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Abstract. In this paper, we investigate the uniqueness problem on entire functions

sharing fixed points (ignoring multiplicities). Our main results improve and generalize

some results due to Zhang [13], Qi-Yang [10] and Dou-Qi-Yang [1].

1. Introduction

In this paper, a meromorphic function will mean meromorphic in the whole
complex plane. We assume that the reader is familiar with standard notations and
fundamental results of Nevanlinna Theory as explained in [12].

We say that two meromorphic functions f and g share a small function a(z) IM
(ignoring multiplicities) when f − a and g− a have the same zeros. If f and g have
the same zeros with the same multiplicities, then we say that f and g share a(z)
CM (counting multiplicities).

Let p be a positive integer and a ∈ C. We denote by Np(r, 1
f−a ) the counting

function of the zeros of f − a where an m-fold zero is counted m times if m ≤ p
and p times if m > p. We denote by NL(r, 1

f−1 ) the counting function for 1-points
of both f(z) and g(z) about which f(z) has a larger multiplicity than g(z), with
multiplicity not being counted. We say that a finite value z0 is a fixed point of f(z)
if f(z0) = z0, and we define

Ef = {z ∈ C : f(z) = z, counting multiplicities}.

About a famous question of Hayman [5] in 1959, Fang- Hua[3] and Yang-Hua[7]
proved the following.
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Theorem A. Let f and g be two nonconstant entire functions, and let n ≥ 6 be
a positive integer. If fnf ′ and gng′share 1 CM, then either f(z) = c1e

cz, g(z) =
c2e

−cz, where c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1 or f = tg
for a constant t such that tn+1 = 1.

Theorem B. Let f and g be two nonconstant entire functions, and let n and k
be two positive integers with n > 2k + 4. If (fn)(k) and (gn)(k)share 1 CM, then
either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = −1 or f = tg for a constant t such that tn = 1.

In [2], Fang also proved the following results.

Theorem C. Let f and g be two nonconstant entire functions, and let n, k be two
positive integers with n ≥ 2k + 8. If (fn(f − 1))(k) and (gn(g − 1))(k) share 1 CM,
then f = g.

Corresponding to the problems of entire functions that share 1 CM, many au-
thors considered the uniqueness problems of entire functions that have fixed points,
see Fang-Qiu [4], Lin-Yi [8], Zhang [13].

In order to state the results, we need the following definitions:

Definition 1. Let m∗ is an integer, according to the differential polynomials
(fn(z)(λfm(z)+µ))(k) and (gn(z)(λgm(z)+µ))(k) in the following Theorem D and
Theorem 1, we define

m∗ =
{

m, λ 6= 0;
0, λ = 0.

Definition 2. Let m∗∗ is an integer, according to the nonzero polynomial P (z)
in the following Theorem E and Theorem 2, we define

m∗∗ =
{

m, P (z) 6= C;
0, P (z) = C.

Recently, Qi-Yang [10] and Dou-Qi-Yang [1] proved the following results which
generalize some previous results.

Theorem D. Let f(z) and g(z) be two transcendental entire functions, n, m and
k be positive integers, λ and µ be constants that satisfy |λ|+ |µ| 6= 0. Suppose that
n > 2k + m∗ + 4. If (fn(z)(λfm(z) + µ))(k) and (gn(z)(λgm(z) + µ))(k) share z
CM, then the following conclusions hold:

(i) If λµ 6= 0, then fd(z) ≡ gd(z), where d = GCD(n, m); in particular, f(z) ≡
g(z), when d = 1.

(ii) If λµ = 0, then f = cg for a constant c that satisfies cn+m∗
= 1, or k = 1

and f(z) = b1e
bz2

, g(z) = b2e
−bz2

for three constants b1, b2 and b that satisfy
4(λ + µ)2(b1b2)n+m∗

((n + m∗)b)2 = −1.

