DOI QR코드

DOI QR Code

섬진강상류 유량측정지점의 유수단면적과 유량변화에 따른 상관관계 분석

Analysis of Correlation with Cross Sectional Area of Flow and Flow Rate Variation of Discharge Measurement Point in the Upper Stream of Seomjin River

  • 송광덕 (국립환경과학원 영산강물환경연구소) ;
  • 김갑순 (국립환경과학원 영산강물환경연구소) ;
  • 이동진 (국립환경과학원 영산강물환경연구소) ;
  • 함상인 (국립환경과학원 영산강물환경연구소) ;
  • 김대영 (국립환경과학원 영산강물환경연구소) ;
  • 오태윤 (국립환경과학원 영산강물환경연구소) ;
  • 이재춘 (국립환경과학원 영산강물환경연구소) ;
  • 임병진 (국립환경과학원 영산강물환경연구소)
  • Song, KwangDuck (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, KapSoon (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Lee, DongJin (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Ham, SangIn (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, DaeYoung (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Oh, TaeYoun (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Lee, JaeChoon (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Lim, ByungJin (Yeongsan River Environment Research Center, National Institute of Environmental Research)
  • 투고 : 2012.10.04
  • 심사 : 2013.01.31
  • 발행 : 2013.03.31

초록

본 연구는 단면변화를 고려한 수위-단면적 변화 및 평균 유속-단면적 간의 상관관계를 분석하여 유량 산정 및 하천관리에 활용하고자 하였다. 수위에 따른 단면적 변화는 SB-A 지점은 1.0 m, 1.9 m, SB-C 지점은 0.6 m, 1.8 m, CL-A 지점은 1.0 m, 1.8 m, OS-A 지점은 0.6 m, 2.0m에서 발생되었다. 이 중 첫 번째 변화는 평 저수기에 해당되고, 두 번째 변화는 홍수기 및 하천 좌 우 안에 인위적 자연적으로 형성된 둔치 등으로 판단된다. 수위-단면적 변화에 따른 관계식의 기울기는 지수형 0.5539~1.9013, 선형 9.040~52.544의 범위를 가진다. 기울기는 두 곡선 모두 고수위로 갈수록 증가하는 경향을 보인다. 평균유속-단면적 변화의 관계는 지수와 직선의 방정식으로 지수형 기울기와 상관계수는 각각 0.1182~0.8734, 0.22~0.86이며, 선형의 기울기와 상관계수는 0.0028~0.1032, 0.20~0.87로 분석되었다. SB-A, SB-C 지점의 저수위는 다른 수위보다 상관관계가 높게 산정되었는데, 이는 수위구간이 좁고, 하천 단면적의 변화가 크지 않기 때문으로 판단된다. CL-A, OS-A 지점은 월류보의 영향으로 저수위일 경우에 상관관계가 낮았다. 수위-단면적, 평균유속-단면적의 상관관계 및 곡선식 등을 이용하여 하천 정비계획 등의 수립에 활용할 수 있으며, 제외지의 단면적이 변하는 지점의 유량 변화 등의 예측에 활용할 수 있을 것이다.

This study was carried out to determine the variation of the water level and crosssection area for investigating changes of stream foreland, and to determine the correlation between the average flow velocity and cross-section area so as to understand the hydrological characteristics of the stream. The slope of the cross-sectional area was changed in water levels of 0.6~1.0 m and 1.8~2.0 m. The first change occurred in the low-water level season, and the second change occurred in the high-water level seasons. It is assumed that the changes occurred due to the geological transfigure. The correlation between the cross-sectional area and the average flow velocity was 0.22~0.86 in the exponential equation and 0.20~0.87 in the linear equation. The low water level had a higher correlation than the high water level, and free weirs in the upper stream showed a very low correlation. Therefore, this study provides novel information for the management of water quality in the riverside, using correlation equations of the water level and flow velocity with the cross section area.

