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ON NIL GENERALIZED POWER SERIESWISE

ARMENDARIZ RINGS

Ouyang Lunqun and Liu Jinwang

Abstract. We in this note introduce a concept, so called nil general-
ized power serieswise Armendariz ring, that is a generalization of both
S-Armendariz rings and nil power serieswise Armendariz rings. We first
observe the basic properties of nil generalized power serieswise Armen-
dariz rings, constructing typical examples. We next study the relationship
between the nilpotent property of R and that of the generalized power
series ring [[RS,≤]] whenever R is nil generalized power serieswise Armen-
dariz.

1. Introduction

Throughout this paper R denotes an associative ring with identity and
nil(R) stands for the set of all nilpotent elements of R. A ring R is called
an NI ring if nil(R) forms an ideal, and a ring R is said to be semicom-
mutative if for all a, b ∈ R, ab = 0 implies aRb = 0. Let I be an ideal
of R, I is said to be semicommutative if I is considered as a semicommuta-
tive ring without identity, and I is said to be nilpotent if In = 0 for some
positive integer n. Let U be a subset of R. We denote by U [[x]] the set
{f(x) =

∑∞

i=0 aix
i ∈ R[[x]] | ai ∈ U, i = 0, 1, . . .}.

A ring R is called Armendariz if whenever polynomials f(x) =
∑m

i=0 aix
i,

g(x) =
∑n

j=0 bjx
j ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i, j. The

term Armendariz was introduced by Rege and Chhawchharia [13]. This nomen-
clature was used by them since it was Armendariz [3, Lemma 1] who initially
showed that a reduced ring (i.e., a ring without nonzero nilpotent elements)
always satisfies this condition. Armendariz rings are thus a generalization of
reduced rings, and therefore, nilpotent elements play an important role in this
class of rings. There are many examples of rings with nilpotent elements which
are Armendariz. In fact, in [1], Anderson and Camillo proved that if n > 2,
then R[x]/(xn) is an Armendariz ring if and only if R is reduced.
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N. K. Kim et al. [8] studied a generalization of Armendariz rings, which they
called power serieswise Armendariz rings. A ring R is called power serieswise
Armendariz if whenever power series f(x) =

∑∞

i=0 aix
i, g(x) =

∑∞

j=0 bjx
j ∈

R[[x]] satisfy f(x)g(x) = 0, then aibj = 0 for all i, j. As a generalization of
power serieswise Armendariz rings, S. Hizem in [7] introduced the concept of nil
power serieswise Armendariz rings and Z. K. Liu in [10] introduced the notion
of S-Armendariz rings, respectively. Following S. Hizem [7], a ring R is called
nil power serieswise Armendariz if whenever power series f(x) =

∑∞

i=0 aix
i,

g(x) =
∑∞

j=0 bjx
j ∈ R[[x]] satisfy f(x)g(x) ∈ nil(R)[[x]], then aibj ∈ nil(R)

for all i, j. Let (S,≤) be a cancellative torsion-free strictly ordered monoid
and let [[RS,≤]] be a generalized power series ring over R. According to Z. K.
Liu [10], the ring R is called S-Armendariz if whenever f , g ∈ [[RS,≤]] satisfy
fg = 0, then f(u)g(v) = 0 for each u, v ∈ S.

In this paper we investigate a generalization of both nil power serieswise
Armendariz rings and S-Armendariz rings which we call nil generalized power
serieswise Armendariz rings. We first observe the basic properties of nil gener-
alized power serieswise Armendariz rings, constructing typical examples. We
next study the relationship between the nilpotent property of R and that of
the generalized power series ring [[RS,≤]] whenever R is nil generalized power
serieswise Armendariz.

Now let us briefly review the concept of generalized power series rings. Let
(S,≤) be an ordered set. Recall that (S,≤) is artinian if every strictly de-
creasing sequence of elements of S is finite, and that (S,≤) is narrow if every
subset of pairwise order-incomparable elements of S is finite. Let S be a com-
mutative monoid. Unless stated otherwise, the operation of S shall be denoted
additively, the neutral element by 0 and |S| ≥ 2.

Let (S,≤) be a strictly ordered monoid (that is, (S,≤) is an ordered monoid
satisfying the condition that, if s, s′, t ∈ S and s < s′, then s + t < s′ + t)
and R a ring. Let [[RS,≤]] be the set of all maps f : S −→ R such that
supp(f) = {s ∈ S | f(s) 6= 0} is artinian and narrow. With pointwise addition,
[[RS,≤]] is an abelian additive group. For every s ∈ S and f , g ∈ [[RS,≤]], let
Xs(f, g) = {(u, v) ∈ S × S | s = u+ v, f(u) 6= 0, g(v) 6= 0}. It follows from [15,
Section 4.1] that Xs(f, g) is finite. This fact allows to define the operation of
convolution:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).

With this operation of convolution, and pointwise addition, [[RS,≤]] becomes a
ring (see [14, 15, 16]), which is called the ring of generalized power series. The
elements of [[RS,≤]] are called generalized power series with coefficients in R
and exponents in S.

Let s ∈ S, r ∈ R. We define Cs
r ∈ [[RS,≤]] as follows:

Cs
r (s) = r, Cs

r (t) = 0 (s 6= t ∈ S).
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It is clear that r → C0
r is a ring embedding of R into [[RS,≤]]. So we can

regard R as a subring of [[RS,≤]], and for any f ∈ [[RS,≤]], r ∈ R, fr = fC0
r .

Given a subset U ⊆ R, [[US,≤]] means the set {f ∈ [[RS,≤]] | f(s) ∈ U, s ∈
supp(f)}. In particular, [[nil(R)S,≤]] stands for the set {f ∈ [[RS,≤]] | f(s) ∈
nil(R), s ∈ supp(f)}. For any s ∈ S and any nature number n, we denote by
ns the sum of n copies of s. Other concepts and notations not defined here can
be found in [14, 15, 16].

2. Nil generalized power serieswise Armendariz rings

In this section, we first give the following concept, so called nil general-
ized power serieswise Armendariz ring, that is both a generalization of S-
Armendariz rings and nil power serieswise Armendariz rings.

Definition 2.1. Let (S,≤) be a strictly ordered monoid. A ring R is called
nil generalized power serieswise Armendariz if whenever f , g ∈ [[RS,≤]] satisfy
fg ∈ [[nil(R)S,≤]], then f(u)g(v) ∈ nil(R) for each u, v ∈ S.

