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Abstract. In this article, we characterize t-Prüfer modules in the class of faithful multi-

plication modules. As a corollary, we also characterize Krull modules. Several properties

of a t-invertible submodule of a faithful multiplication module are given.

1. Introduction

Let R be a commutative ring with identity and M be a unital R-module. M
is said to be faithful if annR(M) = 0. M is called a multiplication module if each
submodule N of M has the form IM for some ideal I of R, equivalently, for any
submodule N of M , N = (N :R M)M . M is called a cancellation module if for
all ideals I and J of R, IM ⊆ JM implies I ⊆ J . It was shown in [5, Proposition
2.2] that if R is an integral domain and M is a faithful multiplication R-module,
then M is finitely generated. Thus it follows from [12, Theorem 3.1] that a faithful
multiplication module M over an integral domain is a cancellation module. Hence
we have that I(N :R M) = (IN :R M) for all submodules N of M and all ideals
I of R. It was also shown in [13, Lemma 2.1] that if M is a faithful multiplication
R-module over integral domain R, then M is torsion-free.
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Let R be an integral domain with quotient field K and M be a unital R-module.
Let N be a nonzero submodule of M and let N−1 = (M :K N) = {x ∈ K | xN ⊆
M }. Then N−1 is an R-submodule of K and NN−1 ⊆ M . Following Naoum and
Al-Alwan, in [1], N is said to be invertible in M if NN−1 = M . Clearly M is
invertible in M , and it is proved in [1, Remark 3.8] that R is an integral domain if
and only if every nonzero cyclic submodule of the faithful multiplication R-module
M is invertible in M (i.e., M is a D1-module).

Let M be a faithful multiplication module over an integral domain R and let
N be a submodules of M . In [4], M. Ali defined Nv = (N−1)−1 = R :K (M :K N)
and showed that N−1 = (N :R M)−1, and hence Nv = (N :R M)v (in particular,
Mv = R), and then introduced the concept of a divisorial submodule or v-submodule
of M as follows: N is a v-submodule if N = NvM . N is called a v-submodule of
finite type if N = LvM for some finitely generated submodule L of M . It follows
that N is a v-submodule of M if and only if (N :R M) is a v-ideal of R. If L and N
are submodules of a multiplication module M with L ⊆ N , then Lv ⊆ Nv. It was
also shown that for any submodule N of a multiplication R-module, N ⊆ NvM . If
N is a submodule of M and I is an ideal of R such that either Iv is invertible or Nv is
invertible, then as it was remarked in [4, p.144] it is easily seen that (IN)v = (IN :R
M)v = (I(N :R M))v = Iv(N :R M)v = IvNv. In [16], we introduced the concept of
t-invertible submodule of a multiplication module and gave some characterizations
of faithful multiplication Krull modules, Mori modules and π-modules. Also, we
defined Nt =

⋃
{Lv | L is a finitely generated submodule of M contained in N}.

It is easily seen that Nt is an R-submodule of K, Nt ⊆ Nv and (NN−1)t ⊆ R.
N is said to be t-(resp. v-)invertible submodule of M if (NN−1)t = R (resp.
(NN−1)v = R). It is clear that every invertible submodule of M is t-invertible and
every t-invertible submodule is v-invertible. By [6, Proposition 2.2], N is finitely
generated if and only if (N :R M) is finitely generated. Using this result, we
have that (N :R M)t = Nt and N ⊆ NtM . So we call N a t-submodule of M if
N = NtM . N is called a t-submodule of finite type if N = LtM for some finitely
generated submodule L of M . Clearly every v-submodule is a t-submodule. If I is
a t-ideal of R, then IM is a t-submodule of M . Also if N is finitely generated, then
N is a v-submodule of M if and only if N is a t-submodule of M .

In section 2 we characterize faithful multiplication t-Prüfer modules (i.e., every
nonzero finitely generated submodule is t-invertible). In section 3 we give several
properties of a t-invertible submodule of a faithful multiplication module.

2. t-Prüfer Modules

We begin with this section by giving a characterization of when a submodule of
the module is ∗-submodule of finite type.

Lemma 2.1. Let M be a faithful multiplication module over an integral domain R,
I an ideal of R, N a submodules of M , and let ∗ = v or t. Then

(1) N is a ∗-submodule of finite type if and only if (N :R M) is a ∗-ideal of finite
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type.