Theorem E. Let P (z) = amzm + am−1z
m−1 + · · · + a1z + a0 or P (z) = C,
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a0, a1, · · · , am−1, am 6= 0, C 6= 0 are complex constant. Suppose that f(z) and g(z)
be two transcendental entire functions, and let n, m and k be three positive integers
with n > 2k + m∗∗ + 4. If (fn(z)P (f))(k) and (gn(z)P (g))(k) share z CM, then the
following conclusions hold:

(i) If P (z) = amzm +am−1z
m−1 + · · ·+a1z+a0 is not a monomial, then f = tg

for a constant t that satisfies td = 1, where d = (n + m, . . . , n + m − i, · · · , n),
am−i 6= 0, for some i = 0, 1, 2, . . . ,m; or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(w1, w2) = wn

1 (amwm
1 + am−1w

m−1
1 + · · · + a1w1 + a0) −

wn
2 (amwm

2 + am−1w
m−1
2 + · · ·+ a1w2 + a0);

(ii) If P (z) = C or P (z) = amzm, then f = tg for a constant t that satisfies
tn+m∗∗

= 1, or f(z) = b1e
bz2

, g(z) = b2e
−bz2

for three constants b1, b2 and b that
satisfy 4(am)2(b1b2)n+m((n + m)b)2 = −1, or 4C2(b1b2)n(nb)2 = −1.

Question: Whether the CM sharing value can be replaced by the IM sharing fixed
points in the Theorem D and Theorem E? In the paper, we provide an affirmative
solution by proving the following theorems.

Theorem 1. Let f(z) and g(z) be two transcendental entire functions, and let n, m
and k be three positive integers with n > 5k + 4m∗ + 7, λ and µ be constants that
satisfy |λ|+ |µ| 6= 0. If (fn(z)(λfm(z) + µ))(k) and (gn(z)(λgm(z) + µ))(k) share z
IM, then the following conclusions hold:

(i) If λµ 6= 0, then fd(z) ≡ gd(z), d = GCD(n, m); especially, when d =
1, f(z) ≡ g(z);

(ii) If λµ = 0, then f = cg for a constant c that satisfies cn+m∗
= 1, or k = 1

and f(z) = b1e
bz2

, g(z) = b2e
−bz2

for three constants b1, b2 and b that satisfy
4(λ + µ)2(b1b2)n+m∗

((n + m∗)b)2 = −1.

Theorem 2. Let P (z) = amzm + am−1z
m−1 + · · ·+ a1z + a0 or P (z) = C, where

a0, a1, · · · , am−1, am 6= 0, C 6= 0 are complex constant. Suppose that f(z) and g(z)
be two transcendental entire functions, and let n, m and k be three positive integers
with n > 5k + 4m∗∗ + 7. If (fn(z)P (f))(k) and (gn(z)P (g))(k) share z IM, then the
following conclusions hold:

(i) If P (z) = amzm +am−1z
m−1 + · · ·+a1z +a0 is not a monomial, thenf = tg

for a constant t that satisfies td = 1, where d = (n + m, . . . , n + m − i, · · · , n),
am−i 6= 0, for some i = 0, 1, 2, . . . ,m; or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(w1, w2) = wn

1 (amwm
1 + am−1w

m−1
1 + · · · + a1w1 + a0) −

wn
2 (amwm

2 + am−1w
m−1
2 + · · ·+ a1w2 + a0);

(ii) If P (z) = C or P (z) = amzm, then f = tg for a constant t that satisfies
tn+m∗∗

= 1, or f(z) = b1e
bz2

, g(z) = b2e
−bz2

for three constants b1, b2 and b that
satisfy 4(am)2(b1b2)n+m((n + m)b)2 = −1, or 4C2(b1b2)n(nb)2 = −1.

2. Some Lemmas

Lemma 1([12]). Let f be a nonconstant meromorphic function, and a0, a1, a2, . . .
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an be small functions of f such that an 6= 0. Then

T (r, anfn + an−1f
n−1 + · · · a1f + a0) = nT (r, f) + S(r, f).