Let S = (N ∪ {0},+), and ≤ is the usual order. Then [[RS,≤]] ∼= R[[x]].
So the ring R is nil generalized power serieswise Armendariz if and only if R
is nil power serieswise Armendariz. Hence a nil generalized power serieswise
Armendariz ring is a generalization of a nil power serieswise Armendariz ring.
Obviously, any subring of a nil generalized power serieswise Armendariz ring
is also nil generalized power serieswise Armendariz.

The following proposition enable us to generate more examples of nil gener-
alized power serieswise Armendariz rings.

Proposition 2.2. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and R a ring. Then the following conditions are equivalent:
(1) R is nil generalized power serieswise Armendariz.

(2) R is an NI ring.

Proof. (1) ⇒ (2) Suppose that a ∈ nil(R), r ∈ R, and 0 6= s ∈ S. Define
f ∈ [[RS,≤]] via

f(x) =







1 if x = 0,

rn if x = ns, n = 1, 2, . . . ,

0 otherwise.

Then C0
a(C

0
1 −Cs

r )f = C0
a ∈ [[nil(R)S,≤]]. Hence (C0

a(C
0
1 −Cs

r ))(0)f(s) = ar ∈
nil(R) because R is nil generalized power serieswise Armendariz. Note that
ar ∈ nil(R) implies ra ∈ nil(R).

Now we show that x+yz ∈ nil(R) for all x, y, z ∈ nil(R). Since y ∈ nil(R),
we have −y(x + yz) ∈ nil(R). Let 0 6= s ∈ S. Construct h, g ∈ [[RS,≤]] as
follows:

h(x) =







1 if x = 0,
−y if x = s,
0 otherwise,

and g(x) =







z if x = 0,
x+ yz if x = s,
0 otherwise.
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Then hg ∈ [[nil(R)S,≤]]. Since R is nil generalized power serieswise Armen-
dariz, h(0)g(s) = x + yz ∈ nil(R). Then by analogy with the proof of R.
Antoine [2], Lemma 3.1(d), we can show that nil(R) is an ideal, and so R is
an NI ring.

(2) ⇒ (1) Assume that R is an NI ring, and f , g ∈ [[RS,≤]] are such that

fg ∈ [[nil(R)S,≤]]. Then f g = 0, where f , g are the corresponding generalized
power series of f , g in [[(R/nil(R))S,≤]]. Observe that R/nil(R) is reduced
and hence S-Armendariz by [10]. Thus f(u)g(v) = 0 for any u, v ∈ S. Hence
f(u)g(v) ∈ nil(R) for any u, v ∈ S. Therefore R is nil generalized power
serieswise Armendariz. �

Corollary 2.3. Let (S1,≤1), (S2,≤2), . . ., (Sn,≤n) be cancellative torsion-free
strictly ordered monoids. Denote by (lex ≤) and (revlex ≤) the lexicographic

order, the reverse lexicographic order, respectively, on the monoid S1 × S2 ×
· · · × Sn. Then the following conditions are equivalent:

(1) R is an NI ring.

(2) R is nil generalized power serieswise Armendariz for any ordered monoid

(Si,≤i).
(3) R is nil generalized power serieswise Armendariz for ordered monoid

(S1 × S2 × · · · × Sn, (lex ≤)).
(4) R is nil generalized power serieswise Armendariz for ordered monoid

(S1 × S2 × · · · × Sn, (revlex ≤)).

Proof. It is easy to see that (S1 × S2 × · · · × Sn, (lex ≤)) and (S1 × S2 × · · · ×
Sn, (revlex ≤)) are cancellative torsion-free strictly ordered monoids. There-
fore we complete the proofs of (1) ⇔ (2), (1) ⇔ (3) and (1) ⇔ (4) by Proposi-
tion 2.2. �

A ringR is called n nil power serieswise Armendariz if f =
∑

ai1,i2,...,inx
i1
1 xi2

2

· · ·xin
n , g =

∑
bj1,j2,...,jnx

j1
1 xj2

2 · · ·xjn
n ∈ R[[x1, x2, . . . , xn]] satisfy fg ∈ nil(R)

[[x1, x2, . . . , xn]], then ai1,i2,...,inbj1,j2,...,jn ∈ nil(R) for all i1, i2, . . . , in and
j1, j2, . . . , jn.

Corollary 2.4. Let R be a ring. Then the following conditions are equivalent.

(1) The ring R is an NI ring.

(2) The ring R is nil power serieswise Armendariz.

(3) The ring R is n nil power serieswise Armendariz.

Proof. (1) ⇔ (2) is ciear.
(1) ⇔ (3) Note that if S = N

n, with the product order, or the lexicographic
order, or the reverse lexicographic order, then [[RS,≤]] ∼= R[[x1, x2, . . . , xn]] (see
[15, Example 4]). Then by Corollary 2.3, we complete the proof. �

Let R be a ring and let
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Tn(R) =














a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann








| aij ∈ R







,

Sn(R) =














a a12 · · · a1n
0 a · · · a2n
...

...
. . .

...
0 0 · · · a








| a, aij ∈ R







,

T (R, n) =














a1 a2 · · · an
0 a1 · · · an−1

...
...

. . .
...

0 0 · · · a1








| ai ∈ R







,

W (R) =











a11 0 0
a12 a22 a23
0 0 a33



 | aij ∈ R






,

and T (R,R) be the trivial extension of R by R. They are all rings under usual
matrix operations. Then we have the following results.

Proposition 2.5. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S. Then the following conditions are equivalent:
(1) R is nil generalized power serieswise Armendariz.

(2) Tn(R) is nil generalized power serieswise Armendariz.

(3) Sn(R) is nil generalized power serieswise Armendariz.

(4) T (R, n) is nil generalized power serieswise Armendariz.

(5) W (R) is nil generalized power serieswise Armendariz.

(6) T (R,R) is nil generalized power serieswise Armendariz.

(7) R[x]/(xn) is nil generalized power serieswise Armendariz for any n ≥ 2.

Proof. (1) ⇒ (2) Suppose that R is nil generalized power serieswise Armen-
dariz. Then by Proposition 2.2, R is an NI ring. Since

nil(Tn(R)) =








nil(R) R · · · R
0 nil(R) · · · R
...

...
. . .

...
0 0 · · · nil(R)








,

it is easy to see that Tn(R) is an NI ring. Then by Proposition 2.2, Tn(R) is
nil generalized power serieswise Armendariz.

