KYUNGPOOK Math. J. 53(2013), 371-383 http://dx.doi.org/10.5666/KMJ.2013.53.3.371

Some Further Results on Uniqueness of Entire Functions and Fixed Points

YAN LIU

Xinzhai People's Government of Yucheng City, Dezhou, 251214, P. R. China e-mail: liuyanshanda@163.com

LIAN-ZHONG YANG*

Department of Mathematics, Shandong University, Jinan, 250100, P. R. China e-mail: lzyang@sdu.edu.cn

ABSTRACT. In this paper, we investigate the uniqueness problem on entire functions sharing fixed points (ignoring multiplicities). Our main results improve and generalize some results due to Zhang [13], Qi-Yang [10] and Dou-Qi-Yang [1].

1. Introduction

In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We assume that the reader is familiar with standard notations and fundamental results of Nevanlinna Theory as explained in [12].

We say that two meromorphic functions f and g share a small function a(z) IM (ignoring multiplicities) when f - a and g - a have the same zeros. If f and g have the same zeros with the same multiplicities, then we say that f and g share a(z) CM (counting multiplicities).

Let p be a positive integer and $a \in \mathbb{C}$. We denote by $N_p(r, \frac{1}{f-a})$ the counting function of the zeros of f - a where an m-fold zero is counted m times if $m \leq p$ and p times if m > p. We denote by $\overline{N}_L(r, \frac{1}{f-1})$ the counting function for 1-points of both f(z) and g(z) about which f(z) has a larger multiplicity than g(z), with multiplicity not being counted. We say that a finite value z_0 is a fixed point of f(z)if $f(z_0) = z_0$, and we define

 $E_f = \{ z \in \mathbb{C} : f(z) = z, counting multiplicities \}.$

About a famous question of Hayman [5] in 1959, Fang- Hua[3] and Yang-Hua[7] proved the following.

2010 Mathematics Subject Classification: 30D35, 30D20.

^{*} Corresponding Author.

Received June 25, 2011; accepted September 10, 2012.

This work was supported by the NSF of Shandong Province, P. R. China(No. ZR2010AM030) and the NNSF of China(No. 11171013 & No. 11041005).

Key words and phrases: Fixed point, sharing value, entire solutions.

Theorem A. Let f and g be two nonconstant entire functions, and let $n \ge 6$ be a positive integer. If $f^n f'$ and $g^n g'$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(c_1 c_2)^{n+1} c^2 = -1$ or f = tgfor a constant t such that $t^{n+1} = 1$.

Theorem B. Let f and g be two nonconstant entire functions, and let n and k be two positive integers with n > 2k + 4. If $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share 1 CM, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = -1$ or f = tg for a constant t such that $t^n = 1$.

In [2], Fang also proved the following results.

Theorem C. Let f and g be two nonconstant entire functions, and let n, k be two positive integers with $n \ge 2k + 8$. If $(f^n(f-1))^{(k)}$ and $(g^n(g-1))^{(k)}$ share 1 CM, then f = g.

Corresponding to the problems of entire functions that share 1 CM, many authors considered the uniqueness problems of entire functions that have fixed points, see Fang-Qiu [4], Lin-Yi [8], Zhang [13].

In order to state the results, we need the following definitions:

Definition 1. Let m^* is an integer, according to the differential polynomials $(f^n(z)(\lambda f^m(z) + \mu))^{(k)}$ and $(g^n(z)(\lambda g^m(z) + \mu))^{(k)}$ in the following Theorem D and Theorem 1, we define

$$m^* = \begin{cases} m, & \lambda \neq 0; \\ 0, & \lambda = 0. \end{cases}$$

Definition 2. Let m^{**} is an integer, according to the nonzero polynomial P(z) in the following Theorem E and Theorem 2, we define

$$m^{**} = \begin{cases} m, & P(z) \neq C; \\ 0, & P(z) = C. \end{cases}$$

Recently, Qi-Yang [10] and Dou-Qi-Yang [1] proved the following results which generalize some previous results.

Theorem D. Let f(z) and g(z) be two transcendental entire functions, n, m and k be positive integers, λ and μ be constants that satisfy $|\lambda| + |\mu| \neq 0$. Suppose that $n > 2k + m^* + 4$. If $(f^n(z)(\lambda f^m(z) + \mu))^{(k)}$ and $(g^n(z)(\lambda g^m(z) + \mu))^{(k)}$ share z CM, then the following conclusions hold:

(i) If $\lambda \mu \neq 0$, then $f^d(z) \equiv g^d(z)$, where d = GCD(n,m); in particular, $f(z) \equiv g(z)$, when d = 1.

