# Some Further Results on Uniqueness of Entire Functions and Fixed Points 

Yan Liu<br>Xinzhai People's Government of Yucheng City, Dezhou, 251214, P. R. China<br>e-mail: liuyanshanda@163.com<br>Lian-ZHONG YANG*<br>Department of Mathematics, Shandong University, Jinan, 250100, P. R. China<br>$e$-mail: lzyang@sdu.edu.cn

Abstract. In this paper, we investigate the uniqueness problem on entire functions sharing fixed points (ignoring multiplicities). Our main results improve and generalize some results due to Zhang [13], Qi-Yang [10] and Dou-Qi-Yang [1].

## 1. Introduction

In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We assume that the reader is familiar with standard notations and fundamental results of Nevanlinna Theory as explained in [12].

We say that two meromorphic functions $f$ and $g$ share a small function $a(z) \mathrm{IM}$ (ignoring multiplicities) when $f-a$ and $g-a$ have the same zeros. If $f$ and $g$ have the same zeros with the same multiplicities, then we say that $f$ and $g$ share $a(z)$ CM (counting multiplicities).

Let $p$ be a positive integer and $a \in \mathbb{C}$. We denote by $N_{p}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ where an m-fold zero is counted $m$ times if $m \leq p$ and $p$ times if $m>p$. We denote by $\bar{N}_{L}\left(r, \frac{1}{f-1}\right)$ the counting function for 1-points of both $f(z)$ and $g(z)$ about which $f(z)$ has a larger multiplicity than $g(z)$, with multiplicity not being counted. We say that a finite value $z_{0}$ is a fixed point of $f(z)$ if $f\left(z_{0}\right)=z_{0}$, and we define

$$
E_{f}=\{z \in \mathbb{C}: f(z)=z, \text { counting multiplicities }\}
$$

About a famous question of Hayman [5] in 1959, Fang- Hua[3] and Yang-Hua[7] proved the following.

* Corresponding Author.

Received June 25, 2011; accepted September 10, 2012.
This work was supported by the NSF of Shandong Province, P. R. China(No. ZR2010AM030) and the NNSF of China(No. 11171013 \& No. 11041005).
2010 Mathematics Subject Classification: 30D35, 30D20.
Key words and phrases: Fixed point, sharing value, entire solutions.

Theorem A. Let $f$ and $g$ be two nonconstant entire functions, and let $n \geq 6$ be a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=$ $c_{2} e^{-c z}$, where $c_{1}, c_{2}$ and $c$ are three constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ or $f=t g$ for a constant $t$ such that $t^{n+1}=1$.

Theorem B. Let $f$ and $g$ be two nonconstant entire functions, and let $n$ and $k$ be two positive integers with $n>2 k+4$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$, where $c_{1}, c_{2}$ and $c$ are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=-1$ or $f=t g$ for a constant $t$ such that $t^{n}=1$.

In [2], Fang also proved the following results.
Theorem C. Let $f$ and $g$ be two nonconstant entire functions, and let $n, k$ be two positive integers with $n \geq 2 k+8$. If $\left(f^{n}(f-1)\right)^{(k)}$ and $\left(g^{n}(g-1)\right)^{(k)}$ share $1 C M$, then $f=g$.

Corresponding to the problems of entire functions that share 1 CM , many authors considered the uniqueness problems of entire functions that have fixed points, see Fang-Qiu [4], Lin-Yi [8], Zhang [13].

In order to state the results, we need the following definitions:
Definition 1. Let $m^{*}$ is an integer, according to the differential polynomials $\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}$ and $\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}$ in the following Theorem D and Theorem 1, we define

$$
m^{*}= \begin{cases}m, & \lambda \neq 0 \\ 0, & \lambda=0\end{cases}
$$

Definition 2. Let $m^{* *}$ is an integer, according to the nonzero polynomial $P(z)$ in the following Theorem E and Theorem 2, we define

$$
m^{* *}= \begin{cases}m, & P(z) \neq C \\ 0, & P(z)=C\end{cases}
$$

Recently, Qi-Yang [10] and Dou-Qi-Yang [1] proved the following results which generalize some previous results.

Theorem D. Let $f(z)$ and $g(z)$ be two transcendental entire functions, $n, m$ and $k$ be positive integers, $\lambda$ and $\mu$ be constants that satisfy $|\lambda|+|\mu| \neq 0$. Suppose that $n>2 k+m^{*}+4$. If $\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}$ and $\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}$ share $z$ CM, then the following conclusions hold:
(i) If $\lambda \mu \neq 0$, then $f^{d}(z) \equiv g^{d}(z)$, where $d=G C D(n, m)$; in particular, $f(z) \equiv$ $g(z)$, when $d=1$.
(ii) If $\lambda \mu=0$, then $f=c g$ for a constant $c$ that satisfies $c^{n+m^{*}}=1$, or $k=1$ and $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ for three constants $b_{1}, b_{2}$ and $b$ that satisfy $4(\lambda+\mu)^{2}\left(b_{1} b_{2}\right)^{n+m^{*}}\left(\left(n+m^{*}\right) b\right)^{2}=-1$.