키워드

참고문헌

  1. Arnoid, J.G. and P.M. Allen. 1999. Validation of Automated Methods for Estimating Base Flow and Groundwater Recharge from Stream Flow Records. Journal of the American Water Resources Association 35: 411-424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
  2. Gill, P.E., W. Murry and M.A. Saunders. 1999. User's Guide for SNOPT 5.3: A FORTRAN Package for Large-scale Nonlinear Programming, University of California, San Diego.
  3. ISO/TR 8363. 1997. Measurement of liquid flow in open channels - General Guidelines for Selection of Method First Edtion.
  4. Jeollabookdo. 2010. Jeollabookdo Youngsan River Water Pollution Load Management Master Plan Phase II.
  5. Kim, J.C. and S.D. Kim. 2007. Flow Duration Curve Analysis for Nakdong River Basin using TMDL Flow Data. Journal of Korean Society on Water Quality 23(3): 332-338.
  6. Kim, S.D., D.K. Kang and M.S. Kim. 2007. The Possibility of Daily Flow Data Generation from 8-Day Intervals Measured Flow Data for Calibrating Watershed Model. Journal of Korean Society on Water Quality 23(1): 64-71.
  7. Korea Meteorological Administration. http://www.kma.go.kr.
  8. Ministry of Environment. 2009. Business integrated operating instructions water quality goal/discharge measurement for the quantity regulation of water-quality pollutants.
  9. Ministry of Environment. 2012. Operating plan of water quality monitoring.
  10. Ministry of Land, Transport and Maritime Affairs (MLTM). 2004. Hydrological observation Manual.
  11. Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual model part I - A Discussion of principles. Journal of Hydrology 10: 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  12. Nathan, R.J. and A.T. McMahon. 1990. Evaluation of Automated Techniques for Baseflow and Recession Analysis. Water Resources Research 26: 1465-1473.
  13. National Institute of Environmental Research. 2006. Baseline study of second quantity regulation of water-quality pollutants of Yeongsan river basin.
  14. Park, J.D., S.Y. Oh and Y.H. Choi. 2012. Development of a Flow Duration Curve with Unit Watershed Flow Data for the Management of Total Maximum Daily Loads. Journal of Korean Society on Water Environment 28(2): 224-231.
  15. Park, J.S. and K.H. Rhee. Study on Characteristics of Water Quality Variation in the Yeongsan River Using Multivariate Analysis. Korean Society of water Science and Technology 20(2): 61-72.
  16. Rantz, S.E. 1982. Measurement and Computation of Streamflow: Volume 1. Measurement of Stage and Discharge, Volume 2. Computation of Discharge, USGS Water-supply paper 2175.
  17. Santhi, C., J.G. Arnold, J.R. Williams, W.A. Dugas, R. Srinivasan and L.M. Hauck. 2001. Validation of the SWAT Model on a Large River Basin with point and Nonpoint Sources. Journal of the American Water Resources Association 37: 1169-1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  18. Sugawara, M. 1995. Tank model, in computer models of watershed hydrology, Water Resources Publications, p. 164-214.
  19. Sustainable Water Resources Research Center. 2004. Streamflow Measurement Manual.
  20. USEPA. 2007. An Approach for Using Load Duration Curves in the Development of TMDLs, EPA 841-B-07-006, p. 1-68.
  21. Vogel, R.M. and N.M. Fenessey. 1994. Flow-duration Curves, 1: New Interpretation and Confidence Intervals. Joural of Water Resources Planning and Management, ASCE 120(4): 485-504. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(485)
  22. Water Management Information System. http://www.wamis.go.kr.
  23. Yeongsan River Environment Research Center. 2011. Installation and Operation of Flow Measuring Network in Yeongsan and Samjin River System.
  24. Yeongsan River Environment Research Center. 2011. 2010 River monitoring project of water system of Yeongsan∙. Seomjin river basins.