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THE NUMBER OF POINTS ON ELLIPTIC CURVES

y2 = x3 + Ax AND y2 = x3 + B3 MOD 24

Wonju Jeon and Daeyeoul Kim

Abstract. In this paper, we calculate the number of points on elliptic
curves y2 = x3 +Ax over Fpr modulo 24. This is a generalization of [8],
[9] and [16].

1. Introduction

Let p > 3 be a prime, and let Fp be the finite field of p elements. From now on
we let EB

A denote the elliptic curve y2 = x3+Ax+B over Fp where A,B ∈ Fp.
The set of points (x, y) ∈ Fp ×Fp together with a point O at infinity is called
the set of points of EB

A in Fp and is denoted by EB
A (Fp). And let #EB

A (Fp)
be the cardinality of the set EB

A (Fp). For a more detailed information about
elliptic curves in general, see [12]. It has been always interesting to look for
the number of points over a given field Fp. In [11], three algorithms to find the
number of points on an elliptic curve over a finite field are given. Also in [3],
[4] the number of rational points on Frey elliptic curves E : y2 = x3 − n2x and
E : y2 = x3 + a3 are found.

The purpose of this paper is to give a straightforward proof of the number
of points mod 24 on elliptic curves over finite fields. One found the number of
points on E : y2 = x3 +Ax over Fp ([2], [3], [6], [8], [10]).

In 2003, H. Park, D. Kim and H. Lee, calculated the number of points on
elliptic curves E0

A : y2 = x3 + Ax over Fp mod 8 ([5], [8]). The purpose of
this paper is to give a straightforward calculation of the number of points on
elliptic curves over a finite fields mod 24.

Throughout the article we adopt the following notations:
• q4: a quartic residue in Fp

• q2: a quadratic residue but quartic non-residue in Fp

• q1: a quadratic non-residue in Fp

• p = a2 + b2 with a odd and b even number in Z
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In this paper, without employing the advanced theory of elliptic curves,
we compute the number of points mod 24 on elliptic curves. We prove the
following:

Theorem 1.1. Let E0
A : y2 = x3+Ax be an elliptic curve modulo p with p > 3,

and t ∈ Z such that 3t2 ≡ 1 (mod p).

(1) Let p = a2 + b2 ≡ 1 (mod 24) be a prime with 6 | b. If −1 + 2t = q4,
then

#E0
A(Fp) ≡







0 (mod 24) if A = q4
4 (mod 24) if A = q2
2 (mod 24) if A = q1,

and if −1 + 2t = q2, then

#E0
A(Fp) ≡







16 (mod 24) if A = q4
12 (mod 24) if A = q2
2 (mod 24) if A = q1.

(2) If p = a2 + b2 ≡ 1 (mod 24) is a prime with 2 | b and 3 ∤ b, then

#E0
A(Fp) ≡















8 (mod 24) if A = q4
20 (mod 24) if A = q2
18 (mod 24) if A = q1
10 (mod 24) if A = q′1.

(3) Let p = a2 + b2 ≡ 13 (mod 24) be a prime with 6 | b. If −1 + 2t = q4,
then

#E0
A(Fp) ≡







12 (mod 24) if A = q4
16 (mod 24) if A = q2
2 (mod 24) if A = q1,

and if −1 + 2t = q2, then

#E0
A(Fp) ≡







4 (mod 24) if A = q4
0 (mod 24) if A = q2
2 (mod 24) if A = q1.

(4) If p = a2 + b2 ≡ 13 (mod 24) is a prime with 2 | b and 3 ∤ b, then

#E0
A(Fp) ≡















20 (mod 24) if A = q4
8 (mod 24) if A = q2
10 (mod 24) if A(−1 + 2t) = q2
18 (mod 24) if A(−1 + 2t) = q4.

(5) If p ≡ 5 (mod 24) is a prime, then

#E0
A(Fp) ≡















4 (mod 24) if A = q4
8 (mod 24) if A = q2
2 (mod 24) if A = q1

10 (mod 24) if A = q′1



THE NUMBER OF POINTS ON ELLIPTIC CURVES 435

or

#E0
A(Fp) ≡















20 (mod 24) if A = q4
16 (mod 24) if A = q2
2 (mod 24) if A = q1
10 (mod 24) if A = q′1.

(6) If p ≡ 17 (mod 24) is a prime, then

#E0
A(Fp) ≡















8 (mod 24) if A = q4
4 (mod 24) if A = q2
2 (mod 24) if A = q1

10 (mod 24) if A = q′1
or

#E0
A(Fp) ≡















16 (mod 24) if A = q4
20 (mod 24) if A = q2
2 (mod 24) if A = q1
10 (mod 24) if A = q′1.