(2) I is a ∗-ideal of finite type if and only if IM is a ∗-submodule of finite type.

Proof. Since the assertion for the case ∗ = v is similar to that of ∗ = t, we only
consider the case ∗ = t. (1) If N is a t-submodule of finite type, then N = LtM
for some finitely generated submodule L of M and (N :R M) is a t-ideal by [16,
Proposition 2.2]. Since Nt = (N :R M)t, we have that (N :R M)tM = (L :R M)tM .
Hence (N :R M) = (L :R M)t and (L :R M) is a finitely generated ideal of
R. Conversely, assume that (N :R M) is a t-ideal of finite type. Then by [16,
Proposition 2.2], (N :R M) = It for some finitely generated ideal I of R and N is
a t-submodule. Hence N = (N :R M)M = ItM = (IM :R M)tM = (IM)tM and
IM is a finitely generated submodule of M . 2

Proposition 2.2. The following conditions are equivalent for a faithful multiplica-
tion module M over an integral domain R.

(1) Each t-submodule of M is of finite type.

(2) M satisfies the ascending chain condition on t-submodules.

(3) M satisfies the ascending chain condition on v-submodules.

(4) For each nonzero submodule N of M , there exists a finitely generated sub-
module L of M contained in N such that Nt = Lt.

Proof. The equivalences of (1), (2) and (3) follow from Lemma 2.1 and [20, Theorem
1.1]. To complete the proof, we show that (1) ⇔ (4).

(1) ⇒ (4). By Lemma 2.1, each t-ideal of R is of finite type. Then for each
nonzero ideal I, there exists a finitely generated ideal J of R contained in I such
that It = Jt [20, Theorem 1.1]. Let N be a nonzero submodule of M . Since M is a
multiplication module, (N :R M) is a nonzero ideal of R. Then (N :R M)t = Bt for
some finitely generated ideal B ⊆ (N :R M) of R. Thus (BM)t = (BM :R M)t =
Bt = Nt and BM ⊆ N is a finitely generated submodule of M .

(4) ⇒ (1). Let N be any t-submodule of M . Then by hypothesis, there exists
a finitely generated submodule L of M contained in N such that Nt = Lt. Thus
N = NtM = LtM , and so N is of finite type. 2

Recall from [3, p. 25] that an R-module M is called a cyclic submodule module
(CSM) if every submodule of M is cyclic. It was shown in [3] that a faithful
multiplication module over an integral domain R is a CSM if and only if R is
a principal ideal domain. In [16], we call an R-module M a v-Prüfer module if
(NN−1)v = R for every nonzero finitely generated submodule N of M and M a
Krull module if MP is a CSM RP -module for each P ∈ X(1)(R), which is the set
of height-one prime ideals of R, M =

⋂
P∈X(1)(R)

MP , and each nonzero x ∈ M is

primitive in all but a finite number of MP . It was shown in [16, Theorem 2.1(1) and
Theorem 2.8] that a faithful multiplication module over an integral domain R is a
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v-Prüfer (resp., Krull) module if and only if R is a v-Prüfer (resp., Krull) domain.
The following result is an analogue to Cohen’s theorem for v-Prüfer modules.

Theorem 2.3. Let R be an integral domain and M a faithful multiplication and
v-Prüfer module. If every prime t-submodule of M is of finite type, then every
t-submodule of M is of finite type.

Proof. By [16, Theorem 2.5], M is a v-Prüfer module if and only if R is a v-Prüfer
domain. Let P be any prime t-ideal of R. Then PM is a prime t-submodule of M .
Since PM is a t-submodule of finite type, we have PM = QtM for some finitely
generated submodule Q of M . Then P = (Q :R M)t and (Q :R M) is a finitely
generated ideal of R. Hence P is a t-ideal of finite type. By [17, Theorem 2.3],
every t-ideal of R is of finite type. Let N be a t-submodule of M . Then (N :R M)
is a t-ideal of finite type, and so (N :R M) = Bt for some finitely generated ideal B
of R. Hence N = (N :R M)M = BtM = (BM :R M)tM = (BM)tM and BM is a
finitely generated submodule of M . 2

Several characterizations of Krull modules were given in [16]. In the following,
we characterize Krull modules in terms of v-Prüfer modules, which generalizes [17,
Theorem 2.4].