(2) ⇒ (1) Note that any subring of a nil generalized power serieswise Armen-
dariz ring is also nil generalized power serieswise Armendariz. Hence (2) ⇒ (1)
is straightforward.

Similarly, we can show that (1) ⇔ (3), (1) ⇔ (4), (1) ⇔ (5), and (1) ⇔ (6).



468 OUYANG LUNQUN AND LIU JINWANG

The proof of (1) ⇔ (7) follows from the fact that R[x]/(xn) ∼= T (R, n) for
any n ≥ 2. �

Let M be an R-R-bimodule. A Z-bilinear map α : R×R −→ M is called a
Hochschild 2-cocycle if for all λ1, λ2, λ3 ∈ R, the following equation holds true:

α(λ1λ2, λ3)− α(λ1, λ2λ3) = λ1α(λ2, λ3)− α(λ1, λ2)λ3.

Given a Hochschild 2-cocycle α, there is a ring Hα(R,M), called the Hochs-
child extension of R by M via α, which is R⊕M as an abelian group, and the
multiplication is defined by

(r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2 + α(r1, r2))

for all r1, r2 ∈ R and all m1, m2 ∈ M .
This is an associative ring [5]. If α = 0, the extension ring H0(R,M) is the

trivial extension of R by M in the literature. Note that the nilpotent elements
of Hα(R,M) is (nil(R),M). Then we have the following result:

Proposition 2.6. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S. Then the following conditions are equivalent:
(1) R is nil generalized power serieswise Armendariz.

(2) Hα(R,M) is nil generalized power serieswise Armendariz

Remark 2.7. A ring is called symmetric if abc = 0 implies acb = 0 for all
a, b, c ∈ R. A ring R is called reversible if ab = 0 implies ba = 0 for all
a, b ∈ R. Let S be a torsion-free and cancellative monoid, ≤ a strict order
on S. Since commutative rings, reduced rings, symmetric rings, reversible
rings, semicommutative rings and 2-primal rings are NI rings, by Proposition
2.2, they are nil generalized power serieswise Armendariz rings. Hence nil
generalized power serieswise Armendariz rings forms a large class of rings.

Let S be a torsion-free and cancellative monoid, ≤ a strict order on S. Then
for any ring R, the n by n matrix ring Mn(R) is never nil generalized power
serieswise Armendariz. In fact, consider x = E12 and y = −E21, where Eij

denote the (i, j)-matrix unit. Then x, y ∈ nil(Mn(R)), but x−y 6∈ nil(Mn(R)).
Hence Mn(R) is not an NI ring.

The next lemma is known for S-Armendariz rings (see [10, Proposition 3.2]).

Lemma 2.8. Let S be a torsion-free and cancellative monoid, ≤ a strict order

on S and R an S-Armendariz ring. If f1, f2, . . ., fn ∈ [[RS,≤]] are such that

f1f2 · · · fn = 0, then f1(u1)f2(u2) · · · fn(un) = 0 for all u1, u2, . . ., un ∈ S.

The following result shows that our definition of a nil generalized power se-
rieswise Armendariz ring is an extension of the Zhongkui Liu’s [10] S-Armenda-

riz ring for the more general setting.

Proposition 2.9. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S. Then all S-Armendariz rings are nil generalized power serieswise

Armendariz.
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Proof. Suppose that R is S-Armendariz. Let a ∈ nil(R), r ∈ R and 0 6= s ∈ S.
Define m ∈ [[RS,≤]] via

m(x) =







1 if x = 0,
rn if x = ns, n = 1, 2, . . . ,
0 otherwise.

Then C0
a(C

0
1 − Cs

r )m = C0
a . Suppose ak = 0 for some positive integer k.

Then (C0
a(C

0
1 − Cs

r )m)k = (C0
a)

k = 0. Then by Lemma 2.8, (C0
a(0)(C

0
1 −

Cs
r )(0)m(s))k = (ar)k = 0, and so ar ∈ nil(R), ra ∈ nil(R).
Let a, b, c ∈ nil(R). Without loss of generality, we may assume that a,

b, c are all nonzero nilpotent elements. Let 0 6= s ∈ S. Now we claim that
a+ bc ∈ nil(R). Define f , g ∈ [[RS,≤]] via

f(x) =







1 if x = s,
−b if x = 2s,
0 otherwise,

and g(x) =







c if x = s,
a+ bc if x = 2s,
0 otherwise.

Let h = fg. Then supp(h)=supp(fg) = {2s, 3s, 4s}, h(2s) = c ∈ nil(R),
h(3s) = a ∈ nil(R) and h(4s) = −b(a + bc) ∈ nil(R). Let k be a positive
integer such that

(h(2s))k = (h(3s))k = (h(4s))k = ck = ak = (−b(a+ bc))k = 0.

Now we wish to claim that (fg)3k = h3k = 0. For any w ∈ S,

h3k(w) =
∑

(u1,...,u3k)∈Xw(h, . . . , h
︸ ︷︷ ︸

3k

)

h(u1)h(u2) · · ·h(u3k),

where ui ∈ {2s, 3s, 4s} for all 1 ≤ i ≤ 3k. Consider each

(u1, . . . , u3k) ∈ Xw(h, . . . , h
︸ ︷︷ ︸

3k

)

= {(u1, . . . , u3k) | u1 + · · ·+ u3k = w, ui ∈ {2s, 3s, 4s}, 1 ≤ i ≤ 3k}.

It would contain at least k, uj0 , where uj0 ∈ {2s, 3s, 4s}. Suppose that

ur1 = ur2 = · · · = urk = uj0

for some

1 ≤ r1 < r2 < · · · < rk ≤ 3k.

For each uv 6= urt , 1 ≤ t ≤ k, define h′
v ∈ [[RS,≤]] via

h′
v(x) =







1 if x = 0,
(h(uv))

p if x = puv, p = 1, 2, . . . , k − 1,
0 otherwise.
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Then (C0
1 − Cuv

h(uv)
)h′

v = C0
1 , and (C0

1 − Cuv

h(uv)
)(0)h′

v(uv) = h(uv). For conve-

nience we write h(u1)h(u2) · · ·h(u3k) as

h(u1) · · ·h(ur1−1)h(uj0)h(ur1+1) · · ·h(ur2−1)h(uj0)

· · ·h(urk−1)h(uj0) · · ·h(u3k).