2. Elliptic curves over finite fields

We denote Eb
a be an elliptic curve y2 = x3 + ax+ b over Fp where a, b ∈ Fp.

The elliptic curves Eb
a/Fp : y2 = x3 + ax + b and Eb′

a′/Fp : y2 = x3 + a′x + b′

are isomorphic over Fp if and only if there exists u ∈ F ∗
p such that u4a′ = a

and u6b′ = b ([12]). If Eb
a
∼= Eb′

a′ over Fp, then the isomorphism is given by

φ : Eb
a → Eb′

a′ , φ : (x, y) 7→ (u−2x, u−3y),(2.1)

or equivalently,

ψ : Eb′

a′ → Eb
a, ψ : (x, y) 7→ (u2x, u3y).

Using (2.1), we get the following proposition.

Proposition 2.1. (1) Let B = {Eb
0 : y2 = x3 + b, 1 ≤ b ≤ p − 1}. If p ≡ 1

(mod 6) is prime, then there are six isomorphism classes of elliptic curves in

B, i.e., E1
0 , E

g
0 , E

g2

0 , Eg3

0 , Eg4

0 and Eg5

0 .

(2) Let B = {E0
a : y2 = x3 + ax, 1 ≤ a ≤ p− 1}. If p ≡ 1 (mod 4) is prime,

then there are four isomorphism classes of elliptic curves in B, i.e., E1
0 , E

g
0 ,

Eg2

0 , Eg3

0 : y2 = x3 + g3.

A twist of a curve given in short Weierstrass form Eb
a is given by Eb′

a′ where
a′ = v2a, b′ = v3b for some quadratic non-residue v ∈ Fp. Let p > 3 be a prime,
and let Fp be the finite field of p elements. The set of points (x, y) ∈ Fp × Fp

together with a point O at infinity is called the set of Fp-rational points of E
b
a

on Fp and is denoted by Eb
a(Fp). The cardinality of the set Eb

a(Fp) is denoted
by #Eb

a(Fp).

Proposition 2.2 ([1], p. 153). Suppose E and E′ have the same j-invariant
but are not isomorphic over the field Fp. If j 6= 0 and j 6= 1728, then E′ is the

quadratic twist of E, and if #E(Fp) = p+ 1− v, then #E′(Fp) = p+ 1 + v.
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Proposition 2.3 ([3], Theorem 9). Let p ≡ 1 (mod 6) be prime. Then

p−1
∑

a=1

#Ea3

0 (Fp) = p2 − 1.

Using the theory of a quadratic twist of elliptic curve (Proposition 2.2), we
can reprove Proposition 2.3 and similar results on E0

a(Fp).

Theorem 2.4. Let p > 3 be a prime. Then the followings are satisfied.

(1)

p−1
∑

a=1

#Ea
0 (Fp) =

p−1
∑

a=1

#Ea3

0 (Fp) = p2 − 1.

(2)

p−1
∑

a=1

#E0
a(Fp) =

p−1
∑

a=1

#E0
a2(Fp) = p2 − 1.

Proof. (1) Let g be a primitive root of p. Then, {1, 2, . . . , p − 1} = {gk | 1 ≤
k ≤ p− 1} and

p−1
∑

a=1

#Ea
0 (Fp) =

p−1
∑

k=1

#Egk

0 (Fp)

=
1

2

p−1
∑

k=1

(

#E
gk(Fp)
0 +#Egk+3

0 (Fp)
)

.

Since Eu3gk

0 : y2 = x3 + u3gk is the quadratic twist of Egk

0 : y2 = x3 + gk for a

quadratic non-residue u = g, #Egk

0 (Fp)+#Egk+3

0 (Fp) = (p+1−v)+(p+1+v) =
2(p+ 1). Therefore,

p−1
∑

a=1

#Ea
0 (Fp) =

1

2

p−1
∑

k=1

(

#Egk

0 (Fp) + #Egk+3

0 (Fp)
) p− 1

2
· 2 · (p+ 1)

= p2 − 1.

Likewise, {13, 23, . . . , (p− 1)3} = {g3k | 1 ≤ k ≤ p− 1} and

p−1
∑

a=1

#Ea3

0 (Fp) =

p−1
∑

k=1

#Eg3k

0 (Fp)

=
1

2

p−1
∑

k=1

(

#Eg3k

0 (Fp) + #Eg3(k+1)

0 (Fp)
)

.