Lemma 2([9]). Let f be a nonconstant meromorphic function, and p, k be positive
integers. Then

(2.1) Np(r,
1

f (k)
) ≤ T (r, f (k))− T (r, f) + Np+k(r,

1
f

) + S(r, f),

(2.2) Np(r,
1

f (k)
) ≤ kN(r, f) + Np+k(r,

1
f

) + S(r, f).

Lemma 3([11]). Let

(2.3) H =
(

F ′′

F ′ −
2F ′

F − 1

)
−

(
G′′

G′ −
2G′

G− 1

)
,

where F and G are two nonconstant meromorphic functions. If F and G share 1
IM and H 6≡ 0, then

T (r, F ) + T (r, G) ≤ 2(N2(r,
1
F

) + N2(r,
1
G

) + N2(r, F )

+N2(r, G)) + 3(NL(r,
1

F − 1
+ NL(r,

1
G− 1

))

+S(r, F ) + S(r, G).

Lemma 4([12]). Let f(z) be a nonconstant meromorphic function, a1(z), a2(z)
and a3(z) be three distinct small functions of f(z). Then

T (r, f) <
3∑

j=1

N(r,
1

f − aj
) + S(r, f).

Lemma 5([10]). Let f and g be two nonconstant entire functions, n, m and k be
three positive integers, and let F = (fn(z)(λfm(z) + µ))(k), G = (gn(z)(λgm(z) +
µ))(k), where λµ 6= 0. If there exist two non-zero constants a1 and a2 such that
N(r, 1

F−a1
) = N(r, 1

G ) and N(r, 1
G−a2

) = N(r, 1
F ), then n ≤ 2k + 2 + m.

Lemma 6([10]). Suppose that F and G are given by Lemma 5. If n > 2k +m and
F = G, then fd(z) ≡ gd(z), d = GCD(n, m).

Lemma 7([10]). Let f and g be two transcendental entire functions, n, m and k be
three positive integers, and let F = (fn(z)(λfm(z) + µ))(k), G = (gn(z)(λgm(z) +
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µ))(k), where λµ 6= 0. If F G = z2, then n ≤ k + 2.

Lemma 8([10]). Let f and g be two nonconstant entire functions, n, m and k be
three positive integers, and let F = (fn(z)(λfm(z) + µ))(k), G = (gn(z)(λgm(z) +
µ))(k), where |λ| + |µ| 6= 0, and λµ = 0. If there exist two non-zero constants
a1 and a2 such that N(r, 1

F−a1
) = N(r, 1

G ) and N(r, 1
G−a2

) = N(r, 1
F ), then n ≤

2k + 2 + m∗.

Lemma 9([10]). Suppose that F and G are given by Lemma 8. If n > 2k + m∗

and F = G, then f = cg for a constant c that satisfies cn+m∗
= 1.

Lemma 10([6]). Suppose that f is a nonconstant meromorphic function, k ≥ 2 is
an integer. If

N(r, f) + N(r,
1
f

) + N(r,
1

f (k)
) = S(r,

f ′

f
),

then f = eaz+b, where a 6= 0, b are constant.

Lemma 11. Let f(z) and g(z) be two transcendental entire functions, n, m and k
be positive integers, λ is a non-zero constant, and let F = (λfn+m(z))

′
and G =

(λgn+m(z))
′
. If FG ≡ z2, then f(z) = b1e

bz2
, g(z) = b2e

−bz2
for three constants b1,

b2 and b that satisfy 4λ2(b1b2)n+m∗
((n + m∗)b)2 = −1.

Proof. Since

(2.4) λ2(fn+m)′(gn+m)′ = z2.

f and g are entire functions and n > 5k + 4m + 7, by using the arguments similar
to the proof of Lemma 7 in [10], we get from (2.5) that f and g have no zeros. Let
f = eα(z), g = eβ(z), where α(z), β(z) are nonconstant entire functions. Set

(2.5) h(z) =
1

f(z)g(z)
,

we know that h(z) = eγ(z), where γ(z) is an entire function. We say that γ(z) is a
constant. In fact, if γ(z) is a nonconstant entire function, then h(z) is transcendental
entire function. By (2.5), we obtain

(2.6) (m + n)2λ2(fn+m−1)f ′(gn+m−1)g′ = z2.