(ii) If $\lambda \mu = 0$, then f = cg for a constant c that satisfies $c^{n+m^*} = 1$, or k = 1and $f(z) = b_1 e^{bz^2}$, $g(z) = b_2 e^{-bz^2}$ for three constants b_1 , b_2 and b that satisfy $4(\lambda + \mu)^2(b_1b_2)^{n+m^*}((n+m^*)b)^2 = -1$.

Theorem E. Let $P(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_1 z + a_0$ or P(z) = C,

 $a_0, a_1, \dots, a_{m-1}, a_m \neq 0, C \neq 0$ are complex constant. Suppose that f(z) and g(z) be two transcendental entire functions, and let n, m and k be three positive integers with $n > 2k + m^{**} + 4$. If $(f^n(z)P(f))^{(k)}$ and $(g^n(z)P(g))^{(k)}$ share $z \ CM$, then the following conclusions hold:

(i) If $P(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_1 z + a_0$ is not a monomial, then f = tgfor a constant t that satisfies $t^d = 1$, where $d = (n + m, \dots, n + m - i, \dots, n)$, $a_{m-i} \neq 0$, for some $i = 0, 1, 2, \dots, m$; or f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(w_1, w_2) = w_1^n (a_m w_1^m + a_{m-1} w_1^{m-1} + \dots + a_1 w_1 + a_0) - w_2^n (a_m w_2^m + a_{m-1} w_2^{m-1} + \dots + a_1 w_2 + a_0)$;

(ii) If P(z) = C or $P(z) = a_m z^m$, then f = tg for a constant t that satisfies $t^{n+m^{**}} = 1$, or $f(z) = b_1 e^{bz^2}$, $g(z) = b_2 e^{-bz^2}$ for three constants b_1 , b_2 and b that satisfy $4(a_m)^2(b_1b_2)^{n+m}((n+m)b)^2 = -1$, or $4C^2(b_1b_2)^n(nb)^2 = -1$.

Question: Whether the CM sharing value can be replaced by the IM sharing fixed points in the Theorem D and Theorem E? In the paper, we provide an affirmative solution by proving the following theorems.

Theorem 1. Let f(z) and g(z) be two transcendental entire functions, and let n, mand k be three positive integers with $n > 5k + 4m^* + 7$, λ and μ be constants that satisfy $|\lambda| + |\mu| \neq 0$. If $(f^n(z)(\lambda f^m(z) + \mu))^{(k)}$ and $(g^n(z)(\lambda g^m(z) + \mu))^{(k)}$ share zIM, then the following conclusions hold:

(i) If $\lambda \mu \neq 0$, then $f^d(z) \equiv g^d(z), d = GCD(n,m)$; especially, when $d = 1, f(z) \equiv g(z)$;

(ii) If $\lambda \mu = 0$, then f = cg for a constant c that satisfies $c^{n+m^*} = 1$, or k = 1and $f(z) = b_1 e^{bz^2}$, $g(z) = b_2 e^{-bz^2}$ for three constants b_1 , b_2 and b that satisfy $4(\lambda + \mu)^2(b_1b_2)^{n+m^*}((n+m^*)b)^2 = -1$.

Theorem 2. Let $P(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_1 z + a_0$ or P(z) = C, where $a_0, a_1, \cdots, a_{m-1}, a_m \neq 0, C \neq 0$ are complex constant. Suppose that f(z) and g(z) be two transcendental entire functions, and let n, m and k be three positive integers with $n > 5k + 4m^{**} + 7$. If $(f^n(z)P(f))^{(k)}$ and $(g^n(z)P(g))^{(k)}$ share z IM, then the following conclusions hold:

(i) If $P(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_1 z + a_0$ is not a monomial, then f = tgfor a constant t that satisfies $t^d = 1$, where $d = (n + m, \dots, n + m - i, \dots, n)$, $a_{m-i} \neq 0$, for some $i = 0, 1, 2, \dots, m$; or f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(w_1, w_2) = w_1^n (a_m w_1^m + a_{m-1} w_1^{m-1} + \dots + a_1 w_1 + a_0) - w_2^n (a_m w_2^m + a_{m-1} w_2^{m-1} + \dots + a_1 w_2 + a_0)$;

(ii) If P(z) = C or $P(z) = a_m z^m$, then f = tg for a constant t that satisfies $t^{n+m^{**}} = 1$, or $f(z) = b_1 e^{bz^2}$, $g(z) = b_2 e^{-bz^2}$ for three constants b_1 , b_2 and b that satisfy $4(a_m)^2(b_1b_2)^{n+m}((n+m)b)^2 = -1$, or $4C^2(b_1b_2)^n(nb)^2 = -1$.