Since Eu3g3k

0 : y2 = x3 + u3g3k is the quadratic twist of Eg3k

0 : y2 = x3 + g3k

for a quadratic non-residue u = g, #Eg3k

0 (Fp) + #Eg3k+3

0 (Fp) = 2(p + 1) by
Proposition 2.2. Therefore,

p−1
∑

a=1

#Ea3

0 (Fp) =
1

2

p−1
∑

k=1

(

#Eg3k

0 (Fp) + #Eg3k+3

0 (Fp)
)
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=
p− 1

2
· 2 · (p+ 1) = p2 − 1.

(2) Let g be a primitive root of p. Then, {1, 2, . . . , p − 1} = {gk | 1 ≤ k ≤
p− 1} and

p−1
∑

a=1

#E0
a(Fp) =

p−1
∑

k=1

#E0
gk (Fp) =

1

2

p−1
∑

k=1

(

#E0
gk(Fp) + #E0

gk+2 (Fp)
)

.

Since E0
u2gk : y2 = x3+u2gkx is the quadratic twist of E0

gk : y2 = x3+gkx for a

quadratic non-residue u = g, #E0
gk(Fp)+#E0

gk+2 (Fp) = (p+1−v)+(p+1+v) =

2(p+ 1) by Proposition 2.2. Therefore,

p−1
∑

a=1

#E0
a(Fp) =

1

2

p−1
∑

k=1

(

#E0
gk(Fp) + #E0

gk+2(Fp)
)

=
p− 1

2
· 2 · (p+ 1) = p2 − 1.

Likewise, {12, 22, . . . , (p− 1)2} = {g2k | 1 ≤ k ≤ p− 1} and

p−1
∑

a=1

#E0
a2(Fp) =

p−1
∑

k=1

#E0
g2k (Fp)

=
1

2

p−1
∑

k=1

(

#E0
g2k (Fp) + #E0

g2(k+1)(Fp)
)

.

Since E0
u2g2k : y2 = x3 + u2g2kx is the quadratic twist of E0

g2k : y2 = x3 + g2k

for a quadratic non-residue u = g, #E0
g2k (Fp) + #E0

g2k+2 (Fp) = 2(p + 1) by

Proposition 2.2. Therefore,

p−1
∑

a=1

#E0
a2 (Fp) =

1

2

p−1
∑

k=1

(

#E0
g2k (Fp) + #E0

g2k+2 (Fp)
)

=
p− 1

2
· 2 · (p+ 1) = p2 − 1.

�

In the nineteenth century Dirichlet (see [14]) showed:

Proposition 2.5 ([13]). Let p and q be distinct primes such that p ≡ 1
(mod 4), p = a2 + b2, 2 | b, and let q∗ = (−1)(q−1)/2q. Then q∗ is a quar-

tic residue of p if and only if there is an integer m such that m2 ≡ p (mod q)

and
(

m(m+b)
q

)

= 1.

In [9], we considered the following:
Let p ≡ 1 (mod 12) be a prime and let 3t2 ≡ 1 (mod p) with t ∈ F∗

p. Then

#E0
A : y2 = x3 +Ax ≡ 0 (mod 3) if and only if −A± 2tA are quartic residues

in Fp.
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Using this property, the quadratic reciprocity law and elementary several
calculations, we calculated the number of rational points mod 12 on elliptic
curve over finite fields according to the case by case. We wrote the following
theorem.

Proposition 2.6 ([9], [16]). Let p be a rational prime, and let t be an element

of F ∗
p = Fp − {0} such that 3t2 ≡ 1 (mod p).

(1) If p ≡ 1, 11 (mod 12) is a prime and 3t2 ≡ 1 (mod p), then we get the

following table.

p A −1± 2t A(−1± 2t) #E0
A(Fp)

q4 q4 q4 0 (mod 24)
q4 q2 q2 8 or 16 (mod 24)
q4 q1 q1 8 or 16 (mod 24)
q2 q2 q4 12 (mod 24)

1 (mod 24) q2 q4 q2 4 or 20 (mod 24)
q2 q1 q1 4 or 20 (mod 24)
q1 q1 q4 18 (mod 24)
q1 q1 q2 2 or 10 (mod 24)
q1 q4 q1 2 or 10 (mod 24)
q1 q2 q1 2 or 10 (mod 24)

11 (mod 24) all 12 (mod 24)
q4 q4 q4 12 (mod 24)
q4 q2 q2 4 or 20 (mod 24)
q4 q1 q1 4 or 20 (mod 24)
q2 q2 q4 0 (mod 24)