From (2.6) and (2.7), we get

(2.7) (
g′

g
+

1
2

h′

h
)2 =

1
4
(
h′

h
)2 − z2hm+n

(m + n)2λ2
.

Set ξ = g′

g + 1
2

h′

h , then (2.8) becomes

(2.8) ξ2 =
1
4
(
h′

h
)2 − z2hm+n

(m + n)2λ2
.
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Suppose ξ ≡ 0, by (2.9), we have

(2.9) hm+n =
(m + n)2λ2

4z2
(
h′

h
)2.

Since h(z) = eγ(z), we have by (2.10) that

(m + n)T (r, h) = (m + n)m(r, h) + O(1)

≤ m(r,
1

4z2
) + 2m(r,

h′

h
) + O(1) = S(r, h).

Therefore h is constant, which leads to a contradiction. Thus ξ 6≡ 0. Differentiating
(2.9), we get

2ξξ′ =
1
2

h′

h
(
h′

h
)′ − 2z

λ2(m + n)2
hm+n − 1

λ2(m + n)
z2hm+n−1h′(2.10)

=
1
2

h′

h
(
h′

h
)′ − 1

λ2(m + n)2
hm+n−1(2zh + (m + n)z2h′).

Combining (2.9) and (2.11), we have

(2.11)
1

λ2(m + n)2
hm+n(2z + (m + n)z2 h′

h
− 2z2 ξ′

ξ
) =

1
2

h′

h
((

h′

h
)′ − h′

h

ξ′

ξ
).

If 2z + (m + n)z2 h′

h − 2z2 ξ′

ξ ≡ 0, then, we get from (2.12) that either h′

h ≡ 0 or

(h′

h )′ − h′

h
ξ′

ξ ≡ 0. If h′

h ≡ 0, then h is a constant, which leads to a contradiction. If

(h′

h )′ − h′

h
ξ′

ξ ≡ 0, we get

(2.12)
h′

h
=

ξ

d
,

where d(6= 0) is a constant. Thus we deduce from (2.9) and (2.13) that

(2.13)
z2hm+n

λ2(m + n)2
= (

1
4
− d2)(

h′

h
)2.

Hence (m + n)T (r, h) = S(r, h), which is a contradiction too.
Assume that 2z + (m + n)z2 h′

h − 2z2 ξ′

ξ 6≡ 0. Since h = eγ(z) and ξ = g′

g + 1
2

h′

h , by
(2.9) and (2.12), we obtain

N(r,
h′

h
) = S(r, h), N(r, ξ) = S(r, h),
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and

(m + n)T (r, h) = (m + n)m(r, h) ≤ m(r,
1

2z + (m + n)z2 h′

h − 2z2 ξ′

ξ

)

+m(r,
h′

h
((

h′

h
)′ − h′

h

ξ′

ξ
)) + O(1)

≤ m(r,
h′

h
((

h′

h
)′ − h′

h

ξ′

ξ
)) + m(r, 2z + (m + n)z2 h′

h
− 2z2 ξ′

ξ
)

+N(r, 2z + (m + n)z2 h′

h
− 2z2 ξ′

ξ
)

≤ N(r,
ξ′

ξ
) + S(r, h) + S(r, ξ)

≤ T (r, ξ) + S(r, h) + S(r, ξ).(2.14)

Observe that h = eγ(z) is a transcendental entire function, we deduce from (2.10)
that

2T (r, ξ) = T (r, ξ2) + S(r, ξ) = T (r,
1
4
(
h′

h
)2 − z2hm+n

λ2
) + S(r, ξ)

= N(r,
1
4
(
h′

h
)2 − z2hm+n

λ2
) + m(r,

1
4
(
h′

h
)2 − z2hm+n

λ2
) + S(r, ξ)