Corollary 2.4. Let R be an integral domain and M a faithful multiplication and
v-Prüfer module. Then the following are equivalent.

(1) The ascending chain condition on t-submodules holds.

(2) Each t-submodule of M is of finite type (and hence each v-submodule of M
is of finite type)

(3) Each prime t-submodule is of finite type.

(4) M is a Krull module.

Proof. Note first that R is a v-Prüfer domain ([16, Theorem 2.5(1)]).
(1) ⇔ (2) This follows from Lemma 2.1 and [17, Theorem 2.4].
(2) ⇔ (3) This follows from Lemma 2.1, [17, Theorem 2.4] and Theorem 2.3.
(2) ⇒ (4) Let I be any t-ideal of R. Since IM is a t-submodule, IM is of finite

type. Then I is of finite type by Lemma 2.1. Thus by again [17, Theorem 2.4] R is
a Krull domain. It follows from [16, Theorem 2.8] that M is a Krull module.

(4) ⇒ (2) By [16, Theorem 2.8], R is a Krull domain. Then every t-ideal of R
is of finite type. Let N be a t-submodule of M . Then (N :R M) is a t-ideal of finite
type by Lemma 2.1. Thus N is of finite type. 2

We recall that an integral domain R is a t-Prüfer domain (or Prüfer v-
multiplication domain (for short PvMD)) if (II−1)t = R for every nonzero finitely
generated ideal I of R. Now we extend this concept to the module case: An R-
module M is a t-Prüfer module if (NN−1)t = R for every nonzero finitely generated
submodule N of M .
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Lemma 2.5. Let M be a faithful multiplication module over an integral domain R.
Then M is a t-Prüfer module if and only if R is a t-Prüfer domain.

Proof. Let I be a nonzero finitely generated ideal of R. Since M is a faithful
multiplication module, IM is a nonzero finitely generated submodule of M . So IM
is t-invertible. By [16, Lemma 2.1], I is t-invertible. Thus R is a t-Prüfer domain.
Conversely, let N be a nonzero finitely generated submodule of M . Then (N :R M)
is a nonzero finitely generated ideal of R, and so (N :R M) is t-invertible. Thus N
is t-invertible by [16, Proposition 2.2]. Hence M is a t-Prüfer module. 2

Recall from [3] that an R-module M is called a valuation module if for all
m,n ∈ M , either Rm ⊆ Rn or Rn ⊆ Rm, or equivalently, for all submodules L,N
of M , either L ⊆ N or N ⊆ L. It was shown that a faithful multiplication module
over an integral domain R is a valuation module if and only if R is a valuation
domain.

Theorem 2.6. Let M be a faithful multiplication module over an integral domain
R. Then the following are equivalent.

(1) M is a t-Prüfer module.

(2) For every maximal t-ideal P of R, MP is a valuation module.

(3) Every v-submodule of finite type is t-invertible.

Proof. (1) ⇔ (2) If M is a t-Prüfer module, then R is a t-Prüfer domain by Lemma
2.5. Then RP is a valuation domain for every maximal t-ideal P of R. Since MP is
a faithful multiplication RP -module, MP is a valuation module by [5, Proposition
2.2]. Conversely, if MP is a valuation module, then by [5, Proposition 2.2] RP is a
valuation domain. Thus R is a t-Prüfer domain. Hence M is a t-Prüfer module by
Lemma 2.5.

(1) ⇔ (3) Suppose that M is a t-Prüfer module and let N be a v-submodule
of finite type. By Lemma 2.1, (N :R M) is a v-ideal of finite type. Then (N :R
M) = Bv for some finitely generated ideal B ⊆ (N :R M). Since BM is finitely
generated, we have BM is t-invertible, and so B is t-invertible by [16, Lemma
2.1]. Then (N :R M) is t-invertible. By [16, Proposition 2.2], N is t-invertible.
Conversely, let N be a nonzero finitely generated submodule of M . Since M is a
faithful multiplication module, (N :R M) is finitely generated. Then I = (N :R M)v

is a v-ideal of finite type. By Lemma 2.1, IM is a v-submodule of finite type. So
IM is t-invertible. Then (N :R M) is t-invertible, and so N is t-invertible. Hence
M is a t-Prüfer module. 2