13 (mod 24) q2 q4 q2 8 or 16 (mod 24)
q2 q1 q1 8 or 16 (mod 24)
q1 q1 q4 18 (mod 24)
q1 q1 q2 2 or 10 (mod 24)
q1 q4 q1 2 or 10 (mod 24)
q1 q2 q1 2 or 10 (mod 24)

23 (mod 24) all 0 (mod 24)

(2) If p ≡ 5, 7 (mod 12) is a prime, then we get the following table.

p A #E0
A(Fp)

q4 4 or 20 (mod 24)
5 (mod 24) q2 8 or 16 (mod 24)

q1 2 or 10 (mod 24)
7 (mod 24) all 8 (mod 24)

q4 8 or 16 (mod 24)
17 (mod 24) q2 4 or 20 (mod 24)

q1 2 or 10 (mod 24)
19 (mod 24) all 20 (mod 24)

(3) Let p > 3 be an odd prime. Then we get the following table.
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p (Bp ) (3B(2t−1)
p ) #EB3

0 (Fp)

1 1 0 (mod 24)
1 (mod 12) 1 −1 12 (mod 24)

−1 1 8 or 16 (mod 24)
−1 −1 4 or 20 (mod 24)

5 (mod 12) 1 or − 1 6 (mod 12)
1 12 (mod 24)

7 (mod 12) −1 4 or 20 (mod 24)
11 (mod 12) 1 or − 1 1 or − 1 0 (mod 12)

In this proposition, we found a relation between a quadratic equation and
a family of elliptic curves over a finite field. Let p ≡ 1 (mod 12) be a prime
and let 3t2 ≡ 1 (mod p) with t ∈ F ∗

p . Then #E0
A : y2 = x3 +Ax ≡ 0 (mod 3)

if and only if −A± 2tA are quartic residues in Fp ([9]). Under this condition,
we obtain a following motivation:

Given a quadratic equation At2 + Bt + C ≡ 0 (mod p) and E
g(k)
f(k) : y2 =

x3 + g(k)x+ f(k).

(1) Can one find f(k) and g(k) satisfying #E
g(k)
f(k)(Fp) ≡ α (mod n) for a

fixed n and for almost all primes p?
Moreover, we may consider partial conditions for some primes, for ex-
ample p ≡ 1 ( mod 4).

(2) Can one classify f(k) and g(k) satisfying #E(Fp) ≡ α( mod n) for a
fixed n in Fp?

We think that this sort of problems do not seem to be easy to handle in
general. In this paper, we consider the case A = 3, B = 0 and C = −1.

3. The number of solutions for elliptic curves with 3t2 ≡ 1 (mod p)

Using Proposition 2.2, we obtain the proof of Theorem 1.1.

Proof. Note that ( 3p ) = 1 if and only if p ≡ 1, 11 (mod 12) by Proposition 2.5.

Put 3∗ = (−1)
3−1
2 · 3 = −3 in Proposition 2.5. Then −3 is a quartic residue

modulo p if and only if m2 ≡ p (mod 3) and (m(m+b)
3 ) = 1. Thus we derive

that −3 is a quartic residue modulo p = a2 + b2 with 6 | b. If p ≡ 1 (mod 24),
then −3 is a quartic residue modulo p if and only if 3 = q4. If p = a2 + b2 is a
prime with 6 | b, then ( tp ) = 1. This leads us to the fact that

(

3t− 2

p

)(

t

p

)

=

(

3t2 − 2t

p

)

=

(

2t− 1

p

)(−1

p

)

= 1.

So, we consider 2t − 1 = q4 or q2. In the case of −1 + 2t = q4, we find that
#E0

q4(Fp) + #E0
q2(Fp) ≡ 2p + 2 ≡ 2 + 2 ≡ 0 + 4 (mod 24) and #E0

q4(Fp) +

#E0
q2(Fp) ≡ 2p+2 ≡ 2+2 ≡ 0+4 (mod 24) by Proposition 2.2 and Proposition

2.6. Hence #E0
q2(Fp) ≡ 4 (mod 24).
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Let −1 + 2t = q2. By Proposition 2.6, #E0
q1(Fp) ≡ 2 or 10 (mod 24). We

can derive that #E0
q1(Fp) +#E0

q′1
(Fp) ≡ 2p+ 2 ≡ 2 + 2 ≡ 2 + 2 (mod 24). So,

this case, #E0
q1(Fp) ≡ 2 (mod 24). Other cases are similar. �

Theorem 3.1. Let EB3

0 : y2 = x3 + B3 be an elliptic curve modulo p with

p ≡ 1 (mod 6), and t ∈ Z such that 3t2 ≡ 1 (mod p).
(1) Let p = a2 + b2 ≡ 1 (mod 12) be a prime with 6 | b. Then

#EB3

0 (Fp) ≡







0 (mod 24) if
(

B
p

)

= 1

4 (mod 24) if
(

B
p

)

= −1.

