KYUNGPOOK Math. J. 53(2013), 407-417
http://dx.doi.org/10.5666/KMJ.2013.53.3.407

t-Prüfer Modules

Myeong Og Kim

Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea
e-mail: myngokim@knu.ac.kr
Hwankoo Kim* ${ }^{*}$
Department of Information Security, Hoseo University, Asan 336-795, Korea
e-mail: hkkim@hoseo.edu
Dong Yeol Oh
Division of Liberal Arts, Hanbat National University, Daejeon 305-719, Korea
e-mail: dongyeol70@gmail.com
Abstract. In this article, we characterize t-Prüfer modules in the class of faithful multiplication modules. As a corollary, we also characterize Krull modules. Several properties of a t-invertible submodule of a faithful multiplication module are given.

1. Introduction

Let R be a commutative ring with identity and M be a unital R-module. M is said to be faithful if $a n n_{R}(M)=0 . M$ is called a multiplication module if each submodule N of M has the form $I M$ for some ideal I of R, equivalently, for any submodule N of $M, N=\left(N:_{R} M\right) M . M$ is called a cancellation module if for all ideals I and J of $R, I M \subseteq J M$ implies $I \subseteq J$. It was shown in [5, Proposition 2.2] that if R is an integral domain and M is a faithful multiplication R-module, then M is finitely generated. Thus it follows from [12, Theorem 3.1] that a faithful multiplication module M over an integral domain is a cancellation module. Hence we have that $I\left(N:_{R} M\right)=\left(I N:_{R} M\right)$ for all submodules N of M and all ideals I of R. It was also shown in [13, Lemma 2.1] that if M is a faithful multiplication R-module over integral domain R, then M is torsion-free.

* Corresponding Author.
\dagger This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0011996).
Received December 8, 2012; accepted April 19, 2013.
2010 Mathematics Subject Classification: 13A15, 13F05, 13C13.
Key words and phrases: t-Prufer module, faithful multiplication module, Krull module, t-invertible submodule.

Let R be an integral domain with quotient field K and M be a unital R-module. Let N be a nonzero submodule of M and let $N^{-1}=\left(M:_{K} N\right)=\{x \in K \mid x N \subseteq$ M \}. Then N^{-1} is an R-submodule of K and $N N^{-1} \subseteq M$. Following Naoum and Al-Alwan, in [1], N is said to be invertible in M if $N N^{-1}=M$. Clearly M is invertible in M, and it is proved in [1, Remark 3.8] that R is an integral domain if and only if every nonzero cyclic submodule of the faithful multiplication R-module M is invertible in M (i.e., M is a D_{1}-module).

Let M be a faithful multiplication module over an integral domain R and let N be a submodules of M. In [4], M. Ali defined $N_{v}=\left(N^{-1}\right)^{-1}=R:_{K}\left(M:_{K} N\right)$ and showed that $N^{-1}=\left(N:_{R} M\right)^{-1}$, and hence $N_{v}=\left(N:_{R} M\right)_{v}$ (in particular, $M_{v}=R$), and then introduced the concept of a divisorial submodule or v-submodule of M as follows: N is a v-submodule if $N=N_{v} M . N$ is called a v-submodule of finite type if $N=L_{v} M$ for some finitely generated submodule L of M. It follows that N is a v-submodule of M if and only if $\left(N:_{R} M\right)$ is a v-ideal of R. If L and N are submodules of a multiplication module M with $L \subseteq N$, then $L_{v} \subseteq N_{v}$. It was also shown that for any submodule N of a multiplication R-module, $N \subseteq N_{v} M$. If N is a submodule of M and I is an ideal of R such that either I_{v} is invertible or N_{v} is invertible, then as it was remarked in [4, p.144] it is easily seen that $(I N)_{v}=\left(I N:_{R}\right.$ $M)_{v}=\left(I\left(N:_{R} M\right)\right)_{v}=I_{v}\left(N:_{R} M\right)_{v}=I_{v} N_{v}$. In [16], we introduced the concept of t-invertible submodule of a multiplication module and gave some characterizations of faithful multiplication Krull modules, Mori modules and π-modules. Also, we defined $N_{t}=\bigcup\left\{L_{v} \mid L\right.$ is a finitely generated submodule of M contained in $\left.N\right\}$. It is easily seen that N_{t} is an R-submodule of $K, N_{t} \subseteq N_{v}$ and $\left(N N^{-1}\right)_{t} \subseteq R$. N is said to be t-(resp. v-) invertible submodule of M if $\left(N N^{-1}\right)_{t}=R$ (resp. $\left.\left(N N^{-1}\right)_{v}=R\right)$. It is clear that every invertible submodule of M is t-invertible and every t-invertible submodule is v-invertible. By [6, Proposition 2.2], N is finitely generated if and only if $\left(N:_{R} M\right)$ is finitely generated. Using this result, we have that $\left(N:_{R} M\right)_{t}=N_{t}$ and $N \subseteq N_{t} M$. So we call N a t-submodule of M if $N=N_{t} M . N$ is called a t-submodule of finite type if $N=L_{t} M$ for some finitely generated submodule L of M. Clearly every v-submodule is a t-submodule. If I is a t-ideal of R, then $I M$ is a t-submodule of M. Also if N is finitely generated, then N is a v-submodule of M if and only if N is a t-submodule of M.

