HARDILY RANKED BIGROUPOIDS

Sun Shin Ahn, Jung Mi Ko, and Keum Sook So

Abstract

The notion of hardily ranked bigroupoids is introduced and related properties are investigated. By considering congruence relations on a hardily ranked bigroupoid, the quotient structure of hardily ranked bigroupoids is discussed.

1. Introduction

Alshehri et al. [1] introduced the notion of ranked bigroupoids and discussed ($X, *, \&$)-self-(co)derivations. Jun et al. [2] investigated further properties on $(X, *, \&)$-self-(co)derivations, and provided conditions for an $(X, *, \&)$ -self-(co)derivation to be regular. They introduced the notion of ranked $*-$ subsystems, and investigated related properties. Jun et al. [3] discussed the generalization of coderivations of ranked bigroupoids, and introduced the notion of generalized coderivations in ranked bigroupoids. Combining a generalized self-coderivation with a rankomorphism, they obtained new generalized coderivations of ranked bigroupoids. From the notion of $(X, *, \&)$-derivation, they induced the existence of a rankomorphism of ranked bigroupoids.

In this paper, we introduce the notion of hardily ranked bigroupoids, and investigate related properties. By considering congruence relations on a hardily ranked bigroupoid, we discuss the quotient structure of hardily ranked bigroupoids.

2. Preliminaries

Let X be a set with a distinguished element 0 . For any binary operation \emptyset on X, we consider the following axioms:

$$
\begin{align*}
& x \sharp y=0 \text { and } y \square x=0 \text { imply } x=y, \tag{2.1}\\
& x \bigsqcup(y \natural x)=0, \tag{2.2}\\
& (x \curvearrowleft(y \curvearrowleft z)) \natural((x \bigsqcup y) দ(x \bigsqcup z))=0, \tag{2.3}\\
& x \natural x=0=x \sharp 0,0 \natural x=x, \tag{2.4}
\end{align*}
$$

Received October 7, 2012.
2010 Mathematics Subject Classification. 20N02, 06F35, 03G25.
Key words and phrases. ranked bigroupoid, ranked S-system, ranked I-system, (medial) rarely ranked bigroupoid.

$$
\begin{align*}
& x \natural(y \natural z)=y \natural(x \natural z), \tag{2.5}\\
& x \natural(y \natural z)=(x \natural y) \natural(x \natural z), \tag{2.6}\\
& x \natural y=0 \Rightarrow(z \natural x) \natural(z \natural y)=0, \quad(y \natural z) \natural(x \natural z)=0, \tag{2.7}
\end{align*}
$$

A ranked bigroupoid (see [1]) is an algebraic system $(X, *, \bullet)$ where X is a non-empty set and "*" and " \bullet " are binary operations defined on X. We may consider the first binary operation $*$ as the major operation, and the second binary operation \bullet as the minor operation.

3. Hardily ranked bigroupoids

Definition 3.1. Let $(X, *, \&)$ be a ranked bigroupoid with a distinguished element 0 . Then $(X, *, \&)$ is called a hardily ranked bigroupoid if it satisfies:
(1) X is a semigroup under the minor operation (\&) in which the minor operation (\&) is distributive (on both sides) over the major operation $(*)$, that is,

$$
\begin{equation*}
x \&(y * z)=(x \& y) *(x \& z),(x * y) \& z=(x \& z) *(y \& z) \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$,
(2) The major operation (*) satisfies axioms (2.1), (2.2) and (2.3).

Example 3.2. Consider a set $X=\{0, a, b, c\}$ with a major operation ($*$) and a minor operation ($\&$) which are given as follows:

$$
x * y= \begin{cases}a & \text { if }(x, y) \in\{(0, a),(b, a),(c, a)\} \\ b & \text { if }(x, y) \in\{(0, b),(a, b),(c, b)\}, \\ c & \text { if }(x, y) \in\{(0, c),(a, c),(b, c)\} \\ 0 & \text { otherwise }\end{cases}
$$

and

$\&$	0	a	b	b
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
c	0	a	b	c

It is easy to verify that $(X, *, \&)$ is a hardily ranked bigroupoid.
Proposition 3.3. Every hardily ranked bigroupoid ($X, *, \&$) satisfies the axioms (2.4), (2.5), (2.6) and (2.7).