By replacing each h(uv) (uv 6= urt , 1 ≤ t ≤ k) by the product (C0
1 −

Cuv

h(uv)
)h′

v, each h(uj0) by C0
h(uj0 )

, and consider the condition that (h(uj0))
k =

0, we have

(C0
1 − Cu1

h(u1)
)h′

1 · · ·h
′
r1−1C

0
h(uj0 )

(C0
1 − C

ur1+1

h(ur1+1)
)

· · ·h′
rk−1C

0
h(uj0 )

(C0
1 − C

urk+1

h(urk+1)
) · · ·h′

3k = 0.

Now since R is S-Armendariz, by Lemma 2.8,

(C0
1 − Cu1

h(u1)
)(0)h′

1(u1) · · ·h
′
r1−1(ur1−1)C

0
h(uj0 )

(0)(C0
1 − C

ur1+1

h(ur1+1)
)(0) · · ·

h′
rk−1(urk−1)C

0
h(uj0 )

(0)(C0
1 − C

urk+1

h(urk+1)
)(0) · · ·h′

3k(u3k)

= h(u1)h(u2) · · ·h(u3k) = 0.

Therefore we have prove that for each

(u1, u2, . . . , u3k) ∈ Xw(h, . . . , h
︸ ︷︷ ︸

3k

), h(u1)h(u2) · · ·h(u3k) = 0.

Hence for any w ∈ S, h3k(w) = 0, and so h3k = (fg)3k = 0. Then by Lemma
2.8, we obtain (f(s)g(2s))3k = (a+ bc)3k = 0. Hence a+ bc ∈ nil(R) is proved.
Then by analogy with the proof of R. Antoine [2], Lemma 3.1(d), we can show
that a − b ∈ nil(R). Hence R is an NI ring. Therefore by Proposition 2.2, R
is nil generalized power serieswise Armendariz. �

The following example shows that there exists a nil generalized power se-
rieswise Armendariz ring which is not S-Armendariz. Hence a nil generalized
power serieswise Armendariz ring is not a trivial extension of an S-Armendariz
ring.

Example 2.10. Let (S,≤) be a strictly totally ordered monoid satisfying
the condition that 0 ≤ s for every s ∈ S, and R a nil generalize power
serieswiae Armendariz ring. Then by Proposition 2.5, S4(R) is nil general-

ized power serieswise Armendariz. Let A =

(
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)

, B =

(
0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

)

,

C =

(
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)

, D =

(
0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0

)

be four elements in S4(R). Let 0 6= s ∈ S.

Define f , g ∈ [[(S4(R))S,≤]] via

f(x) =







A if x = 0,
B if x = s,
0 otherwise,

and g(x) =







C if x = 0,
D if x = s,
0 otherwise.

Then fg = 0, but f(0)g(s) 6= 0. So S4(R) is not S-Armendariz.
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Proposition 2.11. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and I an nil ideal of R (that is, I ⊆ nil(R)). Then R is nil

generalized power serieswise Armendariz if and only if R/I is nil generalized

power serieswise Armendariz.

Proof. By analogy with the proof of [7, Proposition 5], we complete the proof.
�

It was shown in [8, Proposition 3.10] that if I is a reduced ideal of R such that
R/I is power serieswise Armendariz then R is power serieswise Armendariz.
Here we have the following result:

Proposition 2.12. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and I an ideal of R. If I is semicommutative and R/I is nil gener-

alized power serieswise Armendariz, then R is nil generalized power serieswise

Armendariz.

Proof. Let f , g ∈ [[RS,≤]] be such that fg ∈ [[nil(R)S,≤]]. By Ribenbiom [15],
there exists a compatible strict total order ≤′ on S, which is finer than ≤ (that
is, for all s, t ∈ S, s ≤ t implies s ≤′ t). We will use transfinite induction on
the strictly totally ordered set (S,≤′) to show that f(u)g(v) ∈ nil(R) for any
u, v ∈ S. Let s and t denote the minimum elements of supp(f) and supp(g)
in the ≤′ order, respectively. If u ∈ supp(f) and v ∈ supp(g) are such that
u+ v = s+ t, then s ≤′ u and t ≤′ v. If s <′ u, then s+ t <′ u + v = s+ t, a
contradiction. Thus u = s. Similarly, v = t. Hence

(fg)(s+ t) =
∑

(u,v)∈Xs+t(f,g)

f(u)g(v) = f(s)g(t) ∈ nil(R)

because fg ∈ [[nil(R)S,≤]].
Now suppose that w ∈ S is such that for any u, v ∈ S with u + v <′ w,

f(u)g(v) ∈ nil(R). We will show that f(u)g(v) ∈ nil(R) for any u, v ∈ S with
u+ v = w. We write

Xw(f, g) = {(u, v) ∈ S × S | u+ v = w, u ∈ supp(f), v ∈ supp(g)}

as {(ui, vi) | i = 1, 2, . . . , n} such that

u1 <′ u2 <′ · · · <′ un.

Since S is cancellative, u1 = u2 and u1 + v1 = u2 + v2 = w imply v1 = v2.
Since ≤′ is a strict order, u1 <′ u2 and u1 + v1 = u2 + v2 = w imply v2 <′ v1.
Thus we have

vn <′ vn−1 <′ · · · <′ v2 <′ v1.

Now,

(fg)(w) =
∑

(u,v)∈Xw(f,g)

f(u)g(v) =

n∑

i=1

f(ui)g(vi) ∈ nil(R).

For any i ≥ 2, u1+ vi <
′ ui+ vi = w, and thus, by induction hypothesis, we

have f(u1)g(vi) ∈ nil(R).
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On the other hand, if we denote by f , g the corresponding generalized power
series of f and g in [[(R/I)S,≤]], f g ∈ [[(nil(R/I))S,≤]]. There exists nij ∈ N

such that (f(ui)g(vj))
nij ∈ I since R/I is nil generalized power serieswise

Armendariz. Then by analogy with the proof of Z. K. Liu [11], Theorem 3.6,
we can show that f(u)g(v) ∈ nil(R) for any u, v ∈ S with u + v = w. Hence
by transfinite induction, f(u)g(v) ∈ nil(R) for any u, v ∈ S. Therefore R is nil
generalized power serieswise Armendariz. �

Proposition 2.13. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and R a nil generalized power serieswise Armendariz ring. If

f1, f2, . . ., fn ∈ [[RS,≤]] are such that f1f2 · · · fn ∈ [[nil(R)S,≤]], then f1(u1)
f2(u2) · · · fn(un) ∈ nil(R) for all u1, u2, . . ., un ∈ S.