In section 2 we characterize faithful multiplication t-Prüfer modules (i.e., every nonzero finitely generated submodule is t-invertible). In section 3 we give several properties of a t-invertible submodule of a faithful multiplication module.

2. t-Prüfer Modules

We begin with this section by giving a characterization of when a submodule of the module is $*$-submodule of finite type.

Lemma 2.1. Let M be a faithful multiplication module over an integral domain R, I an ideal of R, N a submodules of M, and let $*=v$ or t. Then
(1) N is $a *$-submodule of finite type if and only if $\left(N:_{R} M\right)$ is $a *$-ideal of finite
type.
(2) I is $a *$-ideal of finite type if and only if $I M$ is $a *$-submodule of finite type.

Proof. Since the assertion for the case $*=v$ is similar to that of $*=t$, we only consider the case $*=t$. (1) If N is a t-submodule of finite type, then $N=L_{t} M$ for some finitely generated submodule L of M and $\left(N:_{R} M\right)$ is a t-ideal by [16, Proposition 2.2]. Since $N_{t}=\left(N:_{R} M\right)_{t}$, we have that $\left(N:_{R} M\right)_{t} M=\left(L:_{R} M\right)_{t} M$. Hence $\left(N:_{R} M\right)=\left(L:_{R} M\right)_{t}$ and $\left(L:_{R} M\right)$ is a finitely generated ideal of R. Conversely, assume that $\left(N:_{R} M\right)$ is a t-ideal of finite type. Then by [16, Proposition 2.2], $\left(N:_{R} M\right)=I_{t}$ for some finitely generated ideal I of R and N is a t-submodule. Hence $N=\left(N:_{R} M\right) M=I_{t} M=\left(I M:_{R} M\right)_{t} M=(I M)_{t} M$ and $I M$ is a finitely generated submodule of M.

Proposition 2.2. The following conditions are equivalent for a faithful multiplication module M over an integral domain R.
(1) Each t-submodule of M is of finite type.
(2) M satisfies the ascending chain condition on t-submodules.
(3) M satisfies the ascending chain condition on v-submodules.
(4) For each nonzero submodule N of M, there exists a finitely generated submodule L of M contained in N such that $N_{t}=L_{t}$.

Proof. The equivalences of (1), (2) and (3) follow from Lemma 2.1 and [20, Theorem 1.1]. To complete the proof, we show that $(1) \Leftrightarrow(4)$.
$(1) \Rightarrow(4)$. By Lemma 2.1, each t-ideal of R is of finite type. Then for each nonzero ideal I, there exists a finitely generated ideal J of R contained in I such that $I_{t}=J_{t}[20$, Theorem 1.1]. Let N be a nonzero submodule of M. Since M is a multiplication module, $\left(N:_{R} M\right)$ is a nonzero ideal of R. Then $\left(N:_{R} M\right)_{t}=B_{t}$ for some finitely generated ideal $B \subseteq\left(N:_{R} M\right)$ of R. Thus $(B M)_{t}=\left(B M:_{R} M\right)_{t}=$ $B_{t}=N_{t}$ and $B M \subseteq N$ is a finitely generated submodule of M.
(4) $\Rightarrow(1)$. Let N be any t-submodule of M. Then by hypothesis, there exists a finitely generated submodule L of M contained in N such that $N_{t}=L_{t}$. Thus $N=N_{t} M=L_{t} M$, and so N is of finite type.