(2) If p = a2 + b2 ≡ 1 (mod 12) is a prime with 2 | b and 3 ∤ b, then

#EB3

0 (Fp) ≡







12 (mod 24) if
(

B
p

)

= 1

16 (mod 24) if
(

B
p

)

= −1.

(3) If p ≡ 7 (mod 12) is a prime, then

#EB3

0 (Fp) ≡







12 (mod 24) if
(

B
p

)

= 1

4 (mod 24) if
(

B
p

)

= −1.

Proof. It is well-known that (t+ 1)2 = t2 + 2t+ 1 = 2
3 (3t+ 2) and (t − 1)2 =

− 2
3 (3t− 2). Thus, we have

(

3t+2
p

)

=
(

3t−2
p

)

= 1, if p ≡ 1 (mod 24),(3.1)
(

3t+2
p

)

=
(

3t−2
p

)

= −1, if p ≡ 13 (mod 24),(3.2)
(

3t+2
p

)

= −1,
(

3t−2
p

)

= 1, if p ≡ 11 (mod 24),(3.3)
(

3t+2
p

)

= 1,
(

3t−2
p

)

= −1, if p ≡ 23 (mod 24).(3.4)

On the other hand, we readily check that

t(2t− 1) ≡ −1

3
(3t− 2) (mod p) and t(2t+ 1) ≡ 1

3
(3t+ 2) (mod p).(3.5)

If p = a2 + b2 ≡ 1 (mod 24) with 6 | b, −3 is a quartic residue modulo p by
Proposition 2.5. By (3.1) and (3.5), we derive that

(

t

p

)

=

(

2t− 1

p

)

=

(

2t+ 1

p

)

= 1.

Put (Bp ) = 1. Then, we derive from Proposition 2.6 and Proposition 2.2 that

#EB3

0 ≡ 0 (mod 24), #EB3

0 + #Eg3

0 = 2p + 2 ≡ 4 (mod 24) and #Eg3

0 ≡ 4
(mod 24). Other results are similar. �
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The zeta function of a curve C is defined to be the exponential generating
function

Z(C, T ) = exp





∑

k≥1

Nk
T k

k



 ,

where Nk equals the number of points on C over Fpk . A result due to Weil
[15] is that the zeta function of an elliptic curve, in fact any curve, Z(C, T ) is
rational, and moreover can be expressed as

Z(C, T ) =
(1 − αT )(1− βT )

(1− T )(1− qT )
=

1− (α+ β)T + αβT 2

(1− T )(1− qT )
.

The inverse roots α and β satisfy a functional equation which reduces to αβ = p
in the elliptic curve case. The value v = α + β is related to N1 = p + 1 − v.
In addition, the discriminant of the quadratic polynomial in the numerator is
negative, and so the quadratic has two conjugate roots 1

α and 1
β with absolute

value 1√
p . Writing the numerator in the form 1− vT +pT 2 = (1−αT )(1−βT )

and taking the derivatives of logarithms of both sides, one can obtain the
number of Fpk -points on E, denoted by Nk, as follows:

(3.6) Nk = pk + 1− αk − βk, k = 1, 2, . . . .

All the results concerning the number of points on Fp(mod 24) obtained here
for prime p > 3 can be generalized to Fpk , for a natural number k > 1, using
(3.6) and Theorem 1.1, Theorem 3.1.

Theorem 3.2. Let E0
A : y2 = x3 + Ax be an elliptic curve modulo p with

p > 3, and l and t ∈ Z such that 3t2 ≡ 1 (mod p) and let q′1 be a quadratic

non-residue modulo p with q′1q1 = q4.