Proof. Suppose f1f2 · · · fn ∈ [[nil(R)S,≤]]. Then from f1(f2 · · · fn) ∈ [[nil(R)S,≤]],
it follows that f1(u1)(f2· · ·fn)(v) ∈ nil(R) for all u1, v ∈ S. Thus (C0

f1(u1)
f2· · ·

fn) (v) ∈ nil(R) for any v ∈ S, and so C0
f1(u1)

f2 · · · fn ∈ [[nil(R)S,≤]]. Now

from (C0
f1(u1)

f2) (f3· · ·fn) ∈ [[nil(R)S,≤]], it follows that (C0
f1(u1)

f2)(u2)(f3 · · ·

fn)(w) ∈ nil(R) for all u2, w ∈ S. Since

(C0
f1(u1)

f2)(u2) = f1(u1)f2(u2) for any u1, u2 ∈ S,

we have

f1(u1)f2(u2)(f3 · · · fn)(w) ∈ nil(R) for all u1, u2, w ∈ S.

Hence
C0

(f1(u1)f2(u2))
f3 · · · fn ∈ [[nil(R)S,≤]].

Continuing this manner, we see that f1(u1)f2(u2) · · · fn(un) ∈ nil(R) for all
u1, u2, . . ., un ∈ S. �

Corollary 2.14. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S. Then the following conditions are equivalent:
(1) If f1, f2, . . ., fn ∈ [[RS,≤]] satisfy f1f2 · · · fn ∈ [[nil(R)S,≤]], then f1(u1)

f2(u2) · · · fn(un) ∈ nil(R) for all u1, u2, . . ., un ∈ S.
(2) R is an NI ring.

Corollary 2.15. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S and R a nil generalized power serieswise Armendariz ring. Then

nil([[RS,≤]]) ⊆ [[nil(R)S,≤]].

Proof. It follows from Proposition 2.13. �

Recall that a ring R is said to be have bounded index of nilpotency if there
exists an integer n ≥ 1 such that xn = 0 for each nilpotent element of R.

Corollary 2.16. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S and R a ring. If [[nil(R)S,≤]] ⊆ nil([[RS,≤]]), then R has bounded

index of nilpotency.
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Proof. Otherwise, for any positive integer n, there exists an ∈ nil(R) such that
ann 6= 0. Let 0 6= s ∈ S. Define f ∈ [[RS,≤]] via

f(x) =

{
an if x = n!s, n = 1, 2, . . . ,
0 otherwise.

Then f ∈ [[nil(R)S,≤]], and supp(f)={s, 2!s, 3!s, . . . , n!s, . . .}. Since [[nil(R)S,≤]]
⊆ nil([[RS,≤]]), there exists k ≥ 2 such that fk = 0. For n > k, we have

fk(k(n!s)) =
∑

(u1,u2,...,uk)∈X(kn!s)(f, . . . , f
︸ ︷︷ ︸

k

)

f(u1)f(u2) · · · f(uk)

= f(n!s)f(n!s) · · · f(n!s) = akn 6= 0

which is impossible. �

Proposition 2.17. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and R a nil generalized power serieswise Armendariz ring. If

nil(R) is nilpotent, then [[nil(R)S,≤]] = nil([[RS,≤]]).

Proof. By Corollary 2.15, we have [[nil(R)S,≤]] ⊇ nil([[RS,≤]]). So if suffices
to show that [[nil(R)S,≤]] ⊆ nil([[RS,≤]]). Assume that f ∈ [[nil(R)S,≤]]. Since
nil(R) is nilpotent, there exists some positive integer k such that (nil(R))k = 0.
So for any s ∈ S,

fk(s) =
∑

(u1,u2,...,uk)∈Xs(f, . . . , f
︸ ︷︷ ︸

k

)

f(u1)f(u2) · · · f(uk) = 0.

Thus fk = 0, and so f ∈ nil([[RS,≤]]). Hence [[nil(R)S,≤]] ⊆ nil([[RS,≤]]).
Therefore [[nil(R)S,≤]] = nil([[RS,≤]]). �

Corollary 2.18. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and R a nil generalized power serieswise Armendariz right noe-

therian ring. Then [[nil(R)S,≤]] = nil([[RS,≤]]).

Proof. Since R is nil generalized power serieswise Armendariz, by Proposition
2.2, R is an NI ring. Then by the well known Levitzki’s Theorem [9], nil(R)
is nilpotent. Hence the result follows from Proposition 2.17. �

N. K. Kim et al. have shown in [8, Proposition 3.1] that a ring R is power
serieswise Armendariz if and only if R[x] is power serieswise Armendariz. For
nil power serieswise Armendariz rings, S. Hizem have shown in [7, Corollary
7] that if R is a semicommutative ring, then R[x] is a nil power serieswise
Armendariz ring. As to nil generalized power serieswise Armendariz rings, we
have the following:

Proposition 2.19. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and R a nil generalized power serieswise Armendariz ring. If nil(R)
is nilpotent, then [[RS,≤]] is nil generalized power serieswise Armendariz for any

torsion-free cancellative monoid T and any strict order ≤T on T .
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Proof. Since R is nil generalized power serieswise Armendariz, by Proposition
2.2, R is an NI ring. Since nil(R) is nilpotent, by Proposition 2.17, we have
[[nil(R)S,≤]] = nil([[RS,≤]]), and so [[RS,≤]] is anNI ring. Then by Proposition
2.2, [[RS,≤]] is nil generalized power serieswise Armendariz for any torsion-free
cancellative monoid T and any strict order ≤T on T . �

Corollary 2.20. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and R a nil generalized power serieswise Armendariz right noe-

therian ring. Then [[RS,≤]] is nil generalized power serieswise Armendariz for

any torsion-free cancellative monoid T and any strict order ≤T on T .

3. Nilpotent property of nil generalized power serieswise

Armendariz rings

Let U and V be two sets of R. We use U : V to represent the set {x ∈ R |
V x ⊆ U}. Then for any U ⊆ R, we have

nil(R) : U = {x ∈ R | Ux ⊆ nil(R)}

= {x ∈ R | xU ⊆ nil(R)}.

If nil(R) is an ideal, then nil(R) : U is an ideal of R for any subset U ⊆ R, and
[[nil(R)S,≤]] : V is also an ideal of [[RS,≤]] for any subset V of [[RS,≤]]. Given a
generalized power series f ∈ [[RS,≤]], let Cf denote the set {f(s) | s ∈ supp(f)},
and for a subset V ⊆ [[RS,≤]], let CV denote the set

⋃

f∈V

Cf .