Recall from [3, p. 25] that an R-module M is called a cyclic submodule module (CSM) if every submodule of M is cyclic. It was shown in [3] that a faithful multiplication module over an integral domain R is a CSM if and only if R is a principal ideal domain. In [16], we call an R-module M a v-Prüfer module if $\left(N N^{-1}\right)_{v}=R$ for every nonzero finitely generated submodule N of M and M a Krull module if M_{P} is a CSM R_{P}-module for each $P \in X^{(1)}(R)$, which is the set of height-one prime ideals of $R, M=\bigcap_{P \in X^{(1)}(R)} M_{P}$, and each nonzero $x \in M$ is primitive in all but a finite number of M_{P}. It was shown in [16, Theorem 2.1(1) and Theorem 2.8] that a faithful multiplication module over an integral domain R is a
v-Prüfer (resp., Krull) module if and only if R is a v-Prüfer (resp., Krull) domain. The following result is an analogue to Cohen's theorem for v-Prüfer modules.

Theorem 2.3. Let R be an integral domain and M a faithful multiplication and v-Prüfer module. If every prime t-submodule of M is of finite type, then every t-submodule of M is of finite type.
Proof. By [16, Theorem 2.5], M is a v-Prüfer module if and only if R is a v-Prüfer domain. Let P be any prime t-ideal of R. Then $P M$ is a prime t-submodule of M. Since $P M$ is a t-submodule of finite type, we have $P M=Q_{t} M$ for some finitely generated submodule Q of M. Then $P=\left(Q:_{R} M\right)_{t}$ and $\left(Q:_{R} M\right)$ is a finitely generated ideal of R. Hence P is a t-ideal of finite type. By [17, Theorem 2.3], every t-ideal of R is of finite type. Let N be a t-submodule of M. Then $\left(N:_{R} M\right)$ is a t-ideal of finite type, and so $\left(N:_{R} M\right)=B_{t}$ for some finitely generated ideal B of R. Hence $N=\left(N:_{R} M\right) M=B_{t} M=\left(B M:_{R} M\right)_{t} M=(B M)_{t} M$ and $B M$ is a finitely generated submodule of M.

Several characterizations of Krull modules were given in [16]. In the following, we characterize Krull modules in terms of v-Prüfer modules, which generalizes [17, Theorem 2.4].

Corollary 2.4. Let R be an integral domain and M a faithful multiplication and v-Prüfer module. Then the following are equivalent.
(1) The ascending chain condition on t-submodules holds.
(2) Each t-submodule of M is of finite type (and hence each v-submodule of M is of finite type)
(3) Each prime t-submodule is of finite type.
(4) M is a Krull module.

Proof. Note first that R is a v-Prüfer domain ([16, Theorem 2.5(1)]).
$(1) \Leftrightarrow(2)$ This follows from Lemma 2.1 and [17, Theorem 2.4].
$(2) \Leftrightarrow(3)$ This follows from Lemma 2.1, [17, Theorem 2.4] and Theorem 2.3.
$(2) \Rightarrow(4)$ Let I be any t-ideal of R. Since $I M$ is a t-submodule, $I M$ is of finite type. Then I is of finite type by Lemma 2.1. Thus by again [17, Theorem 2.4] R is a Krull domain. It follows from [16, Theorem 2.8] that M is a Krull module.
$(4) \Rightarrow(2) \mathrm{By}[16$, Theorem 2.8], R is a Krull domain. Then every t-ideal of R is of finite type. Let N be a t-submodule of M. Then $\left(N:_{R} M\right)$ is a t-ideal of finite type by Lemma 2.1. Thus N is of finite type.