(1) Let p = a2 + b2 ≡ 1 (mod 24) be a prime with 6 | b. If −1 + 2t = q4,
then

#E0
A(Fpr ) ≡



























0 (mod 24) if A = q4
4 (mod 24) if A = q2 and r ≡ 1 (mod 2)
0 (mod 24) if A = q2 and r ≡ 0 (mod 2)
2 (mod 24) if A = q1 and r ≡ 1 (mod 2)
4 (mod 24) if A = q1 and r ≡ 2 (mod 4)
0 (mod 24) if A = q1 and r ≡ 0 (mod 4)

and if −1 + 2t = q2, then

#E0
A(Fpr ) ≡



































16 (mod 24) if A = q4 and r ≡ 1 (mod 2)
0 (mod 24) if A = q4 and r ≡ 0 (mod 2)

12 (mod 24) if A = q2 and r ≡ 1 (mod 2)
0 (mod 24) if A = q2 and r ≡ 0 (mod 2)
2 (mod 24) if A = q1 and r ≡ 1 (mod 2)
4 (mod 24) if A = q1 and r ≡ 2 (mod 4)
0 (mod 24) if A = q1 and r ≡ 0 (mod 4).
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(2) If p = a2 + b2 ≡ 1 (mod 24) is a prime with 2 | b and 3 ∤ b, then

#E0
A(Fpr ) ≡











































































8 (mod 24) if A = q4 and r ≡ 1 (mod 2)
16 (mod 24) if A = q4 and r ≡ 2 (mod 4)
0 (mod 24) if A = q4 and r ≡ 0 (mod 4)

20 (mod 24) if A = q2 and r ≡ 1 (mod 2)
16 (mod 24) if A = q2 and r ≡ 2 (mod 4)
0 (mod 24) if A = q2 and r ≡ 0 (mod 4)

18 (mod 24) if A = q1 and r ≡ 1 (mod 2)
12 (mod 24) if A = q1 and r ≡ 2 (mod 4)
0 (mod 24) if A = q1 and r ≡ 0 (mod 4)

10 (mod 24) if A = q′1 and r ≡ 1 (mod 2)
12 (mod 24) if A = q′1 and r ≡ 2 (mod 4)
0 (mod 24) if A = q′1 and r ≡ 0 (mod 4).

(3) Let p = a2 + b2 ≡ 13 (mod 24) be a prime with 6 | b. If −1 + 2t = q4,
then

#E0
A(Fpr ) ≡



































12 (mod 24) if A = q4 and r ≡ 1 (mod 2)
0 (mod 24) if A = q4 and r ≡ 0 (mod 2)

16 (mod 24) if A = q2 and r ≡ 1 (mod 2)
0 (mod 24) if A = q2 and r ≡ 0 (mod 2)
2 (mod 24) if A = q1 and r ≡ 1 (mod 2)
4 (mod 24) if A = q1 and r ≡ 2 (mod 4)
0 (mod 24) if A = q1 and r ≡ 0 (mod 4)

and if −1 + 2t = q2, then

#E0
A(Fpr ) ≡



























4 (mod 24) if A = q4 and r ≡ 1 (mod 2)
0 (mod 24) if A = q4 and r ≡ 0 (mod 2)
0 (mod 24) if A = q2
2 (mod 24) if A = q1 and r ≡ 1 (mod 2)
4 (mod 24) if A = q1 and r ≡ 2 (mod 4)
0 (mod 24) if A = q1 and r ≡ 0 (mod 4).

(4) If p = a2 + b2 ≡ 13 (mod 24) is a prime with 2 | b and 3 ∤ b, then

#E0
A(Fpr ) ≡











































































20 (mod 24) if A = q4 and r ≡ 1 (mod 2)
16 (mod 24) if A = q4 and r ≡ 2 (mod 4)
0 (mod 24) if A = q4 and r ≡ 0 (mod 4)
8 (mod 24) if A = q2 and r ≡ 1 (mod 2)

16 (mod 24) if A = q2 and r ≡ 2 (mod 4)
0 (mod 24) if A = q2 and r ≡ 0 (mod 4)

10 (mod 24) if A(−1 + 2t) = q2 and r ≡ 1 (mod 2)
12 (mod 24) if A(−1 + 2t) = q2 and r ≡ 2 (mod 4)
0 (mod 24) if A(−1 + 2t) = q2 and r ≡ 0 (mod 4)

18 (mod 24) if A(−1 + 2t) = q4 and r ≡ 1 (mod 2)
12 (mod 24) if A(−1 + 2t) = q4 and r ≡ 2 (mod 4)
0 (mod 24) if A(−1 + 2t) = q4 and r ≡ 0 (mod 4).
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(5) If p ≡ 5 (mod 24) is a prime, then