2. Some Lemmas

Lemma 1([12]). Let f be a nonconstant meromorphic function, and a_0, a_1, a_2, \ldots

 a_n be small functions of f such that $a_n \neq 0$. Then

 $T(r, a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f + a_0) = nT(r, f) + S(r, f).$

Lemma 2([9]). Let f be a nonconstant meromorphic function, and p, k be positive integers. Then

(2.1)
$$N_p(r, \frac{1}{f^{(k)}}) \le T(r, f^{(k)}) - T(r, f) + N_{p+k}(r, \frac{1}{f}) + S(r, f),$$

(2.2)
$$N_p(r, \frac{1}{f^{(k)}}) \le k\overline{N}(r, f) + N_{p+k}(r, \frac{1}{f}) + S(r, f).$$

Lemma 3([11]). Let

(2.3)
$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right),$$

where F and G are two nonconstant meromorphic functions. If F and G share 1 IM and $H \neq 0$, then

$$\begin{split} T(r,F) + T(r,G) &\leq 2(N_2(r,\frac{1}{F}) + N_2(r,\frac{1}{G}) + N_2(r,F) \\ &+ N_2(r,G)) + 3(\overline{N}_L(r,\frac{1}{F-1} + \overline{N}_L(r,\frac{1}{G-1})) \\ &+ S(r,F) + S(r,G). \end{split}$$

Lemma 4([12]). Let f(z) be a nonconstant meromorphic function, $a_1(z)$, $a_2(z)$ and $a_3(z)$ be three distinct small functions of f(z). Then

$$T(r,f) < \sum_{j=1}^{3} \overline{N}(r,\frac{1}{f-a_j}) + S(r,f).$$

Lemma 5([10]). Let f and g be two nonconstant entire functions, n, m and k be three positive integers, and let $F = (f^n(z)(\lambda f^m(z) + \mu))^{(k)}$, $G = (g^n(z)(\lambda g^m(z) + \mu))^{(k)}$, where $\lambda \mu \neq 0$. If there exist two non-zero constants a_1 and a_2 such that $\overline{N}(r, \frac{1}{F-a_1}) = \overline{N}(r, \frac{1}{G})$ and $\overline{N}(r, \frac{1}{G-a_2}) = \overline{N}(r, \frac{1}{F})$, then $n \leq 2k + 2 + m$.

Lemma 6([10]). Suppose that F and G are given by Lemma 5. If n > 2k + m and F = G, then $f^d(z) \equiv g^d(z), d = GCD(n, m)$.

Lemma 7([10]). Let f and g be two transcendental entire functions, n, m and k be three positive integers, and let $F = (f^n(z)(\lambda f^m(z) + \mu))^{(k)}, \quad G = (g^n(z)(\lambda g^m(z) + \mu))^{(k)}$

 $(\mu)^{(k)}$, where $\lambda \mu \neq 0$. If $F \ G = z^2$, then $n \leq k+2$.

Lemma 8([10]). Let f and g be two nonconstant entire functions, n, m and k be three positive integers, and let $F = (f^n(z)(\lambda f^m(z) + \mu))^{(k)}$, $G = (g^n(z)(\lambda g^m(z) + \mu))^{(k)}$, where $|\lambda| + |\mu| \neq 0$, and $\lambda \mu = 0$. If there exist two non-zero constants a_1 and a_2 such that $\overline{N}(r, \frac{1}{F-a_1}) = \overline{N}(r, \frac{1}{G})$ and $\overline{N}(r, \frac{1}{G-a_2}) = \overline{N}(r, \frac{1}{F})$, then $n \leq 2k + 2 + m^*$.

Lemma 9([10]). Suppose that F and G are given by Lemma 8. If $n > 2k + m^*$ and F = G, then f = cg for a constant c that satisfies $c^{n+m^*} = 1$.

Lemma 10([6]). Suppose that f is a nonconstant meromorphic function, $k \ge 2$ is an integer. If

$$N(r, f) + N(r, \frac{1}{f}) + N(r, \frac{1}{f^{(k)}}) = S(r, \frac{f'}{f}),$$

then $f = e^{az+b}$, where $a \neq 0$, b are constant.

Lemma 11. Let f(z) and g(z) be two transcendental entire functions, n, m and k be positive integers, λ is a non-zero constant, and let $F = (\lambda f^{n+m}(z))'$ and $G = (\lambda g^{n+m}(z))'$. If $FG \equiv z^2$, then $f(z) = b_1 e^{bz^2}$, $g(z) = b_2 e^{-bz^2}$ for three constants b_1 , b_2 and b that satisfy $4\lambda^2 (b_1 b_2)^{n+m^*} ((n+m^*)b)^2 = -1$.

