DOI QR코드

DOI QR Code

Identification, sequence characterization and expression analysis of the arginine kinase gene in response to laminarin challenge from the Oriental land snail, Nesiohelix samarangae

동양달팽이(Nesiohelix samarangae)의 arginine kinase 유전자 분석 및 발현 패턴에 관한 연구

  • Jeong, Ji Eun (Department of Life Science, Soonchunhyang University) ;
  • Lee, Yong Seok (Department of Life Science, Soonchunhyang University)
  • 정지은 (순천향대학교 자연과학대학 생명시스템학과) ;
  • 이용석 (순천향대학교 자연과학대학 생명시스템학과)
  • Received : 2013.08.29
  • Accepted : 2013.09.28
  • Published : 2013.09.30

Abstract

Arginine kinase (ArK) is known to play an important role in most invertebrates the level of ATP by phosphorylation of phosphagens in cell and immuninty in living organisms. ArK has been identified in many kinds of organisms ranging from invertebrate to vertebrate. However, no ArK gene has been cloned and investigated from N. samarangae. This leads us to identify ArK cDNA (NsArK) from the expressed sequence tag (EST) sequencing of N. samarangae. Sequence analysis indicated that the coding region of 1,065 bp contains 355 amino acid residues. Molecular phylogenetic analysis shows that NsArK had very high similarities with mollusca and arthropoda. In an attempt to investigate a potential role of NsArK in the digestive gland of N. samarangae, expression patterns were analyzed. RT-PCR analsysis shows that NsArK mRNA is induced in the rane of 1.2 fold at 6 hr by laminarin when compared with the control. The immunnologial and physiological role of NsArK remains to be further investigated in N. samarangae.

동양달팽이의 arginine kinase 유전자는 염기서열 1065개로 이루어져있으며 355개의 아미노산으로 이루어져 있으며, BLAST 결과를 토대로 유사도가 높은 25개의 참고 서열과 동양달팽이의 arginine kinase의 아미노산 서열을 MEGA5 프로그램의 clustalW 모듈을 이용하여 multiple sequence alignment 를 수행한 결과, 연체동물문에 속하는 복족강 (5종), 두족강 (5종), 이매패강 (4종) 등에 속하는 생물들이 같은 군으로 묶였으며, 절지동물문 곤충강 에 속하는 나비목 (2종), 벌목 (1종), 노린재목 (2종) 등에 속하는 생물들이 같은 군으로 묶이고, 갑각강 (5종), 거미강 (1종) 에 속하는 생물들이 묶이는 것을 알 수 있었다. Psipred 소프트웨어를 통해 2D 구조를 비교 분석한 결과도 multiple align 및 phylodendrogram 결과와 밀접한 관계가 있음을 알 수 있었다. 시간에 따른 arginine kinase의 발현양상을 확인한 결과 control에 비하여 6시간에서 약 1.2배 정도 발현이 증가하는 것을 확인할 수 있었으며, 12시간이 지나면 점차 감소하는 것을 확인할 수 있었다. EST를 통해 밝혀진 N. samarangae 의 Ark 서열은 근연종들의 서열과 일치함을 알 수 있었으며, 본 연구 결과를 통해 무척추동물에서의 선천성 면역 관련 유전자 연구에 동양달팽이가 좋은 모델이 될 수 있음을 제시하고 있다.