We recall that an integral domain R is a t-Prüfer domain (or Prüfer v multiplication domain (for short $\operatorname{PvMD})$) if $\left(I I^{-1}\right)_{t}=R$ for every nonzero finitely generated ideal I of R. Now we extend this concept to the module case: An R module M is a t-Prüfer module if $\left(N N^{-1}\right)_{t}=R$ for every nonzero finitely generated submodule N of M.

Lemma 2.5. Let M be a faithful multiplication module over an integral domain R. Then M is a t-Prüfer module if and only if R is a t-Prüfer domain.
Proof. Let I be a nonzero finitely generated ideal of R. Since M is a faithful multiplication module, $I M$ is a nonzero finitely generated submodule of M. So $I M$ is t-invertible. By [16, Lemma 2.1], I is t-invertible. Thus R is a t-Prüfer domain. Conversely, let N be a nonzero finitely generated submodule of M. Then $\left(N:_{R} M\right)$ is a nonzero finitely generated ideal of R, and so $\left(N:_{R} M\right)$ is t-invertible. Thus N is t-invertible by [16, Proposition 2.2]. Hence M is a t-Prüfer module.

Recall from [3] that an R-module M is called a valuation module if for all $m, n \in M$, either $R m \subseteq R n$ or $R n \subseteq R m$, or equivalently, for all submodules L, N of M, either $L \subseteq N$ or $N \subseteq L$. It was shown that a faithful multiplication module over an integral domain R is a valuation module if and only if R is a valuation domain.

Theorem 2.6. Let M be a faithful multiplication module over an integral domain R. Then the following are equivalent.
(1) M is a t-Prüfer module.
(2) For every maximal t-ideal P of R, M_{P} is a valuation module.
(3) Every v-submodule of finite type is t-invertible.

Proof. (1) $\Leftrightarrow(2)$ If M is a t-Prüfer module, then R is a t-Prüfer domain by Lemma 2.5. Then R_{P} is a valuation domain for every maximal t-ideal P of R. Since M_{P} is a faithful multiplication R_{P}-module, M_{P} is a valuation module by [5, Proposition 2.2]. Conversely, if M_{P} is a valuation module, then by [5, Proposition 2.2] R_{P} is a valuation domain. Thus R is a t-Prüfer domain. Hence M is a t-Prüfer module by Lemma 2.5.
$(1) \Leftrightarrow(3)$ Suppose that M is a t-Prüfer module and let N be a v-submodule of finite type. By Lemma 2.1, $\left(N:_{R} M\right)$ is a v-ideal of finite type. Then $\left(N:_{R}\right.$ $M)=B_{v}$ for some finitely generated ideal $B \subseteq\left(N:_{R} M\right)$. Since $B M$ is finitely generated, we have $B M$ is t-invertible, and so B is t-invertible by [16, Lemma 2.1]. Then $\left(N:_{R} M\right)$ is t-invertible. By [16, Proposition 2.2], N is t-invertible. Conversely, let N be a nonzero finitely generated submodule of M. Since M is a faithful multiplication module, $\left(N:_{R} M\right)$ is finitely generated. Then $I=\left(N:_{R} M\right)_{v}$ is a v-ideal of finite type. By Lemma 2.1, $I M$ is a v-submodule of finite type. So $I M$ is t-invertible. Then $\left(N:_{R} M\right)$ is t-invertible, and so N is t-invertible. Hence M is a t-Prüfer module.

Let M be a faithful multiplication module over an integral domain R. By [16, Lemma 2.1 and Proposition 2.2], every nonzero ideal of R is v-invertible if and only if every nonzero submodule of M is v-invertible. Recall from [16] that M is called an essential module if $M=\bigcap_{P \in \Lambda} M_{P}$, where $\Lambda \subseteq \operatorname{Spec}(R)$, and each localization M_{P} of M at $P \in \Lambda$ is a valuation module.

Theorem 2.7. Let M be a faithful multiplication module over an integral domain R. Suppose that for each nonzero submodule N of M, N_{v} is of finite type. Then the following are equivalent.
(1) Every nonzero submodule of M is v-invertible.
(2) M is a v-Prüfer module.
(3) M is a t-Prüfer module.
(4) M is an essential module.