Let M be a faithful multiplication module over an integral domain R. By [16,
Lemma 2.1 and Proposition 2.2], every nonzero ideal of R is v-invertible if and only
if every nonzero submodule of M is v-invertible. Recall from [16] that M is called
an essential module if M =

⋂
P∈Λ MP , where Λ ⊆ Spec(R), and each localization

MP of M at P ∈ Λ is a valuation module.
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Theorem 2.7. Let M be a faithful multiplication module over an integral domain
R. Suppose that for each nonzero submodule N of M , Nv is of finite type. Then
the following are equivalent.

(1) Every nonzero submodule of M is v-invertible.

(2) M is a v-Prüfer module.

(3) M is a t-Prüfer module.

(4) M is an essential module.

Proof. (4) ⇒ (1) ⇒ (2) are trivial.
(2) ⇒ (3) This follows from [16, Theorem 2.5] and Lemma 2.5
(3) ⇒ (4) Let I be a finitely generated ideal of R. Then IM is a finitely

generated submodule. By hypothesis, IM is t-invertible. Then I is t-invertible,
and so R is a t-Prüfer domain. Then R is an essential domain. Hence M is an
essential module [16, Theorem 2.5]. 2

Recall from [16] that M is called a Mori module if M satisfies the ascending
chain condition on v-submodules of M . If M is a faithful multiplication and Mori
module, then for each nonzero submodule N of M , Nv is of finite type by [16,
Theorem 2.7].

Corollary 2.8. Let R be an integral domain and M a faithful multiplication and
Mori module. Then the following are equivalent.

(1) Every nonzero submodule of M is v-invertible.

(2) M is a Krull module.

(3) M is a v-Prüfer module.

(4) M is a t-Prüfer module.

(5) M is an essential module.

3. t-invertible Submodules

In this section we give several properties of a t-invertible submodule of a faithful
multiplication module.

Proposition 3.1. Let M be a faithful multiplication module over an integral domain
R. If every nonzero prime submodule of M contains a t-invertible prime submodule,
then there exists a nonempty collection Λ of minimal prime ideals of R such that
M =

⋂
P∈Λ MP and each MP , P ∈ Λ, is a CSM RP -module.

Proof. Let I be any nonzero prime ideal of R. By hypothesis, there exists a
t-invertible prime submodule N of M such that N ⊆ IM . Then I contains a t-
invertible prime ideal (N :R M) of R. By [15, Lemma 3.3], there exists a nonempty
collection Λ of minimal prime ideals of R such that R =

⋂
P∈Λ RP and each RP ,
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P ∈ Λ, is a PID. By [5, Proposition 2.2], MP is a CSM RP -module. Now we show
that M =

⋂
P∈Λ MP . Clearly M ⊆

⋂
P∈Λ MP . Let 0 6= x ∈

⋂
P∈Λ MP . By [16,

Lemma 2.4], (M :R Rx) * P for each P ∈ Λ. Since (M :R Rx) is a t-ideal and
every proper t-ideal is contained in a maximal t-ideal of R, (M :R Rx) = R. Hence
x ∈ M . 2

Let M be a faithful multiplication module over an integral domain R. Then M
is finitely generated and torsion-free. Also, for every prime ideal P of R, MP

∼= RP

as an RP -module. It follows that NP
∼= (N :R M)P , where N is a submodule of M

[3].

Lemma 3.2. Let M be a faithful multiplication module over an integral domain R.
Suppose that N is a finitely presented submodule of M . Then

(1) (N :R M)P
∼= (NP : MP ) for every prime ideal P of R.

(2) (N :R M)P is a principal ideal of RP if and only if NP is a cyclic RP -module
for every prime ideal P of R.

Proof. (1) Since M and N are torsion-fee, we have (N :R M)P
∼= Hom(M,N)P .

Also, Hom(M,N)P
∼= Hom(MP , NP ) since N is finitely presented. Therefore (N :R

M)P
∼= (NP : MP ). (2) follows from (1). 2

Recall that an integral domain R is called a coherent domain if every finitely
generated ideal of R is finitely presented. Then it is well known that R is a coher-
ent domain if and only if every finitely generated torsion-free R-module is finitely
presented. Therefore, if R is a coherent domain and N is finitely generated, then
Lemma 3.2 holds.