#E0
A(Fpr ) ≡































































































































4 (mod 24) if A = q4 and r ≡ 1, 3 (mod 8)
8 (mod 24) if A = q4 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q4 and r ≡ 4 (mod 8)
20 (mod 24) if A = q4 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q4 and r ≡ 0 (mod 8)
8 (mod 24) if A = q2 and r ≡ 1, 2, 3, 6 (mod 8)
16 (mod 24) if A = q2 and r ≡ 4, 5, 7 (mod 8)
0 (mod 24) if A = q2 and r ≡ 0 (mod 8)
2 (mod 24) if A = q1 and r ≡ 1, 3 (mod 8)
20 (mod 24) if A = q1 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q1 and r ≡ 4 (mod 8)
10 (mod 24) if A = q1 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q1 and r ≡ 0 (mod 8)
10 (mod 24) if A = q′1 and r ≡ 1, 3 (mod 8)
20 (mod 24) if A = q′1 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q′1 and r ≡ 4 (mod 8)
2 (mod 24) if A = q′1 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q′1 and r ≡ 0 (mod 8)

or

#E0
A(Fpr ) ≡































































































































20 (mod 24) if A = q4 and r ≡ 1, 3 (mod 8)
8 (mod 24) if A = q4 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q4 and r ≡ 4 (mod 8)
4 (mod 24) if A = q4 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q4 and r ≡ 0 (mod 8)
16 (mod 24) if A = q2 and r ≡ 1, 3, 4 (mod 8)
8 (mod 24) if A = q2 and r ≡ 2, 5, 6, 7 (mod 8)
0 (mod 24) if A = q2 and r ≡ 0 (mod 8)
2 (mod 24) if A = q1 and r ≡ 1, 3 (mod 8)
20 (mod 24) if A = q1 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q1 and r ≡ 4 (mod 8)
10 (mod 24) if A = q1 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q1 and r ≡ 0 (mod 8)
10 (mod 24) if A = q′1 and r ≡ 1, 3 (mod 8)
20 (mod 24) if A = q′1 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q′1 and r ≡ 4 (mod 8)
2 (mod 24) if A = q′1 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q′1 and r ≡ 0 (mod 8).
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(6) If p ≡ 17 (mod 24) is a prime, then

#E0
A(Fpr ) ≡























































































































8 (mod 24) if A = q4 and r ≡ 1, 2, 3, 6 (mod 8)
16 (mod 24) if A = q4 and r ≡ 4, 5, 7 (mod 8)
0 (mod 24) if A = q4 and r ≡ 0 (mod 8)
4 (mod 24) if A = q2 and r ≡ 1, 3 (mod 8)
8 (mod 24) if A = q2 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q2 and r ≡ 4 (mod 8)
20 (mod 24) if A = q2 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q2 and r ≡ 0 (mod 8)
2 (mod 24) if A = q1 and r ≡ 1, 3 (mod 8)
20 (mod 24) if A = q1 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q1 and r ≡ 4 (mod 8)
10 (mod 24) if A = q1 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q1 and r ≡ 0 (mod 8)
10 (mod 24) if A = q′1 and r ≡ 1, 3 (mod 8)
20 (mod 24) if A = q′1 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q′1 and r ≡ 4 (mod 8)
2 (mod 24) if A = q′1 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q′1 and r ≡ 0 (mod 8)

or

#E0
A(Fpr ) ≡























































































































16 (mod 24) if A = q4 and r ≡ 1, 3, 4 (mod 8)
8 (mod 24) if A = q4 and r ≡ 2, 5, 6, 7 (mod 8)
0 (mod 24) if A = q4 and r ≡ 0 (mod 8)
20 (mod 24) if A = q2 and r ≡ 1, 3 (mod 8)
8 (mod 24) if A = q2 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q2 and r ≡ 4 (mod 8)
4 (mod 24) if A = q2 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q2 and r ≡ 0 (mod 8)
2 (mod 24) if A = q1 and r ≡ 1, 3 (mod 8)
20 (mod 24) if A = q1 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q1 and r ≡ 4 (mod 8)
10 (mod 24) if A = q1 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q1 and r ≡ 0 (mod 8)
10 (mod 24) if A = q′1 and r ≡ 1, 3 (mod 8)
20 (mod 24) if A = q′1 and r ≡ 2, 6 (mod 8)
16 (mod 24) if A = q′1 and r ≡ 4 (mod 8)
2 (mod 24) if A = q′1 and r ≡ 5, 7 (mod 8)
0 (mod 24) if A = q′1 and r ≡ 0 (mod 8).