Proof. Since

(2.4)
$$\lambda^2 (f^{n+m})' (g^{n+m})' = z^2.$$

f and g are entire functions and n > 5k + 4m + 7, by using the arguments similar to the proof of Lemma 7 in [10], we get from (2.5) that f and g have no zeros. Let $f = e^{\alpha(z)}, g = e^{\beta(z)}$, where $\alpha(z), \beta(z)$ are nonconstant entire functions. Set

(2.5)
$$h(z) = \frac{1}{f(z)g(z)},$$

we know that $h(z) = e^{\gamma(z)}$, where $\gamma(z)$ is an entire function. We say that $\gamma(z)$ is a constant. In fact, if $\gamma(z)$ is a nonconstant entire function, then h(z) is transcendental entire function. By (2.5), we obtain

(2.6)
$$(m+n)^2 \lambda^2 (f^{n+m-1}) f'(g^{n+m-1}) g' = z^2.$$

From (2.6) and (2.7), we get

(2.7)
$$(\frac{g'}{g} + \frac{1}{2}\frac{h'}{h})^2 = \frac{1}{4}(\frac{h'}{h})^2 - \frac{z^2h^{m+n}}{(m+n)^2\lambda^2}.$$

Set $\xi = \frac{g'}{g} + \frac{1}{2}\frac{h'}{h}$, then (2.8) becomes

(2.8)
$$\xi^2 = \frac{1}{4} \left(\frac{h'}{h}\right)^2 - \frac{z^2 h^{m+n}}{(m+n)^2 \lambda^2}.$$

Suppose $\xi \equiv 0$, by (2.9), we have

(2.9)
$$h^{m+n} = \frac{(m+n)^2 \lambda^2}{4z^2} (\frac{h'}{h})^2.$$

Since $h(z) = e^{\gamma(z)}$, we have by (2.10) that

$$\begin{array}{lll} (m+n)T(r,h) &=& (m+n)m(r,h)+O(1)\\ &\leq& m(r,\frac{1}{4z^2})+2m(r,\frac{h'}{h})+O(1)=S(r,h). \end{array}$$

Therefore h is constant, which leads to a contradiction. Thus $\xi \neq 0$. Differentiating (2.9), we get

$$(2.10) \quad 2\xi\xi' = \frac{1}{2}\frac{h'}{h}(\frac{h'}{h})' - \frac{2z}{\lambda^2(m+n)^2}h^{m+n} - \frac{1}{\lambda^2(m+n)}z^2h^{m+n-1}h'$$
$$= \frac{1}{2}\frac{h'}{h}(\frac{h'}{h})' - \frac{1}{\lambda^2(m+n)^2}h^{m+n-1}(2zh + (m+n)z^2h').$$

Combining (2.9) and (2.11), we have

(2.11)
$$\frac{1}{\lambda^2 (m+n)^2} h^{m+n} (2z + (m+n)z^2 \frac{h'}{h} - 2z^2 \frac{\xi'}{\xi}) = \frac{1}{2} \frac{h'}{h} ((\frac{h'}{h})' - \frac{h'}{h} \frac{\xi'}{\xi}).$$

If $2z + (m+n)z^2 \frac{h'}{h} - 2z^2 \frac{\xi'}{\xi} \equiv 0$, then, we get from (2.12) that either $\frac{h'}{h} \equiv 0$ or $(\frac{h'}{h})' - \frac{h'}{h} \frac{\xi'}{\xi} \equiv 0$. If $\frac{h'}{h} \equiv 0$, then h is a constant, which leads to a contradiction. If $(\frac{h'}{h})' - \frac{h'}{h} \frac{\xi'}{\xi} \equiv 0$, we get

(2.12)
$$\frac{h'}{h} = \frac{\xi}{d},$$

where $d(\neq 0)$ is a constant. Thus we deduce from (2.9) and (2.13) that

(2.13)
$$\frac{z^2 h^{m+n}}{\lambda^2 (m+n)^2} = (\frac{1}{4} - d^2)(\frac{h'}{h})^2.$$

Hence (m+n)T(r,h) = S(r,h), which is a contradiction too. Assume that $2z + (m+n)z^2\frac{h'}{h} - 2z^2\frac{\xi'}{\xi} \neq 0$. Since $h = e^{\gamma(z)}$ and $\xi = \frac{g'}{g} + \frac{1}{2}\frac{h'}{h}$, by (2.9) and (2.12), we obtain

$$N(r, \frac{h'}{h}) = S(r, h), \quad N(r, \xi) = S(r, h),$$

and

$$(m+n)T(r,h) = (m+n)m(r,h) \le m(r, \frac{1}{2z + (m+n)z^{2}\frac{h'}{h} - 2z^{2}\frac{\xi'}{\xi}}) +m(r, \frac{h'}{h}((\frac{h'}{h})' - \frac{h'}{h}\frac{\xi'}{\xi})) + O(1) \le m(r, \frac{h'}{h}((\frac{h'}{h})' - \frac{h'}{h}\frac{\xi'}{\xi})) + m(r, 2z + (m+n)z^{2}\frac{h'}{h} - 2z^{2}\frac{\xi'}{\xi}) +N(r, 2z + (m+n)z^{2}\frac{h'}{h} - 2z^{2}\frac{\xi'}{\xi}) \le N(r, \frac{\xi'}{\xi}) + S(r,h) + S(r,\xi) (2.14) \le T(r,\xi) + S(r,h) + S(r,\xi).$$