Given a ring R, we define

NAnnR(2
R) = {nil(R) : U | U ⊆ R}

and
NAnn[[RS,≤]](2

[[RS,≤]]) = {[[nil(R)S,≤]] : V | V ⊆ [[RS,≤]]}.

Proposition 3.1. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and R a nil generalized power serieswise Armendariz ring. Then

φ : NAnnR(2
R) −→ NAnn[[RS,≤]](2

[[RS,≤]])

defined by φ(I) = [[IS,≤]] for every I ∈ NAnnR(2
R) is bijective.

Proof. We first prove that [[(nil(R) : U)S,≤]] = [[nil(R)S,≤]] : U for any sub-
set U ⊆ R. Suppose that f ∈ [[(nil(R) : U)S,≤]]. Then for any s ∈ S,
f(s) ∈ nil(R) : U , and so for any r ∈ U , f(s)r = (fC0

r )(s) ∈ nil(R). Hence
fC0

r ∈ [[nil(R)S,≤]], and so f ∈ [[nil(R)S,≤]] : U. Thus [[(nil(R) : U)S,≤]] ⊆
[[nil(R)S,≤]] : U . Now we claim that [[nil(R)S,≤]] : U ⊆ [[(nil(R) : U)S,≤]].
For any generalized power series f ∈ [[nil(R)S,≤]] : U , and any r ∈ U , we have
fr = fC0

r ∈ [[nil(R)S,≤]]. Then for any s ∈ S, (fC0
r )(s) = f(s)r ∈ nil(R),

and so for any s ∈ S, f(s) ∈ nil(R) : U . Hence f ∈ [[(nil(R) : U)S,≤]]. Thus
[[nil(R)S,≤]] : U ⊆ [[(nil(R) : U)S,≤]]. Hence [[nil(R)S,≤]] : U = [[(nil(R) :
U)S,≤]] is proved, and so φ is well defined.
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We next claim that φ is injective. Let

I1 = nil(R) : U1 ∈ NAnnR(2
R),

I2 = nil(R) : U2 ∈ NAnnR(2
R),

and

nil(R) : U1 6= nil(R) : U2.

Then [[(nil(R) : U1)
S,≤]] 6= [[(nil(R) : U2)

S,≤]] is clear. Hence φ(I1) 6= φ(I2).
So φ is injective.

Finally, we show that φ is surjective. Let [[nil(R)S,≤]] : V ∈ NAnn[[RS,≤]]

(2[[R
S,≤]]), where V ⊆ [[RS,≤]]. We wish to claim that

[[nil(R)S,≤]] : V = [[(nil(R) : CV )
S,≤]] = φ(nil(R) : CV ).

Let f ∈ [[nil(R)S,≤]] : V . Then fg ∈ [[nil(R)S,≤]] for any g ∈ V . Since
R is nil generalized power serieswise Armendariz, f(u)g(v) ∈ nil(R) for any
u, v ∈ S. Thus for any u ∈ S, f(u)CV ⊆ nil(R) and so for any u ∈ S,
f(u) ∈ nil(R) : CV . Then f ∈ [[(nil(R) : CV )

S,≤]] and so [[nil(R)S,≤]] : V ⊆
[[(nil(R) : CV )

S,≤]]. Conversely, assume that f ∈ [[(nil(R) : CV )
S,≤]]. Then

for any u ∈ S, f(u)CV ⊆ nil(R). Hence for any g ∈ V , it is easy to see that
fg ∈ [[nil(R)S,≤]]. So f ∈ [[nil(R)S,≤]] : V . Hence [[(nil(R) : CV )

S,≤]] ⊆
[[nil(R)S,≤]] : V . Thus

[[nil(R)S,≤]] : V = [[(nil(R) : CV )
S,≤]] = φ(nil(R) : CV ).

Hence φ is surjective. Therefore φ is a bijection. �

Corollary 3.2. Let NAnnR[[x]](2
R[[x]])={nil(R)[[x]] : V | V ⊆ R[[x]]}, and let

NAnnR[[x1,...,xn]](2
R[[x1,...,xn]])={nil(R)[[x1, . . . , xn]] :V | V ⊆ R[[x1, . . . , xn]]}.

Then we have the following results.

(1) If R is nil power serieswise Armendariz, then

φ : NAnnR(2
R) −→ NAnnR[[x]](2

R[[x]])

defined by φ(I) = I[[x]] for every I ∈ NAnnR(2
R) is bijective.

(2) If R is n nil power serieswise Armendariz, then

φ : NAnnR(2
R) −→ NAnnR[[x1,...,xn]](2

R[[x1,...,xn]])

defined by φ(I) = I[[x1, . . . , xn]] for every I ∈ NAnnR(2
R) is bijective.

Proof. By Proposition 3.1, we complete the proof. �

Proposition 3.3. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and R a nil generalized power serieswise Armendariz ring. If

for each nonempty subset X 6⊆ nil(R), nil(R) : X is generated as a right

ideal by a nilpotent element, then for each nonempty subset U ⊆ [[RS,≤]] with
U 6⊆ [[nil(R)S,≤]], [[nil(R)S,≤]] : U is generated as a right ideal by a nilpotent

element.
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Proof. Let U be a nonempty subset of [[RS,≤]] with U 6⊆ [[nil(R)S,≤]]. Suppose
that f ∈ [[nil(R)S,≤]] : U . Then fg ∈ [[nil(R)S,≤]] for each g ∈ U . Since R
is nil generalized power serieswise Armendariz, f(u)g(v) ∈ nil(R) for each u,
v ∈ S. Hence for any u ∈ S, f(u) ∈ nil(R) : CU . If CU ⊆ nil(R), then
U ⊆ [[nil(R)S,≤]], a contradiction. Hence there exists p ∈ nil(R) such that
nil(R) : CU = pR. Now we show that [[nil(R)S,≤]] : U = C0

p [[R
S,≤]]. Note

that for any u ∈ S, f(u) ∈ nil(R) : CU = pR. Thus for any u ∈ S, there exists
ru ∈ R such that f(u) = pru. Define h ∈ [[RS,≤]] via

h(x) =

{
ru if x = u ∈ supp(f) and f(u) = pru,
0 otherwise.

Then f = C0
ph ∈ C0

p [[R
S,≤]]. Hence [[nil(R)S,≤]] : U ⊆ C0

p [[R
S,≤]].

