∈ H, let

Γτ = {γ ∈ Γ|γ(τ) = τ}

be the τ -fixing subgroup of Γ and hτ = [{±I}Γτ : {±I}] be the period of τ .
A point τ ∈ H is elliptic if and only if hτ > 1. Denote ǫ2(Γ) (respectively,
ǫ3(Γ)) the number of equivalent classes of elliptic points τ of period hτ = 2
(respectively, period hτ = 3) under the action of Γ. Finally, let ǫ∞(Γ) be the
number of cusps of X(Γ), that is, the number of equivalent classes of Q∪ {∞}
under the action of Γ. We may write g, d, ǫ2, ǫ3 and ǫ∞ instead of g(Γ),
d(Γ), ǫ2(Γ), ǫ3(Γ) and ǫ∞(Γ), for short.

Lemma 2.1 (Theorem 3.1.1 of [1]). Let Γ, g, ǫ2, ǫ3, and ǫ∞ be as above. Then

g(Γ) = 1 +
d(Γ)

12
−

ǫ2(Γ)

4
−

ǫ3(Γ)

3
−

ǫ∞(Γ)

2
.

Lemma 2.2. Let Γ = Γ0(N). Then

d(Γ0(N)) = N
∏

p|N

(

1 +
1

p

)

;

ǫ2(Γ0(N)) =











∏

p|N

(1 +

(

−1

p

)

) if 4 ∤ N,

0 if 4|N,

where (−1/p) is ±1 if p ≡ ±1 (mod 4) and is 0 if p = 2;

ǫ3(Γ0(N)) =











∏

p|N

(1 +

(

−3

p

)

) if 9 ∤ N,

0 if 9|N,
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where (−3/p) is ±1 if p ≡ ±1 (mod 3) and is 0 if p = 3 and

ǫ∞(Γ0(N)) =
∑

d|N

φ (gcd(d,N/d)) ,

where φ is the Euler φ-function.

Proof. See pp.106–107 and Corollary 3.7.2 of [1]. �

Since −I ∈ Γ0(N), we have Mk(Γ0(N)) = 0 for odd k. For k even, we have
the following result.

Lemma 2.3 (Theorem 3.5.1 of [1]). Let k be an even integer. Then

dim(Mk(Γ0(N))) =



















(k − 1)(g − 1) +

⌊

k

4

⌋

ǫ2 +

⌊

k

3

⌋

ǫ3 +
k

2
ǫ∞ if k ≥ 2,

1 if k = 0,

0 if k < 0,

where ⌊·⌋ is the greatest integer function.

Proof of Theorem 1.1. Assume M(Γ0(N)) = C[f1, . . . , fn] is a weighted poly-
nomial ring with independent variables fi ∈ Mki

(Γ0(N)) (1 ≤ i ≤ n). We
claim that n = 2.

First, look at the case: n = 3. We have

Mk(Γ0(N)) =
⊕

ak1+bk2+ck3=k

C · fa
1 f

b
2f

c
3 .

Therefore,

dim(Mk(Γ0(N))) = #{(a, b, c) | ak1 + bk2 + ck3 = k, a, b, c ∈ N ∪ {0}}.

Let k = mk1k2k3 with m ∈ N. Then dimMk(Γ0(N)) is greater than or equals
to

#{(m1,m2,m3) | (k2k3m1)k1 + (k1k3m2)k2 + (k1k2m3)k3

= k, m1,m2,m3 ∈ N ∪ {0}}

=#{(m1,m2,m3) | m1 +m2 +m3 = m, m1,m2,m3 ∈ N ∪ {0}}

=

m
∑

m1=0

m−m1
∑

m2=0

1

=
1

2
(m+ 1)(m+ 2)

=
1

2
(

k

k1k2k3
+ 1)(

k

k1k2k3
+ 2),

which is a quadratic function of k, and by Lemma 2.3, obviously larger than
dimMk(Γ0(N)). A contradiction!

The same arguments show that the case: n ≥ 4 is impossible, too. The case:
n = 1 is also excluded since, otherwise, dimMk(Γ0(N)) will be either 1 or 0.
Thus, the only possibility is that n = 2.
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As a consequence of the claim: n = 2, we have

(1) dimM2(Γ0(N)) = g − 1 + ǫ∞ ≤ 2.

Since g ≥ 0, we have ǫ∞ ≤ 3. From Lemma 2.2, we know ǫ∞ ≥ 4 if n has four
distinct divisors and, otherwise,

ǫ∞(Γ0(N)) =











1 if N = 1,

2 if N = p,

p+ 1 if N = p2,

where p is a prime number. Now assume N 6= 1, 2, 4. Then the only possible
case that ǫ∞(Γ0(N)) ≤ 3 is that N = p is a prime number. Since ǫ∞(Γ0(p)) =
2, by Eq. (1), we have g = 0 or g = 1, in this case.

Now assume N = p is a prime number. From Lemma 2.2, we know

d = p+ 1, ǫ2 = 1 +

(

−1

p

)

, ǫ3 = 1 +

(

−3

p

)

and ǫ∞ = 2.

Then from Lemma 2.1, we have

(2)

g(Γ0(p)) =
p

12
−

1

2
−

1

4

(

−1

p

)

−
1

3

(

−3

p

)

=























































0 if p = 2 or 3,

p− 13

12
if p ≡ 1 mod 12,

p− 5

12
if p ≡ 5 mod 12,

p− 7

12
if p ≡ 7 mod 12,

p+ 1

12
if p ≡ 11 mod 12.

From Eq. (2), we have

(3)
g(Γ0(p)) = 0 ⇔ p = 2, 3, 5, 7 and 13;

g(Γ0(p)) = 1 ⇔ p = 11, 17 and 19.

For 2 ≤ p ≤ 19, a detailed calculation for dim(Mk(Γ0(p))) is made in the
following table:
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Table. dim(Mk(Γ0(p))) for 2 ≤ p ≤ 19, k = 2, 4, 6
p dim(Mk(Γ0(p))) k = 2 k = 4 k = 6
2 1 + ⌊k/4⌋ 1 2 2
3 1 + ⌊k/3⌋ 1 2 3
5 1 + 2 ⌊k/4⌋ 1 3 3
7 1 + 2 ⌊k/3⌋ 1 3 5
11 k 2 4 6
13 1 + 2 ⌊k/3⌋+ 2 ⌊k/4⌋ 1 5 7
17 k + 2 ⌊k/4⌋ 2 6 8
19 k + 2 ⌊k/3⌋ 2 6 10

From the above table, we can see that the only case that M(Γ0(p)) is a
weighted polynomial ring happens when p = 2. This concludes the proof. �
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