Observe that $h = e^{\gamma(z)}$ is a transcendental entire function, we deduce from (2.10) that

$$2T(r,\xi) = T(r,\xi^{2}) + S(r,\xi) = T(r,\frac{1}{4}(\frac{h'}{h})^{2} - \frac{z^{2}h^{m+n}}{\lambda^{2}}) + S(r,\xi)$$

$$= N(r,\frac{1}{4}(\frac{h'}{h})^{2} - \frac{z^{2}h^{m+n}}{\lambda^{2}}) + m(r,\frac{1}{4}(\frac{h'}{h})^{2} - \frac{z^{2}h^{m+n}}{\lambda^{2}}) + S(r,\xi)$$

$$\leq (m+n)m(r,h) + N(r,(\frac{h'}{h})^{2}) + S(r,h) + S(r,\xi)$$

$$(2.15) \leq (m+n)T(r,h) + S(r,h) + S(r,\xi).$$

Combining with (2.15), we obtain

$$\frac{(m+n)}{2}T(r,h) = S(r,h),$$

which leads to a contradiction. Therefore, $\gamma(z)$ is a constant, and so $h(z) = e^{\gamma(z)}$ is also a constant. By (2.6), we obtain

(2.16)
$$f(z)g(z) = e^{\alpha(z)}e^{\beta(z)} = C,$$

where $C(\neq 0)$ is a constant. So we have

(2.17)
$$\beta(z) = -\alpha(z) + c_1,$$

for a constant c_1 . Substituting $f = e^{\alpha(z)}$, $g = e^{\beta(z)}$ into (2.8), we deduce from (2.17) and (2.18) that

$$f(z) = b_1 e^{bz^2}, g(z) = b_2 e^{-bz^2},$$

where b_1 , b_2 and b are three constants that satisfy $4\lambda^2(b_1b_2)^{n+m}((m+n)b)^2 = -1$. This completes the proof of Lemma 11.

3. Proof of Theorems

Proof of Theorem 1. We distinguish two cases. (i) $\lambda \mu \neq 0$. Set

(3.1)
$$F = \frac{(f^n(z)(\lambda f^m(z) + \mu))^{(k)}}{z}, \quad G = \frac{(g^n(z)(\lambda g^m(z) + \mu))^{(k)}}{z}.$$

Then F and G are transcendental meromorphic functions that share 1 IM. Let H be given by (2.3). If $H \neq 0$, from Lemma 3 we know that (2.4) holds. By Lemma 1 and (2.1), we get

$$(3.2) N_2(r, \frac{1}{F}) \leq N_2(r, \frac{1}{(f^n(z)(\lambda f^m(z) + \mu))^{(k)}}) + S(r, f) \\ \leq T(r, (f^n(z)(\lambda f^m(z) + \mu))^{(k)}) - (m+n)T(r, f) \\ + N_{k+2}(r, \frac{1}{f^n(z)(\lambda f^m(z) + \mu)}) + S(r, f) \\ = T(r, F) - (m+n)T(r, f) \\ + N_{k+2}(r, \frac{1}{f^n(z)(\lambda f^m(z) + \mu)}) + S(r, f).$$

Similarly,

(3.3)
$$N_2(r, \frac{1}{G}) \le T(r, G) - (m+n)T(r, g) + N_{k+2}(r, \frac{1}{g^n(z)(\lambda g^m(z) + \mu)}) + S(r, g).$$

From (3.2) and (3.3), we obtain

(3.4)
$$N_2(r, \frac{1}{F}) \le N_{k+2}(r, \frac{1}{f^n(z)(\lambda f^m(z) + \mu)}) + S(r, f),$$

and

(3.5)
$$N_2(r, \frac{1}{G}) \le N_{k+2}(r, \frac{1}{g^n(z)(\lambda g^m(z) + \mu)}) + S(r, g).$$

Moreover, from (3.2) and (3.3), we have

$$(m+n)(T(r,f)+T(r,g)) \leq T(r,F)+T(r,G)-N_2(r,\frac{1}{F})-N_2(r,\frac{1}{G}) + N_{k+2}(r,\frac{1}{f^n(z)(\lambda f^m(z)+\mu)}) + N_{k+2}(r,\frac{1}{g^n(z)(\lambda g^m(z)+\mu)}) + S(r,f) + S(r,g).$$