Theorem E. Let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ or $P(z)=C$,
$a_{0}, a_{1}, \cdots, a_{m-1}, a_{m} \neq 0, C \neq 0$ are complex constant. Suppose that $f(z)$ and $g(z)$ be two transcendental entire functions, and let $n, m$ and $k$ be three positive integers with $n>2 k+m^{* *}+4$. If $\left(f^{n}(z) P(f)\right)^{(k)}$ and $\left(g^{n}(z) P(g)\right)^{(k)}$ share $z C M$, then the following conclusions hold:
(i) If $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ is not a monomial, then $f=t g$ for a constant that satisfies $t^{d}=1$, where $d=(n+m, \ldots, n+m-i, \cdots, n)$, $a_{m-i} \neq 0$, for some $i=0,1,2, \ldots, m$; or $f$ and $g$ satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(w_{1}, w_{2}\right)=w_{1}^{n}\left(a_{m} w_{1}^{m}+a_{m-1} w_{1}^{m-1}+\cdots+a_{1} w_{1}+a_{0}\right)-$ $w_{2}^{n}\left(a_{m} w_{2}^{m}+a_{m-1} w_{2}^{m-1}+\cdots+a_{1} w_{2}+a_{0}\right) ;$
(ii) If $P(z)=C$ or $P(z)=a_{m} z^{m}$, then $f=t g$ for a constant $t$ that satisfies $t^{n+m^{* *}}=1$, or $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ for three constants $b_{1}, b_{2}$ and $b$ that satisfy $4\left(a_{m}\right)^{2}\left(b_{1} b_{2}\right)^{n+m}((n+m) b)^{2}=-1$, or $4 C^{2}\left(b_{1} b_{2}\right)^{n}(n b)^{2}=-1$.

Question: Whether the CM sharing value can be replaced by the IM sharing fixed points in the Theorem D and Theorem E? In the paper, we provide an affirmative solution by proving the following theorems.

Theorem 1. Let $f(z)$ and $g(z)$ be two transcendental entire functions, and let $n, m$ and $k$ be three positive integers with $n>5 k+4 m^{*}+7, \lambda$ and $\mu$ be constants that satisfy $|\lambda|+|\mu| \neq 0$. If $\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}$ and $\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}$ share $z$ IM, then the following conclusions hold:
(i) If $\lambda \mu \neq 0$, then $f^{d}(z) \equiv g^{d}(z), d=G C D(n, m)$; especially, when $d=$ $1, f(z) \equiv g(z)$;
(ii) If $\lambda \mu=0$, then $f=c g$ for a constant $c$ that satisfies $c^{n+m^{*}}=1$, or $k=1$ and $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ for three constants $b_{1}, b_{2}$ and $b$ that satisfy $4(\lambda+\mu)^{2}\left(b_{1} b_{2}\right)^{n+m^{*}}\left(\left(n+m^{*}\right) b\right)^{2}=-1$.

Theorem 2. Let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ or $P(z)=C$, where $a_{0}, a_{1}, \cdots, a_{m-1}, a_{m} \neq 0, C \neq 0$ are complex constant. Suppose that $f(z)$ and $g(z)$ be two transcendental entire functions, and let $n, m$ and $k$ be three positive integers with $n>5 k+4 m^{* *}+7$. If $\left(f^{n}(z) P(f)\right)^{(k)}$ and $\left(g^{n}(z) P(g)\right)^{(k)}$ share $z$ IM, then the following conclusions hold:
(i) If $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ is not a monomial, thenf $=t g$ for a constant that satisfies $t^{d}=1$, where $d=(n+m, \ldots, n+m-i, \cdots, n)$, $a_{m-i} \neq 0$, for some $i=0,1,2, \ldots, m$; or $f$ and $g$ satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(w_{1}, w_{2}\right)=w_{1}^{n}\left(a_{m} w_{1}^{m}+a_{m-1} w_{1}^{m-1}+\cdots+a_{1} w_{1}+a_{0}\right)-$ $w_{2}^{n}\left(a_{m} w_{2}^{m}+a_{m-1} w_{2}^{m-1}+\cdots+a_{1} w_{2}+a_{0}\right)$;
(ii) If $P(z)=C$ or $P(z)=a_{m} z^{m}$, then $f=t g$ for a constant $t$ that satisfies $t^{n+m^{* *}}=1$, or $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ for three constants $b_{1}, b_{2}$ and $b$ that satisfy $4\left(a_{m}\right)^{2}\left(b_{1} b_{2}\right)^{n+m}((n+m) b)^{2}=-1$, or $4 C^{2}\left(b_{1} b_{2}\right)^{n}(n b)^{2}=-1$.