Proof. It is easy, and so we omit the proof.
Proposition 3.4. Let $(X, *, \&)$ be a hardily ranked bigroupoid. Then
(1) $(\forall x \in X)(0 \& x=x \& 0=0)$.
(2) $(\forall x, y \in X)(x * y=0 \Rightarrow(x \& z) *(y \& z)=0,(z \& x) *(z \& y)=0)$.

Proof. (1) Using (2.4) and (3.1), we have

$$
x \& 0=x \&(0 * 0)=(x \& 0) *(x \& 0)=0
$$

and

$$
0 \& x=(0 * 0) \& x=(0 \& x) *(0 \& x)=0
$$

for all $x \in X$.
(2) Let $x, y \in X$ be such that $x * y=0$. Then

$$
(z \& x) *(z \& y)=z \&(x * y)=z \& 0=0
$$

and

$$
(x \& z) *(y \& z)=(x * y) \& z=0 \& z=0
$$

for all $z \in X$.
Let \triangle be a new operation on a hardily ranked bigroupoid $(X, *, \&)$ which is defined by

$$
(\forall x, y \in X)(x \triangle y=(y * x) * x)
$$

Proposition 3.5. Every hardily ranked bigroupoid ($X, *, \&$) satisfies the following conditions:
(1) $(\forall x, y, z \in X)(x \&(y \triangle z)=(x \& z) \triangle(y \& z))$,
(2) $(\forall x, y \in X)((x * y) \triangle x=0,(x * y) \triangle y=x * y)$,
(3) $(\forall x, y \in X)((x * y) \triangle(y * x)=0)$.

Proof. (1) Using (3.1), we get

$$
\begin{aligned}
x \&(y \triangle z) & =x \&((z * y) * y)=(x \&(z * y)) *(x \& y) \\
& =((x \& z) *(x \& y)) *(x \& y)=(x \& y) \triangle(x \& z)
\end{aligned}
$$

for all $x, y, z \in X$.
(2) For any $x, y \in X$, we have

$$
\begin{aligned}
(x * y) \triangle x & =(x *(x * y)) *(x * y)=((x * x) *(x * y)) *(x * y) \\
& =(0 *(x * y)) *(x * y)=(x * y) *(x * y)=0
\end{aligned}
$$

by (2.6) and (2.4). Using (2.2) and (2.4), we obtain

$$
(x * y) \triangle y=(y *(x * y)) *(x * y)=0 *(x * y)=x * y
$$

for all $x, y \in X$.
(3) Using (2.5), (2.6) and (2.2), we get

$$
\begin{aligned}
(x * y) \triangle(y * x) & =((y * x) *(x * y)) *(x * y) \\
& =(x *((y * x) * y)) *(x * y) \\
& =((x *(y * x)) *(x * y)) *(x * y) \\
& =(0 *(x * y)) *(x * y)=(x * y) *(x * y)=0
\end{aligned}
$$

for all $x, y \in X$.

Definition 3.6. Let ∂ be a relation on a hardily ranked bigroupoid $(X, *, \&)$. Then ∂ is said to be
(i) right compatible if it satisfies:

$$
\begin{equation*}
(\forall x, y, z \in X)\left((x, y) \in \partial \Rightarrow\binom{(x * z, y * z) \in \partial}{(x \& z, y \& z) \in \partial}\right) \tag{3.2}
\end{equation*}
$$

(ii) left compatible if it satisfies:

$$
\begin{equation*}
(\forall x, y, z \in X)\left((x, y) \in \partial \Rightarrow\binom{(z * x, z * y) \in \partial}{(z \& x, z \& y) \in \partial}\right) \tag{3.3}
\end{equation*}
$$

(iii) compatible if it satisfies:

$$
\begin{equation*}
(\forall x, y, a, b \in X)\left((x, y),(a, b) \in \partial \Rightarrow\binom{(x * a, y * b) \in \partial,}{(x \& a, y \& b) \in \partial}\right) \tag{3.4}
\end{equation*}
$$

A compatible equivalence relation is called a congruence relation.
Proposition 3.7. Let ∂ be an equivalence relation on a hardily ranked bigroupoid $(X, *, \&)$. Then ∂ is a congruence relation on X if and only if it is both a left and right compatible relation.