We know that

$$\overline{N}(r,\frac{1}{F}) \leq \overline{N}(r,\frac{1}{(f^n(z)(\lambda f^m(z)+\mu))^{(k)}}) + S(r,f)$$

Combining with (2.2), we have

$$\begin{split} \overline{N}(r,\frac{1}{F}) &\leq N_1(r,\frac{1}{(f^n(z)(\lambda f^m(z)+\mu))^{(k)}}) + S(r,f) \\ &\leq k\overline{N}(r,f^n(z)(\lambda f^m(z)+\mu)) + N_{k+1}(r,\frac{1}{f^n(z)(\lambda f^m(z)+\mu)}) + S(r,f) \\ &\leq k\overline{N}(r,f(z)) + N_{k+1}(r,\frac{1}{f^n(z)}) + N_{k+1}(r,\frac{1}{\lambda f^m(z)+\mu}) + S(r,f) \\ &\leq k\overline{N}(r,f(z)) + N_{k+1}(r,\frac{1}{f^n(z)}) + N_{k+1}(r,\frac{1}{\lambda f^m(z)+\mu}) + S(r,f) \\ (3.6) &\leq k\overline{N}(r,f(z)) + (k+1)\overline{N}(r,\frac{1}{f(z)}) + N_{k+1}(r,\frac{1}{\lambda f^m(z)+\mu}) \\ &+ S(r,f) \end{split}$$

From the definition of $\overline{N}_L(r, \frac{1}{F-1})$ and (3.6),

$$(3.7)$$

$$\overline{N}_{L}(r, \frac{1}{F-1}) \leq N(r, \frac{1}{F-1}) - \overline{N}(r, \frac{1}{F-1}) \leq N(r, \frac{F}{F'}) + S(r, f)$$

$$\leq \overline{N}(r, \frac{F'}{F}) + S(r, f) \leq \overline{N}(r, \frac{1}{F}) + \overline{N}(r, F) + S(r, f)$$

$$\leq (k+1)(\overline{N}(r, f) + \overline{N}(r, \frac{1}{f})) + N_{k+1}(r, \frac{1}{\lambda f^{m}(z) + \mu})$$

$$+ S(r, f)$$

Similarly,

(3.8)
$$\overline{N}_L(r, \frac{1}{G-1}) \leq (k+1)(\overline{N}(r,g) + \overline{N}(r, \frac{1}{g})) + N_{k+1}(r, \frac{1}{\lambda g^m(z) + \mu}) + S(r,g)$$

Combining (2.4) and (3.4)-(3.8), we get

$$\begin{split} &(m+n)(T(r,f)+T(r,g))\\ &\leq \ 2(N_{k+2}(r,\frac{1}{f^n(z)(\lambda f^m(z)+\mu)})+N_{k+2}(r,\frac{1}{g^n(z)(\lambda g^m(z)+\mu)}))\\ &+3(\overline{N}_L(r,\frac{1}{F-1})+\overline{N}_L(r,\frac{1}{G-1}))+S(r,f)+S(r,g)\\ &\leq \ (2k+4)(\overline{N}(r,\frac{1}{f})+\overline{N}(r,\frac{1}{g}))+2N_{k+2}(r,\frac{1}{\lambda f^m(z)+\mu})\\ &+2N_{k+2}(r,\frac{1}{\lambda g^m(z)+\mu})+3(k+1)(\overline{N}(r,\frac{1}{f})+\overline{N}(r,\frac{1}{g}))\\ &+3(N_{k+1}(r,\frac{1}{\lambda f^m(z)+\mu})+N_{k+1}(r,\frac{1}{\lambda g^m(z)+\mu}))\\ &+S(r,f)+S(r,g). \end{split}$$

Yan Liu and Lian-zhong Yang

That is

$$(m+n)(T(r,f) + T(r,g)) \le (5k+5m+7)(T(r,f) + T(r,g)) + S(r,f) + S(r,g) \le (5k+5m+7)(T(r,g) + T(r,g)) + S(r,f) + S(r,g) \le (5k+5m+7)(T(r,f) + T(r,g)) + S(r,f) + S(r,g) \le (5k+5m+7)(T(r,f) + T(r,g)) + S(r,f) + S(r,g) \le (5k+5m+7)(T(r,g) + T(r,g)) \le (5k+5m+7)(T(r,g)) \le$$

Thus,

$$(n - (5k + 4m + 7))(T(r, f) + T(r, g)) \le S(r, f) + S(r, g),$$

which leads to a contradiction as n > 5k + 4m + 7. Therefore $H \equiv 0$. Integrating twice, from (2.3) we obtain that

(3.9)
$$\frac{1}{F-1} = \frac{A}{G-1} + B,$$

where $A(\neq 0)$ and B are constants. From (3.9), we have

(3.10)
$$F = \frac{(B+1)G + (A-B-1)}{BG + (A-B)}, \quad G = \frac{(B-A)F + (A-B-1)}{BF - (B+1)}.$$

We consider the following three cases.