Proof. $(4) \Rightarrow(1) \Rightarrow(2)$ are trivial.
$(2) \Rightarrow(3)$ This follows from [16, Theorem 2.5] and Lemma 2.5
$(3) \Rightarrow(4)$ Let I be a finitely generated ideal of R. Then $I M$ is a finitely generated submodule. By hypothesis, $I M$ is t-invertible. Then I is t-invertible, and so R is a t-Prüfer domain. Then R is an essential domain. Hence M is an essential module [16, Theorem 2.5].

Recall from [16] that M is called a Mori module if M satisfies the ascending chain condition on v-submodules of M. If M is a faithful multiplication and Mori module, then for each nonzero submodule N of M, N_{v} is of finite type by [16, Theorem 2.7].

Corollary 2.8. Let R be an integral domain and M a faithful multiplication and Mori module. Then the following are equivalent.
(1) Every nonzero submodule of M is v-invertible.
(2) M is a Krull module.
(3) M is a v-Prüfer module.
(4) M is a t-Prüfer module.
(5) M is an essential module.

3. t-invertible Submodules

In this section we give several properties of a t-invertible submodule of a faithful multiplication module.

Proposition 3.1. Let M be a faithful multiplication module over an integral domain R. If every nonzero prime submodule of M contains a t-invertible prime submodule, then there exists a nonempty collection Λ of minimal prime ideals of R such that $M=\bigcap_{P \in \Lambda} M_{P}$ and each $M_{P}, P \in \Lambda$, is a CSM R_{P}-module.
Proof. Let I be any nonzero prime ideal of R. By hypothesis, there exists a t-invertible prime submodule N of M such that $N \subseteq I M$. Then I contains a t invertible prime ideal $\left(N:_{R} M\right)$ of R. By [15, Lemma 3.3], there exists a nonempty collection Λ of minimal prime ideals of R such that $R=\bigcap_{P \in \Lambda} R_{P}$ and each R_{P},
$P \in \Lambda$, is a PID. By [5, Proposition 2.2], M_{P} is a CSM R_{P}-module. Now we show that $M=\bigcap_{P \in \Lambda} M_{P}$. Clearly $M \subseteq \bigcap_{P \in \Lambda} M_{P}$. Let $0 \neq x \in \bigcap_{P \in \Lambda} M_{P}$. By [16, Lemma 2.4], $\left(M:_{R} R x\right) \nsubseteq P$ for each $P \in \Lambda$. Since $\left(M:_{R} R x\right)$ is a t-ideal and every proper t-ideal is contained in a maximal t-ideal of $R,\left(M:_{R} R x\right)=R$. Hence $x \in M$.

Let M be a faithful multiplication module over an integral domain R. Then M is finitely generated and torsion-free. Also, for every prime ideal P of $R, M_{P} \cong R_{P}$ as an R_{P}-module. It follows that $N_{P} \cong\left(N:_{R} M\right)_{P}$, where N is a submodule of M [3].

Lemma 3.2. Let M be a faithful multiplication module over an integral domain R. Suppose that N is a finitely presented submodule of M. Then
(1) $\left(N:_{R} M\right)_{P} \cong\left(N_{P}: M_{P}\right)$ for every prime ideal P of R.
(2) $\left(N:_{R} M\right)_{P}$ is a principal ideal of R_{P} if and only if N_{P} is a cyclic R_{P}-module for every prime ideal P of R.

Proof. (1) Since M and N are torsion-fee, we have $\left(N:_{R} M\right)_{P} \cong \operatorname{Hom}(M, N)_{P}$. Also, $\operatorname{Hom}(M, N)_{P} \cong \operatorname{Hom}\left(M_{P}, N_{P}\right)$ since N is finitely presented. Therefore $\left(N:_{R}\right.$ $M)_{P} \cong\left(N_{P}: M_{P}\right)$. (2) follows from (1).

Recall that an integral domain R is called a coherent domain if every finitely generated ideal of R is finitely presented. Then it is well known that R is a coherent domain if and only if every finitely generated torsion-free R-module is finitely presented. Therefore, if R is a coherent domain and N is finitely generated, then Lemma 3.2 holds.