≤ (m + n)m(r, h) + N(r, (
h′

h
)2) + S(r, h) + S(r, ξ)

≤ (m + n)T (r, h) + S(r, h) + S(r, ξ).(2.15)

Combining with (2.15), we obtain

(m + n)
2

T (r, h) = S(r, h),

which leads to a contradiction. Therefore, γ(z) is a constant, and so h(z) = eγ(z) is
also a constant. By (2.6), we obtain

(2.16) f(z)g(z) = eα(z)eβ(z) = C,

where C(6= 0) is a constant. So we have

(2.17) β(z) = −α(z) + c1,

for a constant c1. Substituting f = eα(z), g = eβ(z) into (2.8), we deduce from (2.17)
and (2.18) that

f(z) = b1e
bz2

, g(z) = b2e
−bz2

,

where b1, b2 and b are three constants that satisfy 4λ2(b1b2)n+m((m+n)b)2 = −1.
This completes the proof of Lemma 11. 2
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3. Proof of Theorems

Proof of Theorem 1. We distinguish two cases.
(i) λµ 6= 0. Set

(3.1) F =
(fn(z)(λfm(z) + µ))(k)

z
, G =

(gn(z)(λgm(z) + µ))(k)

z
.

Then F and G are transcendental meromorphic functions that share 1 IM. Let H
be given by (2.3). If H 6≡ 0, from Lemma 3 we know that (2.4) holds. By Lemma
1 and (2.1), we get

N2(r,
1
F

) ≤ N2(r,
1

(fn(z)(λfm(z) + µ))(k)
) + S(r, f)(3.2)

≤ T (r, (fn(z)(λfm(z) + µ))(k))− (m + n)T (r, f)

+Nk+2(r,
1

fn(z)(λfm(z) + µ)
) + S(r, f)

= T (r, F )− (m + n)T (r, f)

+Nk+2(r,
1

fn(z)(λfm(z) + µ)
) + S(r, f).

Similarly,

(3.3) N2(r,
1
G

) ≤ T (r, G)− (m+n)T (r, g)+Nk+2(r,
1

gn(z)(λgm(z) + µ)
)+S(r, g).

From (3.2) and (3.3), we obtain

(3.4) N2(r,
1
F

) ≤ Nk+2(r,
1

fn(z)(λfm(z) + µ)
) + S(r, f),

and

(3.5) N2(r,
1
G

) ≤ Nk+2(r,
1

gn(z)(λgm(z) + µ)
) + S(r, g).

Moreover, from (3.2) and (3.3), we have

(m + n)(T (r, f) + T (r, g)) ≤ T (r, F ) + T (r, G)−N2(r,
1
F

)−N2(r,
1
G

)

+Nk+2(r,
1

fn(z)(λfm(z) + µ)
)

+Nk+2(r,
1

gn(z)(λgm(z) + µ)
) + S(r, f) + S(r, g).

We know that

N(r,
1
F

) ≤ N(r,
1

(fn(z)(λfm(z) + µ))(k)
) + S(r, f)
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Combining with (2.2), we have

N(r,
1
F

) ≤ N1(r,
1

(fn(z)(λfm(z) + µ))(k)
) + S(r, f)

≤ kN(r, fn(z)(λfm(z) + µ)) + Nk+1(r,
1

fn(z)(λfm(z) + µ)
) + S(r, f)

≤ kN(r, f(z)) + Nk+1(r,
1

fn(z)(λfm(z) + µ)
) + S(r, f)

≤ kN(r, f(z)) + Nk+1(r,
1

fn(z)
) + Nk+1(r,

1
λfm(z) + µ

) + S(r, f)

≤ kN(r, f(z)) + (k + 1)N(r,
1

f(z)
) + Nk+1(r,

1
λfm(z) + µ

)(3.6)

+S(r, f)

From the definition of NL(r, 1
F−1 ) and (3.6),

NL(r,
1

F − 1
) ≤ N(r,

1
F − 1

)−N(r,
1

F − 1
) ≤ N(r,

F

F ′ ) + S(r, f)