## 2. Some Lemmas

Lemma 1([12]). Let $f$ be a nonconstant meromorphic function, and $a_{0}, a_{1}, a_{2}, \ldots$
$a_{n}$ be small functions of $f$ such that $a_{n} \neq 0$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2([9]). Let $f$ be a nonconstant meromorphic function, and $p, k$ be positive integers. Then

$$
\begin{gather*}
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f),  \tag{2.1}\\
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq k \bar{N}(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f) . \tag{2.2}
\end{gather*}
$$

Lemma 3([11]). Let

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{2.3}
\end{equation*}
$$

where $F$ and $G$ are two nonconstant meromorphic functions. If $F$ and $G$ share 1 $I M$ and $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F)+T(r, G) \leq & 2\left(N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)\right. \\
& \left.+N_{2}(r, G)\right)+3\left(\bar{N}_{L}\left(r, \frac{1}{F-1}+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)\right)\right. \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

Lemma 4([12]). Let $f(z)$ be a nonconstant meromorphic function, $a_{1}(z), a_{2}(z)$ and $a_{3}(z)$ be three distinct small functions of $f(z)$. Then

$$
T(r, f)<\sum_{j=1}^{3} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+S(r, f)
$$

Lemma 5([10]). Let $f$ and $g$ be two nonconstant entire functions, $n, m$ and $k$ be three positive integers, and let $F=\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}, \quad G=\left(g^{n}(z)\left(\lambda g^{m}(z)+\right.\right.$ $\mu))^{(k)}$, where $\lambda \mu \neq 0$. If there exist two non-zero constants $a_{1}$ and $a_{2}$ such that $\bar{N}\left(r, \frac{1}{F-a_{1}}\right)=\bar{N}\left(r, \frac{1}{G}\right)$ and $\bar{N}\left(r, \frac{1}{G-a_{2}}\right)=\bar{N}\left(r, \frac{1}{F}\right)$, then $n \leq 2 k+2+m$.

Lemma 6([10]). Suppose that $F$ and $G$ are given by Lemma 5. If $n>2 k+m$ and $F=G$, then $f^{d}(z) \equiv g^{d}(z), d=G C D(n, m)$.

Lemma $7([\mathbf{1 0}])$. Let $f$ and $g$ be two transcendental entire functions, $n, m$ and $k$ be three positive integers, and let $F=\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}, \quad G=\left(g^{n}(z)\left(\lambda g^{m}(z)+\right.\right.$
$\mu))^{(k)}$, where $\lambda \mu \neq 0$. If $F G=z^{2}$, then $n \leq k+2$.
Lemma 8([10]). Let $f$ and $g$ be two nonconstant entire functions, $n, m$ and $k$ be three positive integers, and let $F=\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}, \quad G=\left(g^{n}(z)\left(\lambda g^{m}(z)+\right.\right.$ $\mu))^{(k)}$, where $|\lambda|+|\mu| \neq 0$, and $\lambda \mu=0$. If there exist two non-zero constants $a_{1}$ and $a_{2}$ such that $\bar{N}\left(r, \frac{1}{F-a_{1}}\right)=\bar{N}\left(r, \frac{1}{G}\right)$ and $\bar{N}\left(r, \frac{1}{G-a_{2}}\right)=\bar{N}\left(r, \frac{1}{F}\right)$, then $n \leq$ $2 k+2+m^{*}$.

Lemma 9 ([10]). Suppose that $F$ and $G$ are given by Lemma 8. If $n>2 k+m^{*}$ and $F=G$, then $f=c g$ for a constant $c$ that satisfies $c^{n+m^{*}}=1$.

Lemma $10([6])$. Suppose that $f$ is a nonconstant meromorphic function, $k \geq 2$ is an integer. If

$$
N(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}}\right)=S\left(r, \frac{f^{\prime}}{f}\right)
$$

then $f=e^{a z+b}$, where $a \neq 0, b$ are constant.
Lemma 11. Let $f(z)$ and $g(z)$ be two transcendental entire functions, $n, m$ and $k$ be positive integers, $\lambda$ is a non-zero constant, and let $F=\left(\lambda f^{n+m}(z)\right)^{\prime}$ and $G=$ $\left(\lambda g^{n+m}(z)\right)^{\prime}$. If $F G \equiv z^{2}$, then $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ for three constants $b_{1}$, $b_{2}$ and $b$ that satisfy $4 \lambda^{2}\left(b_{1} b_{2}\right)^{n+m^{*}}\left(\left(n+m^{*}\right) b\right)^{2}=-1$.