Proof. Suppose that ∂ is a congruence relation on X. Let $x, y, z \in X$ be such that $(x, y) \in \partial$. Since $(z, z) \in \partial$, it follows from (3.4) that $(x * z, y * z) \in \partial$ and $(x \& z, y \& z) \in \partial$. Hence ∂ is a right compatible relation on X. Similarly, we know that ∂ is a left compatible relation on X.

Conversely, assume that ∂ is both a left and right compatible relation on X. Let $x, y, a, b \in X$ be such that $(x, y) \in \partial$ and $(a, b) \in \partial$. The right compatibility of ∂ implies that $(x * a, y * a) \in \partial$ and $(x \& a, y \& a) \in \partial$, and the left compatibility of ∂ induces that $(y * a, y * b) \in \partial$ and $(y \& a, y \& b) \in \partial$. Using the transitivity of ∂, we have $(x * a, y * b) \in \partial$ and $(x \& a, y \& b) \in \partial$. Therefore ∂ is a congruence relation on X.

For any equivalence relation ∂ on a hardily ranked bigroupoid $(X, *, \&)$ and an element x of X, we consider the following sets:

$$
x_{\partial}:=\{y \in X \mid(x, y) \in \partial\} \quad \text { and } \quad X / \partial:=\left\{x_{\partial} \mid x \in X\right\} .
$$

Theorem 3.8. Let ∂ be a congruence relation on a hardily ranked bigroupoid $(X, *, \&)$. Define both a major operation " $*_{\partial}$ " and a minor operation " α_{∂} " as follows:

$$
x_{\partial} *_{\partial} y_{\partial}=(x * y)_{\partial} \quad \text { and } \quad x_{\partial} \&_{\partial} y_{\partial}=(x \& y)_{\partial}
$$

for all $x_{\partial}, y_{\partial} \in X / \partial$. Then $\left(X / \partial, *_{\partial}, \&_{\partial}\right)$ is a hardily ranked bigroupoid.
Proof. The operations are well-defined because ∂ is a congruence relation on $(X, *, \&)$. It is easy to see that X / ∂ is a semigroup under the minor operation
$\&_{\partial}$ and the major operation " $* \partial$ " satisfies axioms (2.1), (2.2) and (2.3). Let $x_{\partial}, y_{\partial}, z_{\partial} \in X / \partial$. Then

$$
\begin{aligned}
x_{\partial} \&_{\partial}\left(y_{\partial} *_{\partial} z_{\partial}\right) & =x_{\partial} \&_{\partial}(y * z)_{\partial}=(x \&(y * z))_{\partial} \\
& =((x \& y) *(x \& z))_{\partial}=(x \& y)_{\partial} *_{\partial}(x \& z)_{\partial} \\
& =\left(x_{\partial} \&_{\partial} y_{\partial}\right) *_{\partial}\left(x_{\partial} \&_{\partial} z_{\partial}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(x_{\partial} *_{\partial} y_{\partial}\right) \&_{\partial} z_{\partial} & =(x * y)_{\partial} \&_{\partial} z_{\partial}=((x * y) \& z)_{\partial} \\
& =((x \& z) *(y \& z))_{\partial}=(x \& z)_{\partial} *_{\partial}(y \& z)_{\partial} \\
& =\left(x_{\partial} \&_{\partial} z_{\partial}\right) *_{\partial}\left(y_{\partial} \&_{\partial} z_{\partial}\right) .
\end{aligned}
$$