≤ N(r,
F ′

F
) + S(r, f) ≤ N(r,

1
F

) + N(r, F ) + S(r, f)

≤ (k + 1)(N(r, f) + N(r,
1
f

)) + Nk+1(r,
1

λfm(z) + µ
)(3.7)

+S(r, f)

Similarly,

NL(r,
1

G− 1
) ≤ (k + 1)(N(r, g) + N(r,

1
g
))(3.8)

+Nk+1(r,
1

λgm(z) + µ
) + S(r, g)

Combining (2.4) and (3.4)-(3.8), we get

(m + n)(T (r, f) + T (r, g))

≤ 2(Nk+2(r,
1

fn(z)(λfm(z) + µ)
) + Nk+2(r,

1
gn(z)(λgm(z) + µ)

))

+3(NL(r,
1

F − 1
) + NL(r,

1
G− 1

)) + S(r, f) + S(r, g)

≤ (2k + 4)(N(r,
1
f

) + N(r,
1
g
)) + 2Nk+2(r,

1
λfm(z) + µ

)

+2Nk+2(r,
1

λgm(z) + µ
) + 3(k + 1)(N(r,

1
f

) + N(r,
1
g
))

+3(Nk+1(r,
1

λfm(z) + µ
) + Nk+1(r,

1
λgm(z) + µ

))

+S(r, f) + S(r, g).
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That is

(m + n)(T (r, f) + T (r, g)) ≤ (5k + 5m + 7)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

Thus,
(n− (5k + 4m + 7))(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which leads to a contradiction as n > 5k + 4m + 7. Therefore H ≡ 0. Integrating
twice, from (2.3) we obtain that

(3.9)
1

F − 1
=

A

G− 1
+ B,

where A(6= 0) and B are constants. From (3.9), we have

(3.10) F =
(B + 1)G + (A−B − 1)

BG + (A−B)
, G =

(B −A)F + (A−B − 1)
BF − (B + 1)

.

We consider the following three cases.

Case 1. (B 6= 0,−1). From (3.10) we have N(r, 1
F−B+1

B

) = N(r, G). From the
second fundamental theorem, we have

T (r, F ) ≤ N(r,
1
F

) + N(r,
1

F − B+1
B

) + S(r, F )

(3.11) = N(r,
1
F

) + N(r, G) + S(r, F ) ≤ N(r,
1
F

) + S(r, F ).

From the above inequality and (3.2) applied to F, we obtain

T (r, F ) ≤ N1(r,
1
F

) + S(r, f)

≤ T (r, F )− (m + n)T (r, f) + Nk+1(r,
1

fn(z)(λfm(z) + µ)
) + S(r, f).

Thus

(m + n)T (r, f) ≤ (k + 1)N(r,
1
f

) + Nk+1(r,
1

λfm(z) + µ
) + S(r, f)

≤ (k + m + 1)T (r, f) + S(r, f),

which contradicts the assumption n > 5k + 4m + 7.

Case 2. (B = 0). From (3.10), we obtain

(3.12) F =
G + (A− 1)

A
, G = AF − (A− 1).
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If A 6= 1, we get by (3.12) that N(r, 1
F−A−1

A

) = N(r, 1
G ) and N(r, 1

F ) =

N(r, 1
G+(A−1) ). By Lemma 5, we have n ≤ 2k + 2 + m. This contradicts

n > 5k + 4m + 7. Thus A = 1 and F = G. From Lemma 6, we have fd(z) ≡ gd(z),
where d = GCD(n, m).

Case 3. (B = −1). From (3.10), we get

(3.13) F =
A

−G + (A + 1)
, G =

(A + 1)F −A

F
.

If A 6= −1, we obtain from (3.13) that N(r, 1
F− A

A+1
) = N(r, 1

G ), N(r, F ) =

N(r, 1
G−A−1 ). From the same reasoning mentioned in Case 1 and Case 2, we also

get a contradiction. Thus A = −1. From (3.13), we have FG = 1, That is

(fn(z)(λfm(z) + µ))(k)(gn(z)(λgm(z) + µ))(k) = z2,

from Lemma 7, this is impossible.