On the other hand, for each g ∈ [[RS,≤]], f ∈ U and each s ∈ S,

(C0
pgf)(s) =

∑

(v,u)∈Xs(g,f)

pg(v)f(u).

Since R is nil generalized power serieswise Armendariz, by Proposition 2.2, R
is an NI ring. Then it is easy to see that (C0

pgf)(s) ∈ nil(R) for each s ∈ S.

Hence C0
pgf ∈ [[nil(R)S,≤]]. Thus C0

p [[R
S,≤]] ⊆ [[nil(R)S,≤]] : U . Therefore

[[nil(R)S,≤]] : U = C0
p [[R

S,≤]] where C0
p ∈ nil([[RS,≤]]). �

Proposition 3.4. Let (S,≤) be a torsion-free cancellative strictly ordered

monoid satisfying the condition that s ≥ 0 for all s ∈ S and R a nil gen-

eralized power serieswise Armendariz ring. Then the following conditions are

equivalent:
(1) For each nonempty subset X 6⊆ nil(R), nil(R) : X is generated as a right

ideal by a nilpotent element.

(2) For each nonempty subset U ⊆ [[RS,≤]] with U 6⊆ [[nil(R)S,≤]], [[nil(R)S,≤]]

: U is generated as a right ideal by a nilpotent element.

Proof. (1) =⇒ (2) is immediate from Proposition 3.3.
(2) =⇒ (1) Let X be a nonempty subset of R with X 6⊆ nil(R). Then

X 6⊆ [[nil(R)S,≤]]. Then [[nil(R)S,≤]] : X = f [[RS,≤]] where f is a nilpotent
element of [[RS,≤]]. Since R is nil generalized power serieswise Armendariz,
by Corollary 2.15, f ∈ [[nil(R)S,≤]]. Hence for any s ∈ S, f(s) ∈ nil(R). In
particular, f(0) ∈ nil(R). Now we show that nil(R) : X = f(0)R. Since
R is nil generalized power serieswise Armendariz, by Proposition 2.2, R is an
NI ring. Then it is easy to see that f(0)R ⊆ nil(R) : X . So it suffices to
show that nil(R) : X ⊆ f(0)R. If m ∈ nil(R) : X , then C0

m ∈ [[nil(R)S,≤]] :
X = f [[RS,≤]]. There exists g ∈ [[RS,≤]] such that C0

m = fg. Since (S,≤) is
torsion-free cancellative strictly ordered monoid satisfying the condition that
s ≥ 0 for all s ∈ S, we have C0

m(0) = m = (fg)(0) = f(0)g(0) ∈ f(0) · R, and
so nil(R) : X ⊆ f(0) · R. Hence nil(R) : X = f(0) · R with f(0) ∈ nil(R).
Therefore, nil(R) : X is generated as a right ideal by a nilpotent element. �
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Proposition 3.5. Let S be a torsion-free and cancellative monoid, ≤ a strict

order on S, and R a nil generalized power serieswise Armendariz ring. If for

each p 6∈ nil(R), nil(R) : p is generated as a right ideal by a nilpotent element,

then for each f 6∈ [[nil(R)S,≤]], [[nil(R)S,≤]] : f is generated as a right ideal by

a nilpotent element.

Proof. Let f 6∈ [[nil(R)S,≤]]. Suppose that g ∈ [[nil(R)S,≤]] : f . Then
fg ∈ [[nil(R)S,≤]]. Since R is nil generalized power serieswise Armendariz,
f(u)g(v) ∈ nil(R) for all u, v ∈ S. Thus g(v) ∈ nil(R) : f(u) for all u, v ∈ S.
If for all u ∈ S, f(u) ∈ nil(R), then f ∈ [[nil(R)S,≤]], a contradiction. Thus
there exists u ∈ S such that f(u) 6∈ nil(R), and so there exists q ∈ nil(R) such
that nil(R) : f(u) = qR. Now we show that [[nil(R)S,≤]] : f = C0

q [[R
S,≤]].

Note that for any v ∈ S, g(v) ∈ nil(R) : f(u) = qR. So for any v ∈ S, there
exists rv ∈ R such that g(v) = qrv. Define h ∈ [[RS,≤]] via

h(x) =

{
rv if x = v ∈ supp(g) and g(v) = qrv,
0 otherwise.

Then g = C0
qh ∈ C0

q [[R
S,≤]], and so [[nil(R)S,≤]] : f ⊆ C0

q [[R
S,≤]].

On the other hand, for each h ∈ [[RS,≤]] and each s ∈ S,

(C0
qhf)(s) =

∑

(u,v)∈Xs(h,f)

qh(u)f(v).

Since R is nil generalized power serieswise Armendariz, by Proposition 2.2, R
is an NI ring. Then it is easy to see that (C0

qhf)(s) ∈ nil(R) for all s ∈ S.

Hence C0
qhf ∈ [[nil(R)S,≤]]. Thus C0

q [[R
S,≤]] ⊆ [[nil(R)S,≤]] : f . Therefore

[[nil(R)S,≤]] : f = C0
q [[R

S,≤]] where C0
q ∈ nil([[RS,≤]]). �

Proposition 3.6. Let S be a torsion-free cancellative strictly ordered monoid

satisfying the condition that s ≥ 0 for all s ∈ S and R a nil generalized power

serieswise Armendariz ring. Then the following conditions are equivalent:
(1) For each p 6∈ nil(R), nil(R) : p is generated as a right ideal by a nilpotent

element.

(2) For each f 6∈ [[nil(R)S,≤]], [[nil(R)S,≤]] : f is generated as a right ideal

by a nilpotent element.

Proof. It is similar to the proof as given in Proposition 3.4, �

Corollary 3.7. If R is a nil power serieswise Armendariz ring, then the fol-

lowing conditions are equivalent:
(1) For each nonempty subset X 6⊆ nil(R), nil(R) : X is generated as a right

ideal by a nilpotent element.

(2) For each nonempty subset U ⊆ R[[x]] with U 6⊆ nil(R)[[x]], nil(R)[[x] : U
is generated as a right ideal by a nilpotent element.

Corollary 3.8. If R is an n nil power serieswise Armendariz ring, then the

following conditions are equivalent:
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(1) For each nonempty subset X 6⊆ nil(R), nil(R) : X is generated as a right

ideal by a nilpotent element.

(2) For each nonempty subset U ⊆ R[[x1, . . . , xn]] with U 6⊆nil(R)[[x1, . . . , xn]],
nil(R)[[x1, . . . , xn] : U is generated as a right ideal by a nilpotent element.