Therefore $\left(X / \partial, *_{\partial}, \&_{\partial}\right)$ is a hardily ranked bigroupoid.
Given ranked bigroupoids $(X, *, \&)$ and (Y, \bullet, ω), a map $f:(X, *, \&) \rightarrow$ (Y, \bullet, ω) is called a
(1) major rankomorphism if it satisfies

$$
\begin{equation*}
(\forall x, y \in X)(f(x * y)=f(x) \bullet f(y)) \tag{3.5}
\end{equation*}
$$

(2) minor rankomorphism if it satisfies

$$
\begin{equation*}
(\forall x, y \in X)(f(x \& y)=f(x) \omega f(y)) \tag{3.6}
\end{equation*}
$$

If f is both a major rankomorphism and a minor rankomorphism, we say that f is a rankomorphism (see [1]).
Proposition 3.9. Let $f:(X, *, \&) \rightarrow(Y, \bullet, \omega)$ be a rankomorphism of hardily ranked bigroupoids. Then
(1) $f(0)=0$.
(2) $(\forall x, y \in X)(x * y=0 \Rightarrow f(x) \bullet f(y)=0)$.
(3) $(\forall x, y \in X)(f(x \triangle y)=f(x) \triangle f(y))$.
(4) $f^{-1}(0)=\{0\} \Rightarrow x * y=0$ for all $x, y \in X$ with $f(x) \bullet f(y)=0$.

Proof. (1) $\sim(3)$ are straightforward.
(4) Assume that $f^{-1}(0)=\{0\}$ and let $x, y \in X$ be such that $f(x) \bullet f(y)=0$. Then $f(x * y)=f(x) \bullet f(y)=0$, and so $x * y=0$.

Theorem 3.10. Let ∂ be a congruence relation on a hardily ranked bigroupoid $(X, *, \&)$. The mapping

$$
f^{\sharp}: X \rightarrow X / \partial, x \mapsto x_{\partial}
$$

is an onto rankomorphism.
Proof. Let $x, y \in X$. Then

$$
f^{\sharp}(x * y)=(x * y)_{\partial}=x_{\partial} *_{\partial} y_{\partial}=f^{\sharp}(x) *_{\partial} f^{\sharp}(y)
$$

and

$$
f^{\sharp}(x \& y)=(x \& y)_{\partial}=x_{\partial} \&_{\partial} y_{\partial}=f^{\sharp}(x) \&_{\partial} f^{\sharp}(y) .
$$

Hence f^{\sharp} is a rankomorphism. Obviously, f^{\sharp} is onto.
Theorem 3.11. Let $f:(X, *, \&) \rightarrow(Y, \bullet, \omega)$ be a rankomorphism of hardily ranked bigroupoids. Consider the following set:

$$
\sharp_{f}:=\{(x, y) \in X \times X \mid f(x)=f(y)\} .
$$

(1) \sharp_{f} is a congruence relation on $(X, *, \&)$.
(2) There exists a unique one-one rankomorphism $\bar{f}: X / \sharp_{f} \rightarrow Y$ such that the following diagram commutes:

Proof. (1) It is clear that \sharp_{f} is an equivalence relation on $(X, *, \&)$. Let a, b, x, y $\in X$ be such that $(a, b),(x, y) \in \sharp_{f}$. Then $f(a)=f(b)$ and $f(x)=f(y)$, which imply that

$$
\begin{aligned}
& f(x * a)=f(x) \bullet f(a)=f(y) \bullet f(b)=f(y * b), \\
& f(x \& a)=f(x) \omega f(a)=f(y) \omega f(b)=f(y \& b) .
\end{aligned}
$$

Hence $(x * a, y * b) \in \sharp_{f}$ and $(x \& a, y \& b) \in \sharp_{f}$. Therefore \sharp_{f} is a congruence relation on $(X, *, \&)$.
(2) Let $\bar{f}: X / \sharp_{f} \rightarrow Y$ be a map defined by $\bar{f}\left(x_{\sharp_{f}}\right)=f(x)$ for all $x \in X$. Then \bar{f} is a well-defined map. For any $x_{\sharp_{f}}, y_{\sharp_{f}} \in X / \sharp_{f}$, we have