The following result generalizes [17, Lemma 1.5 and Corollary 1.6].
Proposition 3.3. Let M be a faithful multiplication module over an integral domain R, N a finitely generated submodule of M. If N is finitely presented, then N is t invertible if and only N_{P} is a cyclic R_{P}-module for every maximal t-ideal P of R.
Proof. Since N is a finitely generated submodule of M, we have $\left(N:_{R} M\right)$ is a finitely generated ideal of R. If N is t-invertible, then by [16, Proposition 2.2], $\left(N:_{R} M\right)$ is a t-invertible ideal of R. By [17, Lemma 1.5], $\left(N:_{R} M\right)_{P}$ is principal for every maximal t-ideal P of R. Hence N_{P} is a cyclic R_{P}-module. The proof of the converse is similar.

Corollary 3.4. Let M be a faithful multiplication module over an integral domain R, N a v-submodule of finite type. If N is finitely presented, then N is t-invertible if and only N_{P} is a cyclic R_{P}-module for every maximal t-ideal P of R.
Proof. By Lemma 2.1, N is a v-submodule of finite type if and only if $\left(N:_{R} M\right)$ is a v-ideal of finite type. Then by [17, Corollary 1.6], N is t-invertible, if and only if $\left(N:_{R} M\right)_{P}$ is principal for every maximal t-ideal P of R, if and only if N_{P} is a cyclic R_{P}-module.

Let M be a faithful multiplication module over an integral domain R. If N is a t-invertible prime t-submodule of M, then N is a maximal t-submodule of M.

The following result generalizes [17, Theorem 1 and Corollary 2].
Proposition 3.5. Let M be a faithful multiplication module over an integral domain R and let N be a nonzero submodule of M. If every prime t-submodule minimal over N is of finite type, then there are only finitely many t-submodules minimal over N.
Proof. Let I be a prime t-ideal minimal over $\left(N:_{R} M\right)$. Then $I M$ is a prime t submodule minimal over N. By hypothesis, $I M$ is of finite type, and so by Lemma $2.1, I$ is of finite type. Then there are only finitely many prime t-ideals $\left\{P_{1}, \cdots, P_{n}\right\}$ minimal over $\left(N:_{R} M\right)$ by [11, Theorem 1]. Hence $P_{1} M, \cdots, P_{n} M$ are only finitely many prime t-submodules minimal over N.

Corollary 3.6. Let M be a faithful multiplication module over an integral domain R and let N be a nonzero submodule of M. If every prime t-submodule minimal over N is t-invertible, then N is contained in only finitely many minimal prime t-submodules.
Proof. This follows from the fact that every t-invertible t-submodule is of finite type.

Lemma 3.7. Let M be a faithful multiplication module over an integral domain R, J a finitely generated ideal of R and N a proper v-submodule of M. If $(J N)_{v}=$ $J_{v} N_{v}$, then $(I N)_{t}=I_{t} N_{t}$ for every ideal I of R.
Proof. Recall that $(I N)_{t}=\bigcup\left\{L_{v} \mid L\right.$ is a finitely generated submodule of M contained in $I N\}$. For each L in the definition, $L \subseteq J N$ for some finitely generated ideal $J \subseteq I$. Then $L_{v} \subseteq(J N)_{v}=J_{v} N_{v} \subseteq I_{t} N_{t}$. Thus $(I N)_{t} \subseteq I_{t} N_{t}$. The reverse inclusion is trivial.

Corollary 3.8. Let R be a Dedekind domain and let M be a faithful multiplication R-module, I an ideal of R, and N a proper submodule of M. Then $(I N)_{t}=I_{t} N_{t}$.

Following [14], a $T V$-domain is a domain in which every t-ideal is a v-ideal. Noetherian domains and Krull domains are TV-domains, cf. [14, p. 291].

Corollary 3.9. Let R be a $T V$-domain and let M be a faithful multiplication R module, J a finitely generated ideal of R, and N a proper submodule of M. If $(J N)_{v}=J_{v} N_{v}$, then $(I N)_{t}=I_{t} N_{t}$ for every ideal I of R.