Case 1. $(B \neq 0, -1)$. From (3.10) we have $\overline{N}(r, \frac{1}{F - \frac{B+1}{B}}) = \overline{N}(r, G)$. From the second fundamental theorem, we have

$$T(r,F) \le \overline{N}(r,\frac{1}{F}) + \overline{N}(r,\frac{1}{F - \frac{B+1}{B}}) + S(r,F)$$

$$(3.11) \qquad \qquad = \overline{N}(r,\frac{1}{F}) + \overline{N}(r,G) + S(r,F) \le \overline{N}(r,\frac{1}{F}) + S(r,F).$$

From the above inequality and (3.2) applied to F, we obtain

$$T(r,F) \leq N_1(r,\frac{1}{F}) + S(r,f)$$

$$\leq T(r,F) - (m+n)T(r,f) + N_{k+1}(r,\frac{1}{f^n(z)(\lambda f^m(z) + \mu)}) + S(r,f).$$

Thus

$$(m+n)T(r,f) \leq (k+1)\overline{N}(r,\frac{1}{f}) + N_{k+1}(r,\frac{1}{\lambda f^m(z) + \mu}) + S(r,f) \leq (k+m+1)T(r,f) + S(r,f),$$

which contradicts the assumption n > 5k + 4m + 7.

Case 2. (B = 0). From (3.10), we obtain

(3.12)
$$F = \frac{G + (A - 1)}{A}, \quad G = AF - (A - 1).$$

380

If $A \neq 1$, we get by (3.12) that $\overline{N}(r, \frac{1}{F - \frac{A-1}{A}}) = \overline{N}(r, \frac{1}{G})$ and $\overline{N}(r, \frac{1}{F}) = \overline{N}(r, \frac{1}{G+(A-1)})$. By Lemma 5, we have $n \leq 2k + 2 + m$. This contradicts n > 5k + 4m + 7. Thus A = 1 and F = G. From Lemma 6, we have $f^d(z) \equiv g^d(z)$, where d = GCD(n, m).

Case 3. (B = -1). From (3.10), we get

(3.13)
$$F = \frac{A}{-G + (A+1)}, \quad G = \frac{(A+1)F - A}{F},$$

If $A \neq -1$, we obtain from (3.13) that $\overline{N}(r, \frac{1}{F - \frac{A}{A+1}}) = \overline{N}(r, \frac{1}{G})$, $\overline{N}(r, F) = \overline{N}(r, \frac{1}{G-A-1})$. From the same reasoning mentioned in Case 1 and Case 2, we also get a contradiction. Thus A = -1. From (3.13), we have FG = 1, That is

$$(f^n(z)(\lambda f^m(z) + \mu))^{(k)}(g^n(z)(\lambda g^m(z) + \mu))^{(k)} = z^2,$$

from Lemma 7, this is impossible.

(ii) $\lambda \mu = 0$. Since $|\lambda| + |\mu| \neq 0$, we distinguish two cases.

Case A. $\mu = 0, \ \lambda \neq 0$. In this case, we have $F = (\lambda f^{n+m}(z))^{(k)}$ and $G = (\lambda g^{n+m}(z))^{(k)}$. Let

$$F_1 = \frac{(\lambda f^{n+m}(z))^{(k)}}{z}, \quad G_1 = \frac{(\lambda g^{n+m}(z))^{(k)}}{z}$$

Then F_1 and G_1 share 1 IM. By the similar arguments mentioned in the proof of (i), we have $F_1 \equiv G_1$ or $F_1G_1 \equiv 1$. If $F_1 \equiv G_1$, we obtain from Lemma 9 that $f \equiv cg$, where c is a constant that satisfies $c^{n+m} = 1$. Now we assume that $F_1G_1 = 1$.

If k = 1, from Lemma 11 we get that $f(z) = b_1 e^{bz^2}$, $g(z) = b_2 e^{-bz^2}$ for three constants b_1 , b_2 and b that satisfy $4\lambda^2 (b_1 b_2)^{n+m^*} ((n+m^*)b)^2 = -1$.