The following result generalizes [17, Lemma 1.5 and Corollary 1.6].

Proposition 3.3. Let M be a faithful multiplication module over an integral domain
R, N a finitely generated submodule of M . If N is finitely presented, then N is t-
invertible if and only NP is a cyclic RP -module for every maximal t-ideal P of
R.

Proof. Since N is a finitely generated submodule of M , we have (N :R M) is a
finitely generated ideal of R. If N is t-invertible, then by [16, Proposition 2.2],
(N :R M) is a t-invertible ideal of R. By [17, Lemma 1.5], (N :R M)P is principal
for every maximal t-ideal P of R. Hence NP is a cyclic RP -module. The proof of
the converse is similar. 2

Corollary 3.4. Let M be a faithful multiplication module over an integral domain
R, N a v-submodule of finite type. If N is finitely presented, then N is t-invertible
if and only NP is a cyclic RP -module for every maximal t-ideal P of R.

Proof. By Lemma 2.1, N is a v-submodule of finite type if and only if (N :R M)
is a v-ideal of finite type. Then by [17, Corollary 1.6], N is t-invertible, if and only
if (N :R M)P is principal for every maximal t-ideal P of R, if and only if NP is a
cyclic RP -module. 2
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Let M be a faithful multiplication module over an integral domain R. If N is
a t-invertible prime t-submodule of M , then N is a maximal t-submodule of M .

The following result generalizes [17, Theorem 1 and Corollary 2].

Proposition 3.5. Let M be a faithful multiplication module over an integral domain
R and let N be a nonzero submodule of M . If every prime t-submodule minimal
over N is of finite type, then there are only finitely many t-submodules minimal
over N .

Proof. Let I be a prime t-ideal minimal over (N :R M). Then IM is a prime t-
submodule minimal over N . By hypothesis, IM is of finite type, and so by Lemma
2.1, I is of finite type. Then there are only finitely many prime t-ideals {P1, · · · , Pn}
minimal over (N :R M) by [11, Theorem 1]. Hence P1M, · · · , PnM are only finitely
many prime t-submodules minimal over N . 2

Corollary 3.6. Let M be a faithful multiplication module over an integral domain
R and let N be a nonzero submodule of M . If every prime t-submodule minimal
over N is t-invertible, then N is contained in only finitely many minimal prime
t-submodules.

Proof. This follows from the fact that every t-invertible t-submodule is of finite
type. 2

Lemma 3.7. Let M be a faithful multiplication module over an integral domain R,
J a finitely generated ideal of R and N a proper v-submodule of M . If (JN)v =
JvNv, then (IN)t = ItNt for every ideal I of R.

Proof. Recall that (IN)t =
⋃
{Lv | L is a finitely generated submodule of M

contained in IN}. For each L in the definition, L ⊆ JN for some finitely generated
ideal J ⊆ I. Then Lv ⊆ (JN)v = JvNv ⊆ ItNt. Thus (IN)t ⊆ ItNt. The reverse
inclusion is trivial. 2

Corollary 3.8. Let R be a Dedekind domain and let M be a faithful multiplication
R-module, I an ideal of R, and N a proper submodule of M . Then (IN)t = ItNt.

Following [14], a TV-domain is a domain in which every t-ideal is a v-ideal.
Noetherian domains and Krull domains are TV-domains, cf. [14, p. 291].

Corollary 3.9. Let R be a TV -domain and let M be a faithful multiplication R-
module, J a finitely generated ideal of R, and N a proper submodule of M . If
(JN)v = JvNv, then (IN)t = ItNt for every ideal I of R.

Corollary 3.10. Let M be a faithful multiplication module over an integral domain
R, J a finitely generated ideal of R and N a proper v-submodule of M . If (JN)v =
JvNv, then IN is a t-submodule of M for every t-ideal I of R.

The following result generalizes [17, Corollary 4 and Corollary 5].
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Theorem 3.11. Let M be a faithful multiplication module over an integral domain
R, J a finitely generated ideal of R and N a proper v-submodule of M . If (JN)v =
JvNv, then the following are equivalent.