Corollary 3.10. Let M be a faithful multiplication module over an integral domain R, J a finitely generated ideal of R and N a proper v-submodule of M. If $(J N)_{v}=$ $J_{v} N_{v}$, then $I N$ is a t-submodule of M for every t-ideal I of R.

The following result generalizes [17, Corollary 4 and Corollary 5].

Theorem 3.11. Let M be a faithful multiplication module over an integral domain R, J a finitely generated ideal of R and N a proper v-submodule of M. If $(J N)_{v}=$ $J_{v} N_{v}$, then the following are equivalent.
(1) $N=\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}}\right)_{t} N^{*}$, where P_{1}, \cdots, P_{n} are t-invertible prime t-ideals of R and N^{*} is a t-invertible prime t-submodule of M.
(2) Every prime t-submodule minimal over N is t-invertible.
(3) Every prime t-submodule containing N is t-invertible.
(4) There is a finite set of t-invertible prime t-ideals $\left\{P_{1}, \cdots, P_{n}\right\}$ and a t invertible prime t-submodule N^{*} of M such that for every t-submodule L containing $N, L=\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}}\right)_{t} N^{*}$.
(5) Every t-submodule containing N is t-invertible.

Moreover, in the case where (1) - (5) hold, every t-submodule L containing N is a v-submodule of finite type and the set of t-submodules containing N is finite.
Proof. Obviously $(2) \Rightarrow(3)$ and $(4) \Rightarrow(1) .[16$, Lemma 2.1] shows that $(4) \Rightarrow(5)$. Clearly (5) $\Rightarrow(3)$.

Now we show that (1) \Rightarrow (2). Suppose that $N=\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}}\right)_{t} N^{*}$, where P_{1}, \cdots, P_{n} are t-invertible prime t-ideals of R and N^{*} is a t-invertible prime t-submodule of M. Then $\left(N:_{R} M\right)=\left(\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}}\right)_{t} N^{*}:_{R} M\right)=$ $\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}}\right)_{t}\left(N^{*}:_{R} M\right)=\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}}\left(N^{*}: M\right)\right)_{t}$ for each nonnegative inter a_{i}, since $\left(N:_{R} M\right)$ and $\left(N^{*}:_{R} M\right)$ are t-ideals of R. By [11, Corollary 4], every prime t-ideal minimal over $\left(N:_{R} M\right)$ is t-invertible. Hence every prime t-submodule minimal over N is t-invertible.
$(3) \Rightarrow(4)$ Suppose that every prime t-submodules containing N is t-invertible. By Corollary 3.6, the set of prime t-submodules over N is finite, say $\left\{L_{1}, \cdots, L_{n}\right\}$. Then $\left\{Q_{1}, \cdots, Q_{n}\right\}$ is the set of prime t-ideals minimal over $\left(N:_{R} M\right)$, where $Q_{i}=$ $\left(L_{i}:_{R} M\right)$. Since each L_{i} is t-invertible, each $Q_{i}=\left(L_{i}: M\right)$ is t-invertible by [16, Proposition 2.2]. Then there is a finite set of t-invertible prime t-ideals $\left\{P_{1}, \cdots, P_{n}\right\}$ such that every t-ideal containing $\left(N:_{R} M\right)$ is a t-product of powers of the P_{i} 's. If L is a t-submodule containing N, then $\left(L:_{R} M\right)=\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}}\right)_{t}$ for each nonnegative inter a_{i}. Since $L=\left(L:_{R} M\right) M$, we have that $L_{t}=\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}} M\right)_{t}=$ $\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}-1} P_{n} M\right)_{t}=\left(I N^{*}\right)_{t}$, where $I=\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}-1}\right)_{t}$ and $N^{*}=P_{n} M$. By Lemma 2.7, $L_{t}=\left(I N^{*}\right)_{t}=I_{t}\left(N^{*}\right)_{t}$. Hence $L=L_{t} M=I_{t}\left(N^{*}\right)_{t} M=I_{t} N^{*}=$ $\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}-1}\right)_{t} N^{*}$.