If $k \geq 2$, then

(3.14)
$$\lambda^2 (f^{n+m})^{(k)} (g^{n+m})^{(k)} = z^2.$$

Since f and g are entire functions and n > 5k + 4m + 7, by using the arguments similar to the proof of Lemma 7 in [10], we know from (2.6) that f and g have no zeros. Set

(3.15)
$$f = e^{\alpha(z)}, \quad g = e^{\beta(z)},$$

where $\alpha(z)$, $\beta(z)$ are nonconstant entire functions. From (3.14), we obtain

(3.16)
$$N(r, \frac{1}{(f^{m+n})^{(k)}}) = N(r, \frac{1}{z^2}) = O(\log r).$$

Combining with (3.15) and (3.16), we get

$$N(r, f^{m+n}) + N(r, \frac{1}{f^{m+n}}) + N(r, \frac{1}{(f^{m+n})^{(k)}}) = O(\log r).$$

From (3.15), $T(r, \frac{(f^{m+n})'}{f^{m+n}}) = T(r, (m+n)\alpha')$. If α is transcendental, we get from Lemma 10 that $f = e^{\alpha} = e^{az+b}$ for some constants $a \neq 0$ and b. This is impossible. Therefore α must be a polynomial, and β is also a polynomial. We assume that $deg(\alpha) = p$ and $deg(\beta) = p$. If p = q = 1, we get

(3.17)
$$f = e^{Az+B}, \quad g = e^{Cz+D},$$

where A, B, C and D are constants that satisfy $AC \neq 0$. Substituting (3.17) into (3.14), we get

$$\lambda^{2}(m+n)^{2k}(AC)^{k}e^{(m+n)(A+C)z+(m+n)(B+D)} = z^{2}$$

which is impossible. Therefore $\max\{p,q\} > 1$. Without loss of generality, we assume that p > 1. Then $(f^{m+n})^{(k)} = Pe^{(m+n)\alpha}$, where P is a polynomial of degree $kp - k \ge k \ge 2$. From (3.14), we have p = k = 2 and q = 1. Assume that

$$f^{m+n} = e^{(m+n)(A_1z^2 + B_1z + C_1)}, \quad g^{m+n} = e^{(m+n)(D_1z + E_1)},$$

where A_1, B_1, C_1, D_1, E_1 are constants such that $A_1D_1 \neq 0$. Then we obtain

$$(3.18) (f^{m+n})'' = (m+n)(4(m+n)A_1^2z^2 + 4(m+n)A_1B_1z + (m+n)B_1^2 + 2A_1)e^{(m+n)(A_1z^2 + B_1z + C_1)},$$

$$(3.19) \ (g^{m+n})'' = (m+n)^2 D_1^2 e^{(m+n)(D_1 z + E_1)}$$

Substituting (3.18) and (3.19) into (3.14), we get

$$Q(z)e^{(m+n)(A_1z^2+(B_1+D_1)z+C_1+E_1)} = z^2,$$

where Q(z) is a polynomial of degree 2. Since $A_1 \neq 0$, we get a contradiction.

Case B. $\lambda = 0, \mu \neq 0$. In this case, by the similar arguments mentioned in the Case A, f and g must satisfy $f(z) = b_1 e^{bz^2}, g(z) = b_2 e^{-bz^2}$ or f = cg, where b_1, b_2, b and c are constants that satisfy $4\mu^2(b_1b_2)^n(nb)^2 = -1$ and $c^n = 1$. This completes the proof of Theorem 1. \Box

Proof of Theorem 2. By using the similar arguments to those in the proof of Theorem 1, and Lemma 6–Lemma 9 in [1], we can prove Theorem 2. \Box

Acknowledgment. The author would like to thank the referee for his/her valuable suggestions.

382

References

- J. Dou, X. G. Qi and L. Z. Yang, *Entire functions that share fixed points*, Bull. Malays. Math., **34(2)**(2011), 355-367.
- [2] M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl., 44(2002), 823-831.
- [3] M. L. Fang and X. H. Hua, Entire functions that share one value, Nanjing Daxue Xuebao Shuxue Bannian Kan., 13(1)(1996), 44-48.
- [4] M. L. Fang and H. L. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal. Appl., 268(2000), 426-439.
- [5] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math., 70(1959), 9-42.
- [6] W. K. Hayman, Meromorphic Functions, Oxford, 1964.
- [7] X. H. Hua and C. C. Yang, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22(2)(1997), 395-406.
- W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic function concerning fixed-points, Complex Var. Theory Appl., 49(11)(2004), 793-806.
- W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic functions, Indian J. Pure Appl. Math., 35(2)(2004), 121-132.
- [10] X. G. Qi and L. Z. Yang, Uniqueness of entire functions and fixed points, Ann. Polon. Math., 97(2010), 87-100.
- [11] H. X. Yi, Meromorphic Functions that share one or two values, Kodai Math. J., 22(2)(1999), 264-272.
- [12] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, The Netherlands, 2003.
- [13] J. L. Zhang, Uniqueness theorems for meromorphic function concerning fixed-points, Comput. Math. Appl., 56(2008), 3079-3087.