$$
\begin{aligned}
\bar{f}\left(x_{\sharp_{f}} *_{\sharp_{f}} y_{\sharp_{f}}\right) & =\bar{f}\left((x * y)_{\sharp_{f}}\right)=f(x * y) \\
& =f(x) \bullet f(y)=\bar{f}\left(x_{\sharp_{f}}\right) \bullet \bar{f}\left(y_{\sharp_{f}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{f}\left(x_{\sharp_{f}} \&_{\sharp_{f}} y_{\sharp_{f}}\right) & =\bar{f}\left((x \& y)_{\sharp_{f}}\right)=f(x \& y) \\
& =f(x) \omega f(y)=\bar{f}\left(x_{\sharp_{f}}\right) \omega \bar{f}\left(y_{\sharp_{f}}\right) .
\end{aligned}
$$

Hence \bar{f} is a rankomorphism. Clearly, \bar{f} is one-one. Let $g: X / \sharp_{f} \rightarrow Y$ be a rankomorphism such that $g \circ f^{\sharp}=f$. Then

$$
g\left(x_{\sharp_{f}}\right)=g\left(f^{\sharp}(x)\right)=f(x)=\bar{f}\left(x_{\sharp_{f}}\right)
$$

for all $x_{\sharp_{f}} \in X / \not \sharp_{f}$. Thus $g=\bar{f}$, which shows that \bar{f} is unique.
Corollary 3.12. For two congruence relations ∂ and ρ on a hardily ranked bigroupoid $(X, *, \&)$ with $\partial \subseteq \rho$, the set

$$
\rho / \partial:=\left\{\left(x_{\partial}, y_{\partial}\right) \in X / \partial \times X / \partial \mid(x, y) \in \rho\right\}
$$

is a congruence relation on X / ∂, and there exists a one-one and onto rankomorphism from $\frac{X / \partial}{\rho / \partial}$ to X / ρ.

Proof. Let $f: X / \partial \rightarrow X / \rho$ be a map defined by $f\left(x_{\partial}\right)=x_{\rho}$ for all $x_{\partial} \in X / \partial$. Then f is well-defined onto rankomorphism because of $\partial \subseteq \rho$. According to Theorem 3.11, it is sufficient to show that $\rho / \partial=\sharp_{f}$. If $\left(x_{\partial}, y_{\partial}\right) \in \rho / \partial$, then $(x, y) \in \rho$ and thus $x_{\rho}=y_{\rho}$. Thus $f\left(x_{\partial}\right)=x_{\rho}=y_{\rho}=f\left(y_{\partial}\right)$, which shows that $\left(x_{\partial}, y_{\partial}\right) \in \sharp_{f}$. Now, if $\left(x_{\partial}, y_{\partial}\right) \in \sharp_{f}$, then $x_{r h o}=f\left(x_{\partial}\right)=f\left(y_{\partial}\right)=y_{\rho}$, that is, $\left(x_{\partial}, y_{\partial}\right) \in \rho / \partial$. Therefore $\rho / \partial=\sharp_{f}$. This completes the proof.

References

[1] N. O. Alshehri, H. S. Kim, and J. Neggers, Derivations on ranked bigroupoids, Appl. Math. Inf. Sci. 7 (2013), no. 1, 161-166.
[2] Y. B. Jun, H. S. Kim, and E. H. Roh, Further results on derivations of ranked bigroupoids, J. Appl. Math. 2012 (2012), Article ID 783657, 9 pages; doi:10.1155/2012/783657.
[3] Y. B. Jun, K. J. Lee, and C. H. Park, Coderivations of ranked bigroupoids, J. Appl. Math. 2012 (2012), Article ID 626781, 8 pages; doi:10.1155/2012/626781.

Sun Shin Ahn
Department of Mathematics
Dongguk University
Seoul 100-715, Korea
E-mail address: sunshine@dongguk.edu
Jung Mi Ko
Department of Mathematics
Gangneung-Wonju National University
Gangneung 210-702, Korea
E-mail address: jmko@gwnu.ac.kr
Keum Sook So
Department of Mathematics
Hallym University
Chuncheon 200-702, Korea
E-mail address: ksso@hallym.ac.kr