Corollary 3.9. If R is a nil power serieswise Armendariz ring, then the fol-

lowing conditions are equivalent:
(1) For each p 6∈ nil(R), nil(R) : p is generated as a right ideal by a nilpotent

element.

(2) For each f 6∈ nil(R)[[x]], nil(R)[[x]] : f is generated as a right ideal by a

nilpotent element.

Corollary 3.10. If R is an n nil power serieswise Armendariz ring, then the

following conditions are equivalent:
(1) For each p 6∈ nil(R), nil(R) : p is generated as a right ideal by a nilpotent

element.

(2) For each f 6∈ nil(R)[[x1, . . . , xn]], nil(R)[[x1, . . . , xn]] : f is generated as

a right ideal by a nilpotent element.

For any subset X of a ring R, rR(X) = {a ∈ R | Xa = 0} denotes the
right annihilator of X in R. Faith [6] called a ring R right zip provided that
if the right annihilator rR(X) of a subset X of R is zero, then there exists a
finite subset Y ⊆ X such that rR(Y ) = 0. Beachy and Blair [4] showed that
if R is a commutative zip ring, then the polynomial ring R[x] over R is a zip
ring. As a generalization of zip rings, in [13] L. Ouyang introduced the notion
of weak zip rings. A ring R is a weak zip ring provided that for any subset
X of R, if nil(R) : X ⊆ nil(R), then there exists a finite subset Y ⊆ X such
that nil(R) : Y ⊆ nil(R). L. Ouyang showed that if R is a semicommutative
ring, then R is weak zip if and only if R[x] is weak zip. In the following we
investigate the weak zip property of the generalized power series ring [[RS,≤]]
under the condition that R is nil generalized power serieswise Armendariz.

Lemma 3.11. Let (S,≤) be a cancellative torsion-free strictly ordered monoid

and R a nil generalized power serieswise Armendariz ring. Then the following

conditions are equivalent:
(1) R is a weak zip ring.

(2) For each subset U ⊆ [[RS,≤]], if [[nil(R)S,≤]] : U ⊆ [[nil(R)S,≤]], then
there exists a finite subset V ⊆ U such that [[nil(R)S,≤]] : V ⊆ [[nil(R)S,≤]].

Proof. (1) =⇒ (2) Let U be a subset of [[RS,≤]] such that [[nil(R)S,≤]] : U ⊆
[[nil(R)S,≤]]. We first show that nil(R) : CU ⊆ nil(R). Suppose that a ∈
nil(R) : CU . Then for any f ∈ U and any s ∈ S, (fC0

a)(s) = f(s)a ∈ nil(R).
Thus for any f ∈ U , fC0

a ∈ [[nil(R)S,≤]], and so C0
a ∈ [[nil(R)S,≤]] : U ⊆

[[nil(R)S,≤]]. Hence a = C0
a(0) ∈ nil(R) and so nil(R) : CU ⊆ nil(R) is

proved. Since R is a weak zip ring, there exists a finite subset Y ⊆ CU such
that nil(R) : CU ⊆ nil(R). Without loss of generality, we may assume that
Y = {u1, u2, . . . , un} ⊆ CU . For each ui ∈ Y , there exists some fui

∈ U such
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that fui
(si) = ui for some si ∈ S. Let V be a minimal subset of U such that

fui
∈ V for each ui ∈ Y, 1 ≤ i ≤ n. Then V is a finite subset of U and Y ⊆ CV .

Now we show that [[nil(R)S,≤]] : V ⊆ [[nil(R)S,≤]]. Suppose h ∈ [[nil(R)S,≤]] :
V . Then gh ∈ [[nil(R)S,≤]] for every g ∈ V . Then g(u)h(v) ∈ nil(R) for each
u, v ∈ S since R is nil generalized power serieswise Armendariz, and so for any
v ∈ S, h(v) ∈ nil(R) : CV ⊆ nil(R) : Y ⊆ nil(R). Hence h ∈ [[nil(R)S,≤]].
Therefore [[nil(R)S,≤]] : V ⊆ [[nil(R)S,≤]], as desired.

(2) =⇒ (1)Assume that nil(R) : X ⊆ nil(R) where X is a subset of R.
We first show that [[nil(R)S,≤]] : X ⊆ [[nil(R)S,≤]]. Let f ∈ [[nil(R)S,≤]] : X .
Then xf = C0

xf ∈ [[nil(R)S,≤]] for each x ∈ X . Since R is nil generalized power
serieswise Armendariz, xf(s) ∈ nil(R) for each s ∈ S and x ∈ X . Thus for each
s ∈ S, f(s) ∈ nil(R) : X ⊆ nil(R). This implies that f ∈ [[nil(R)S,≤]] and so
[[nil(R)S,≤]] : X ⊆ [[nil(R)S,≤]]. Then we can find a finite subset Y ⊆ X such
that [[nil(R)S,≤]] : Y ⊆ [[nil(R)S,≤]]. Now we show that nil(R) : Y ⊆ nil(R).
If a ∈ nil(R) : Y , then C0

a ∈ [[nil(R)S,≤]] : Y ⊆ [[nil(R)S,≤]], and so a ∈ nil(R).
Hence nil(R) : Y ⊆ nil(R). Therefore R is a weak zip ring. �

Proposition 3.12. Let (S,≤) be a cancellative torsion-free strictly ordered

monoid and R a nil generalized power serieswise Armendariz ring with nil(R)
nilpotent. Then the following conditions are equivalent:

(1) R is a weak zip ring.

(2) [[RS,≤]] is a weak zip ring.

Proof. By Proposition 2.17 and Proposition 3.9, we complete the proof. �

Corollary 3.13. We have the following results.

(1) If R is a nil power serieswise Armendariz with nil(R) nilpotent. Then

R is a weak zip ring if and only if the power series ring R[[x]] is weak zip.

(2) If R is an n nil power serieswise Armendariz with nil(R) nilpotent. Then
R is a weak zip ring if and only if the power series ring R[[x1, . . . , xn]] in n

indeterminates is weak zip.

Corollary 3.14. We have the following results.

(1) If R is a nil power serieswise Armendariz right noetherian ring. Then

R is a weak zip ring if and only if the power series ring R[[x]] is weak zip.

(2) If R is an n nil power serieswise Armendariz right noetherian ring. Then

R is a weak zip ring if and only if the power series ring R[[x1, . . . , xn]] in n

indeterminates is weak zip.
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