(ii) λµ = 0. Since |λ|+ |µ| 6= 0, we distinguish two cases.

CaseA. µ = 0, λ 6= 0. In this case, we have F = (λfn+m(z))(k) and G =
(λgn+m(z))(k). Let

F1 =
(λfn+m(z))(k)

z
, G1 =

(λgn+m(z))(k)

z
.

Then F1 and G1 share 1 IM. By the similar arguments mentioned in the proof of
(i), we have F1 ≡ G1 or F1G1 ≡ 1. If F1 ≡ G1, we obtain from Lemma 9 that
f ≡ cg, where c is a constant that satisfies cn+m = 1. Now we assume that F1G1

= 1.
If k = 1, from Lemma 11 we get thatf(z) = b1e

bz2
, g(z) = b2e

−bz2
for three

constants b1, b2 and b that satisfy 4λ2(b1b2)n+m∗
((n + m∗)b)2 = −1.

If k ≥ 2, then

(3.14) λ2(fn+m)(k)(gn+m)(k) = z2.

Since f and g are entire functions and n > 5k + 4m + 7, by using the arguments
similar to the proof of Lemma 7 in [10], we know from (2.6) that f and g have no
zeros. Set

(3.15) f = eα(z), g = eβ(z),

where α(z), β(z) are nonconstant entire functions. From (3.14), we obtain

(3.16) N(r,
1

(fm+n)(k)
) = N(r,

1
z2

) = O(log r).
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Combining with (3.15) and (3.16), we get

N(r, fm+n) + N(r,
1

fm+n
) + N(r,

1
(fm+n)(k)

) = O(log r).

From (3.15), T (r, (fm+n)′

fm+n ) = T (r, (m + n)α′). If α is transcendental, we get from
Lemma 10 that f = eα = eaz+b for some constants a 6= 0 and b. This is impossible.
Therefore α must be a polynomial, and β is also a polynomial. We assume that
deg(α) = p and deg(β) = p. If p = q = 1, we get

(3.17) f = eAz+B , g = eCz+D,

where A,B, C and D are constants that satisfy AC 6= 0. Substituting (3.17) into
(3.14), we get

λ2(m + n)2k(AC)ke(m+n)(A+C)z+(m+n)(B+D) = z2,

which is impossible. Therefore max{p, q} > 1. Without loss of generality, we
assume that p > 1. Then (fm+n)(k) = Pe(m+n)α, where P is a polynomial of
degree kp− k ≥ k ≥ 2. From (3.14), we have p = k = 2 and q = 1. Assume that

fm+n = e(m+n)(A1z2+B1z+C1), gm+n = e(m+n)(D1z+E1),

where A1, B1, C1, D1, E1 are constants such that A1D1 6= 0. Then we obtain

(fm+n)′′ = (m + n)(4(m + n)A2
1z

2 + 4(m + n)A1B1z + (m + n)B2
1(3.18)

+2A1)e(m+n)(A1z2+B1z+C1),

(gm+n)′′ = (m + n)2D2
1e

(m+n)(D1z+E1).(3.19)

Substituting (3.18) and (3.19) into (3.14), we get

Q(z)e(m+n)(A1z2+(B1+D1)z+C1+E1) = z2,

where Q(z) is a polynomial of degree 2. Since A1 6= 0, we get a contradiction.

CaseB. λ = 0, µ 6= 0. In this case, by the similar arguments mentioned in the
CaseA, f and g must satisfy f(z) = b1e

bz2
, g(z) = b2e

−bz2
or f = cg, where b1, b2,

b and c are constants that satisfy 4µ2(b1b2)n(nb)2 = −1 and cn = 1. This completes
the proof of Theorem 1. 2

Proof of Theorem 2. By using the similar arguments to those in the proof of
Theorem 1, and Lemma 6–Lemma 9 in [1], we can prove Theorem 2. 2
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