Keywords

References

  1. Adams, R.J., Ewing, J., Dujovny, M., and Misra, M. (1998) Editorial commentary. J. Stroke Cerebrovasc Dis., 7: I-IV. https://doi.org/10.1016/S1052-3057(98)80041-4
  2. Bettencourt, R., Dando, P., Collins, P., Costa, V., Allam, B., and Serrao Santos, R. (2009) Innate immunity in the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 152: 278-289. https://doi.org/10.1016/j.cbpa.2008.10.022
  3. Biswas, C., and Mandal, C. (1999) The role of amoebocytes in endotoxin-mediated coagulation in the innate immunity of Achatina fulica snails. Scand. J. Immunol., 49: 131-138. https://doi.org/10.1046/j.1365-3083.1999.00466.x
  4. Bragg, J., Rajkovic, A., Anderson, C., Curtis, R., Van Houten, J., Begres, B., Naples, C., Snider, M., Fraga, D., and Singer, M. (2012) Identification and characterization of a putative arginine kinase homolog from Myxococcus xanthus required for fruiting body formation and cell differentiation. J. Bacteriol., 194: 2668-2676. https://doi.org/10.1128/JB.06435-11
  5. Braun, R.C., Pedretti, K.T., Casavant, T.L., Scheetz, T.E., Birkett, C.L., and Roberts, C.A. (2001) Parallelization of local BLAST service on workstation clusters. Future Generation Computer Systems, 17: 745-754. https://doi.org/10.1016/S0167-739X(00)00057-1
  6. Buermans, H.P., Ariyurek, Y., van Ommen, G., den Dunnen, J.T., and t Hoen, P.A. (2010) New methods for next generation sequencing based microRNA expression profiling. BMC Genomics, 11: 716. https://doi.org/10.1186/1471-2164-11-716
  7. Burge, C., and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol., 268: 78-94. https://doi.org/10.1006/jmbi.1997.0951
  8. Burge, C.B., and Karlin, S. (1998) Finding the genes in genomic DNA. Curr. Opin. Struct. Biol., 8: 346-354. https://doi.org/10.1016/S0959-440X(98)80069-9
  9. Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J.A., and Bulet, P. (1996) Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J. Biol. Chem., 271: 21808-21813. https://doi.org/10.1074/jbc.271.36.21808
  10. Chistoserdovai, L. (2010) Functional metagenomics: recent advances and future challenges. Biotechnol. Genet. Eng. Rev., 26: 335-352.
  11. Coyne, V. (2011) The importance of ATP in the immune system of molluscs. Invertebrate Survival Journal, 8: 48-55.
  12. Cui, S., Zhang, D., Jiang, S., Pu, H., Hu, Y., Guo, H., Chen, M., Su, T., and Zhu, C. (2011) A macrophage migration inhibitory factor like oxidoreductase from pearl oyster Pinctada fucata involved in innate immune responses. Fish Shellfish Immunol, 31: 173-181. https://doi.org/10.1016/j.fsi.2011.03.009
  13. Dumas, C., and Camonis, J. (1993) Cloning and sequence analysis of the cDNA for arginine kinase of lobster muscle. J. Biol. Chem., 268: 21599-21605.
  14. Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5: 113. https://doi.org/10.1186/1471-2105-5-113
  15. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
  16. Ewing, B., and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res., 8: 186-194. https://doi.org/10.1101/gr.8.3.186
  17. Ewing, B., Hillier, L., Wendl, M.C., and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res., 8: 175-185. https://doi.org/10.1101/gr.8.3.175
  18. Greenbaum, D., Luscombe, N.M., Jansen, R., Qian, J., and Gerstein, M. (2001) Interrelating different types of genomic data, from proteome to secretome: 'oming in on function. Genome Res., 11: 1463-1468. https://doi.org/10.1101/gr.207401
  19. Hegde, P.S., White, I.R., and Debouck, C. (2003) Interplay of transcriptomics and proteomics. Curr. Opin. Biotechnol, 14: 647-651. https://doi.org/10.1016/j.copbio.2003.10.006
  20. Huang, X., and Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Res., 9: 868-877. https://doi.org/10.1101/gr.9.9.868
  21. Ilg, T., and Werr, M. (2012) Arginine kinase of the sheep blowfly Lucilia cuprina: Gene identification and characterization of the native and recombinant enzyme. Pesticide Biochemistry and Physiology, 102: 115-123. https://doi.org/10.1016/j.pestbp.2011.12.001