Proof. Among the above results, the proof will be given only for the first case.
In the case when p ≡ 1 (mod 24), 6 | b (for p = a2 + b2), −1 + 2t = q4 and
#E0

A(Fp) ≡ 0 (mod 24), we find v ≡ 2 (mod 24) if #E0
A(Fp) = p+ 1− v. For

the evaluation of Nr = pr + 1 − (αr + βr), let Mr = αr + βr. Then, we find
the recurrence formula of Mr = vMr−1 − pMr−2 (for r ≥ 3) from the relations
of α + β = v and αβ = p. Using M1 = v ≡ 2 (mod 24), M2 = v2 − 2p ≡ 2
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(mod 24) and Mr = vMr−1 − pMr−2 = 2Mr−1 − Mr−2, it is obvious that
Mr ≡ 2 (mod 24) for all r ≥ 1. Therefore,

Nr = pr + 1− (αr + βr) = 1r + 1−Mr ≡ 1 + 1− 2 ≡ 0 (mod 24).

Other cases are similarly proven. �

Theorem 3.3. Let EB3

0 : y2 = x3 + B3 be an elliptic curve modulo p with

p ≡ 1 (mod 6), and t ∈ Z such that 3t2 ≡ 1 (mod p).
(1) Let p = a2 + b2 ≡ 1 (mod 12) be a prime with 6 | b. Then

#EB3

0 (Fpr ) ≡



















0 (mod 24) if
(

B
p

)

= 1

4 (mod 24) if
(

B
p

)

= −1 and r ≡ 1 (mod 2)

0 (mod 24) if
(

B
p

)

= −1 and r ≡ 0 (mod 2).

(2) If p = a2 + b2 ≡ 1 (mod 12) is a prime with 2 | b and 3 ∤ b, then

#EB3

0 (Fpr ) ≡































12 (mod 24) if
(

B
p

)

= 1 and r ≡ 1 (mod 2)

0 (mod 24) if
(

B
p

)

= 1 and r ≡ 0 (mod 2)

16 (mod 24) if
(

B
p

)

= −1 and r ≡ 1 (mod 2)

0 (mod 24) if
(

B
p

)

= −1 and r ≡ 0 (mod 2).

(3) If p ≡ 7 (mod 12) is a prime, then

#EB3

0 (Fpr ) ≡































12 (mod 24) if
(

B
p

)

= 1 and r ≡ 1 (mod 2)

0 (mod 24) if
(

B
p

)

= 1 and r ≡ 0 (mod 2)

4 (mod 24) if
(

B
p

)

= −1 and r ≡ 1 (mod 2)

0 (mod 24) if
(

B
p

)

= −1 and r ≡ 0 (mod 2).

Proof. Among the above results, we will prove only for the first case. In the case

when p ≡ 1 (mod 12), 6 | b (for p = a2 + b2), and #EB3

0 (Fp) ≡ 0 (mod 24),

we find v ≡ 2 (mod 24) if #EB3

0 (Fp) = p + 1 − v. For the evaluation of
Nr = pr + 1 − (αr + βr), let Mr = αr + βr. Then, we find the recurrence
formula of Mr = vMr−1 − pMr−2 (for r ≥ 3) from the relations of α + β = v
and αβ = p. Using M1 = v ≡ 2 (mod 24), M2 = v2 − 2p ≡ 2 (mod 24) and
Mr = vMr−1 − pMr−2 = 2Mr−1 −Mr−2, it is obvious that Mr ≡ 2 (mod 24)
for all r ≥ 1. Therefore, Nr = pr +1− (αr +βr) = 1r +1−Mr ≡ 1+1− 2 ≡ 0
(mod 24). Other cases are similarly proven. �

The following proposition, which is conjectured by E. Artin in his thesis and
proved by Hasse in the 1930’s, shows that this heuristic reasoning is correct.
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Proposition 3.4 (Hasse, 1922 [12, p. 131]). Let K be a finite field with p
elements and let E/K be an elliptic curve. Then

|#E(K)− p− 1| ≤ 2
√
p.

Equivalently, the number of solutions is bounded above by the number (
√
p+

1)2.

Example 3.5. Let p = 13. We know that 13 + 1 − 2
√
13 < 7 ≤ #E0

A(F13) <

21 ≤ 13 + 1 + 2
√
13 by Hasse’s theorem. On the other hand, we know by

Theorem 1.1 that

#E0
1 (F13) ≡ 20 (mod 24),

#E0
4 (F13) ≡ 8 (mod 24),

#E0
2 (F13) ≡ 10 (mod 24) (2 · 5 = 10 = q2), and

#E0
8 (F13) ≡ 18 (mod 24) (8 · 5 = 40 = q4),

where 2 is a primitive root modulo 13. Thus, we have #E0
1(F13) = 20,

#E0
4(F13) = 8, #E0

2(F13) = 10, and #E0
8 (F13) = 18.
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