(1) N = (P a1
1 · · ·P an

n )tN
∗, where P1, · · · , Pn are t-invertible prime t-ideals of R

and N∗ is a t-invertible prime t-submodule of M .

(2) Every prime t-submodule minimal over N is t-invertible.

(3) Every prime t-submodule containing N is t-invertible.

(4) There is a finite set of t-invertible prime t-ideals {P1, · · · , Pn} and a t-
invertible prime t-submodule N∗ of M such that for every t-submodule L
containing N , L = (P a1

1 · · ·P an
n )tN

∗.

(5) Every t-submodule containing N is t-invertible.

Moreover, in the case where (1)− (5) hold, every t-submodule L containing N is a
v-submodule of finite type and the set of t-submodules containing N is finite.

Proof. Obviously (2) ⇒ (3) and (4) ⇒ (1). [16, Lemma 2.1] shows that (4) ⇒ (5).
Clearly (5) ⇒ (3).

Now we show that (1) ⇒ (2). Suppose that N = (P a1
1 · · ·P an

n )tN
∗,

where P1, · · · , Pn are t-invertible prime t-ideals of R and N∗ is a t-invertible
prime t-submodule of M . Then (N :R M) = ((P a1

1 · · ·P an
n )tN

∗ :R M) =
(P a1

1 · · ·P an
n )t(N∗ :R M) = (P a1

1 · · ·P an
n (N∗ : M))t for each nonnegative inter

ai, since (N :R M) and (N∗ :R M) are t-ideals of R. By [11, Corollary 4], every
prime t-ideal minimal over (N :R M) is t-invertible. Hence every prime t-submodule
minimal over N is t-invertible.

(3) ⇒ (4) Suppose that every prime t-submodules containing N is t-invertible.
By Corollary 3.6, the set of prime t-submodules over N is finite, say {L1, · · · , Ln}.
Then {Q1, · · · , Qn} is the set of prime t-ideals minimal over (N :R M), where Qi =
(Li :R M). Since each Li is t-invertible, each Qi = (Li : M) is t-invertible by [16,
Proposition 2.2]. Then there is a finite set of t-invertible prime t-ideals {P1, · · · , Pn}
such that every t-ideal containing (N :R M) is a t-product of powers of the Pi’s.
If L is a t-submodule containing N , then (L :R M) = (P a1

1 · · ·P an
n )t for each

nonnegative inter ai. Since L = (L :R M)M , we have that Lt = (P a1
1 · · ·P an

n M)t =
(P a1

1 · · ·P an−1
n PnM)t = (IN∗)t, where I = (P a1

1 · · ·P an−1
n )t and N∗ = PnM . By

Lemma 2.7, Lt = (IN∗)t = It(N∗)t. Hence L = LtM = It(N∗)tM = ItN
∗ =

(P a1
1 · · ·P an−1

n )tN
∗.

Suppose that (1) − (5) hold for N and let L be a t-submodules containing
N . Then there is a finite set of t-invertible prime t-ideals {Q1, · · · , Qn} and a t-
invertible prime t-submodule N∗ of M such that L = (Qa1

1 · · ·Qan
n )tN

∗. Hence L
itself is t-invertible by [16, Lemma 2.1]. Then (L :R M) is a t-invertible t-ideal, and
so (L :R M) is a v-ideal. Therefore L = (L :R M)M is a v-submodule. Finally,
since the set of t-submodules containing N is { (P b1

1 · · ·P bn
n )tN

∗ | 0 ≤ bi ≤ ai },
where N = (P a1

1 · · ·P an
n )tN

∗, the set of t-submodules containing N is finite. 2
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Proposition 3.12. Let M be a faithful multiplication module over an integral
domain R, N a nonzero submodule of M . If N = P1 · · ·PnN∗, where each Pi is
an invertible prime ideal of R and N∗ is an invertible prime submodule of M , then
every v-submodule containing N is invertible.

Proof. Let L be a v-submodule containing N . Then (L :R M) is a v-ideal containing
(N :R M). Since (N :R M) = P1 · · ·Pn(N∗ :R M) and (N∗ :R M) is invertible,
(L :R M) is invertible by [17, Corollary 5]. Hence L is invertible. 2
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