  22. Iwanaga, S., and Lee, B.L. (2005) Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol., 38: 128-150. https://doi.org/10.5483/BMBRep.2005.38.2.128
  23. Jarilla, B.R., and Agatsuma, T. (2010) Phosphagen kinases of parasites: unexplored chemotherapeutic targets. Korean J Parasitol, 48: 281-284. https://doi.org/10.3347/kjp.2010.48.4.281
  24. Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci., 8: 275-282.
  25. Lang, A.B., Wyss, C., and Eppenberger, H.M. (1980) Localization of arginine kinase in muscles fibres of Drosophila melanogaster. J. Muscle Res. Cell. Motil., 1: 147-161. https://doi.org/10.1007/BF00711796
  26. Liu, D.W. (2008) Opioid peptides and innate immune response in mollusc. Protein Pept. Lett., 15: 683-686. https://doi.org/10.2174/092986608785133591
  27. Maeda, M., and Nishizawa, K. (1968) Fine structure of laminaran of Eisenia bicyclis. J. Biochem., 63: 199-206. https://doi.org/10.1093/oxfordjournals.jbchem.a128762
  28. McGuffin, L.J., Bryson, K., and Jones, D.T. (2000) The PSIPRED protein structure prediction server. Bioinformatics, 16: 404-405. https://doi.org/10.1093/bioinformatics/16.4.404
  29. Mitta, G., Vandenbulcke, F., and Roch, P. (2000) Original involvement of antimicrobial peptides in mussel innate immunity. FEBS. Lett., 486: 185-190. https://doi.org/10.1016/S0014-5793(00)02192-X
  30. Newsholme, E.A., Beis, I., Leech, A.R., and Zammit, V.A. (1978) The role of creatine kinase and arginine kinase in muscle. Biochem. J., 172: 533-537. https://doi.org/10.1042/bj1720533
  31. Reddy, S.R., Roustan, C., and Benyamin, Y. (1991) Purification and properties of two molecular forms of arginine kinase from the adductor muscle of the scallop, Pecten maximus. Comp. Biochem. Physiol. B., 99: 387-394. https://doi.org/10.1016/0300-9629(91)90021-4
  32. Reddy, S.R., Houmeida, A., Benyamin, Y., and Roustan, C. (1992) Interaction in vitro of scallop muscle arginine kinase with filamentous actin. Eur. J. Biochem., 206: 251-257. https://doi.org/10.1111/j.1432-1033.1992.tb16923.x
  33. Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet., 16: 276-277. https://doi.org/10.1016/S0168-9525(00)02024-2
  34. Supajatura, V., Ushio, H., Nakao, A., Akira, S., Okumura, K., Ra, C., and Ogawa, H. (2002) Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest., 109: 1351-1359. https://doi.org/10.1172/JCI0214704
  35. Suzuki, T., and Furukohri, T. (1994) Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates. J. Mol. Biol., 237: 353-357. https://doi.org/10.1006/jmbi.1994.1237
  36. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  37. Wang, Z., Jian, J., Lu, Y., Wang, B., and Wu, Z. (2011) A tandem-repeat galectin involved in innate immune response of the pearl oyster Pinctada fucata. Mar. Genomics, 4: 229-236. https://doi.org/10.1016/j.margen.2011.06.004
  38. Yu, Z., He, X., Fu, D., and Zhang, Y. (2011) Two superoxide dismutase (SOD) with different subcellular localizations involved in innate immunity in Crassostrea hongkongensis. Fish Shellfish Immunol., 31: 533-539. https://doi.org/10.1016/j.fsi.2011.06.022
  39. Zhang, H., Wang, L., Song, L., Song, X., Wang, B., Mu, C., and Zhang, Y. (2009) A fibrinogen-related protein from bay scallop Argopecten irradians involved in innate immunity as pattern recognition receptor. Fish Shellfish Immunol., 26: 56-64. https://doi.org/10.1016/j.fsi.2008.07.019

Cited by

  1. Identification and in silico analysis of two types of serpin genes from expressed sequence tags (ESTs) of the Oriental land snail, Nesiohelix samarangae vol.30, pp.2, 2014, https://doi.org/10.9710/kjm.2014.30.2.155
  2. 참전복(Haliotis discus hannai)에서 분리한 peroxiredoxin 2 유전자의 분자생물학적 고찰 및 발현분석 vol.24, pp.12, 2014, https://doi.org/10.5352/jls.2014.24.12.1291