Suppose that (1) - (5) hold for N and let L be a t-submodules containing N. Then there is a finite set of t-invertible prime t-ideals $\left\{Q_{1}, \cdots, Q_{n}\right\}$ and a t invertible prime t-submodule N^{*} of M such that $L=\left(Q_{1}^{a_{1}} \cdots Q_{n}^{a_{n}}\right)_{t} N^{*}$. Hence L itself is t-invertible by [16, Lemma 2.1]. Then $\left(L:_{R} M\right)$ is a t-invertible t-ideal, and so $\left(L:_{R} M\right)$ is a v-ideal. Therefore $L=\left(L:_{R} M\right) M$ is a v-submodule. Finally, since the set of t-submodules containing N is $\left\{\left(P_{1}^{b_{1}} \cdots P_{n}^{b_{n}}\right)_{t} N^{*} \mid 0 \leq b_{i} \leq a_{i}\right\}$, where $N=\left(P_{1}^{a_{1}} \cdots P_{n}^{a_{n}}\right)_{t} N^{*}$, the set of t-submodules containing N is finite.

Proposition 3.12. Let M be a faithful multiplication module over an integral domain R, N a nonzero submodule of M. If $N=P_{1} \cdots P_{n} N^{*}$, where each P_{i} is an invertible prime ideal of R and N^{*} is an invertible prime submodule of M, then every v-submodule containing N is invertible.
Proof. Let L be a v-submodule containing N. Then $\left(L:_{R} M\right)$ is a v-ideal containing $\left(N:_{R} M\right)$. Since $\left(N:_{R} M\right)=P_{1} \cdots P_{n}\left(N^{*}:_{R} M\right)$ and $\left(N^{*}:_{R} M\right)$ is invertible, $\left(L:_{R} M\right)$ is invertible by [17, Corollary 5]. Hence L is invertible.

References

[1] F. H. Al-Alwan and A. G. Naoum, Dedekind modules, Comm. Algebra, 24(1996), 397-421.
[2] F. H. Al-Alwan and A. G. Naoum, Dense submodules of multiplication modules, Comm. Algebra, 24(1996), 413-424.
[3] M. Ali, Invertiblity of multiplication modules, New Zealand J. Math., 35(2006), 17-29.
[4] M. Ali, Some remarks on generalized GCD domains, Comm. Algebra, 36(2008), 142164.
[5] M. Ali, Invertiblity of multiplication modules II, New Zealand J. Math., 39(2009), 45-64.
[6] M. Ali and D. J. Smith, Some remarks on multiplication and projective modules, Comm. Algebra, 32(2004), 3897-3909.
[7] M. Alkan, B Saraç, and Y. Tiraş, Dedekind modules, Comm. Algebra, 33(2005), 1617-1626.
[8] M. Alkan and Y. Tiras, Prime modules and submodules, Comm. Algebra, 31(2003), 5253-5261.
[9] M. Alkan and Y. Tiraş, On Invertible and dense submodules, Comm. Algebra, 32(2004), 3911-3919.
[10] Y. Al-Shaniafi and D. D Anderson, Multiplication modules and the ideal $\Theta(M)$, Comm. Algebra, 30(2002), 3383-3390.
[11] D. D. Anderson, On t-invertibility IV, Factorization in integral domains (Iowa City, IA, 1996), 221-225, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997.
[12] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(1988), 755-739.
[13] V. Erdogdu, Multiplication modules which are distributive, J. Pure Appl. Algebra, 54(1988), 209-213.
[14] E. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial, Mich. Math. J. 35(1988), 291-300.
[15] B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra, 124(1989), 284-299.
[16] H. Kim and M. O. Kim , Krull modules, Algebra Colloq., 20(2013), 464-474.
[17] S. Malik, J. L. Mott, and M. Zafrullah, On t-invertibility, Comm. Algebra, 16(1988), 149-170.
[18] J. L. Mott and M. Zafrullah, On Krull domains, Arch. Math., 56(1991), 559-568.
[19] P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50(1988), 223235.
[20] M. Zafrullah, Ascending chain condition and star operations, Comm. Algebra, $\mathbf{1 7}$ (1989), 1523-1533.