Proof. Since

$$
\begin{equation*}
\lambda^{2}\left(f^{n+m}\right)^{\prime}\left(g^{n+m}\right)^{\prime}=z^{2} \tag{2.4}
\end{equation*}
$$

$f$ and $g$ are entire functions and $n>5 k+4 m+7$, by using the arguments similar to the proof of Lemma 7 in [10], we get from (2.5) that $f$ and $g$ have no zeros. Let $f=e^{\alpha(z)}, g=e^{\beta(z)}$, where $\alpha(z), \beta(z)$ are nonconstant entire functions. Set

$$
\begin{equation*}
h(z)=\frac{1}{f(z) g(z)} \tag{2.5}
\end{equation*}
$$

we know that $h(z)=e^{\gamma(z)}$, where $\gamma(z)$ is an entire function. We say that $\gamma(z)$ is a constant. In fact, if $\gamma(z)$ is a nonconstant entire function, then $h(z)$ is transcendental entire function. By (2.5), we obtain

$$
\begin{equation*}
(m+n)^{2} \lambda^{2}\left(f^{n+m-1}\right) f^{\prime}\left(g^{n+m-1}\right) g^{\prime}=z^{2} \tag{2.6}
\end{equation*}
$$

From (2.6) and (2.7), we get

$$
\begin{equation*}
\left(\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}\right)^{2}=\frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{(m+n)^{2} \lambda^{2}} \tag{2.7}
\end{equation*}
$$

Set $\xi=\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}$, then (2.8) becomes

$$
\begin{equation*}
\xi^{2}=\frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{(m+n)^{2} \lambda^{2}} \tag{2.8}
\end{equation*}
$$

Suppose $\xi \equiv 0$, by (2.9), we have

$$
\begin{equation*}
h^{m+n}=\frac{(m+n)^{2} \lambda^{2}}{4 z^{2}}\left(\frac{h^{\prime}}{h}\right)^{2} . \tag{2.9}
\end{equation*}
$$

Since $h(z)=e^{\gamma(z)}$, we have by (2.10) that

$$
\begin{aligned}
(m+n) T(r, h) & =(m+n) m(r, h)+O(1) \\
& \leq m\left(r, \frac{1}{4 z^{2}}\right)+2 m\left(r, \frac{h^{\prime}}{h}\right)+O(1)=S(r, h) .
\end{aligned}
$$

Therefore $h$ is constant, which leads to a contradiction. Thus $\xi \not \equiv 0$. Differentiating (2.9), we get

$$
\begin{align*}
2 \xi \xi^{\prime} & =\frac{1}{2} \frac{h^{\prime}}{h}\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{2 z}{\lambda^{2}(m+n)^{2}} h^{m+n}-\frac{1}{\lambda^{2}(m+n)} z^{2} h^{m+n-1} h^{\prime}  \tag{2.10}\\
& =\frac{1}{2} \frac{h^{\prime}}{h}\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{1}{\lambda^{2}(m+n)^{2}} h^{m+n-1}\left(2 z h+(m+n) z^{2} h^{\prime}\right) .
\end{align*}
$$

Combining (2.9) and (2.11), we have

$$
\begin{equation*}
\frac{1}{\lambda^{2}(m+n)^{2}} h^{m+n}\left(2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}\right)=\frac{1}{2} \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi}\right) . \tag{2.11}
\end{equation*}
$$

If $2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi} \equiv 0$, then, we get from (2.12) that either $\frac{h^{\prime}}{h} \equiv 0$ or $\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi} \equiv 0$. If $\frac{h^{\prime}}{h} \equiv 0$, then $h$ is a constant, which leads to a contradiction. If $\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi} \equiv 0$, we get

$$
\begin{equation*}
\frac{h^{\prime}}{h}=\frac{\xi}{d}, \tag{2.12}
\end{equation*}
$$

where $d(\neq 0)$ is a constant. Thus we deduce from (2.9) and (2.13) that

$$
\begin{equation*}
\frac{z^{2} h^{m+n}}{\lambda^{2}(m+n)^{2}}=\left(\frac{1}{4}-d^{2}\right)\left(\frac{h^{\prime}}{h}\right)^{2} . \tag{2.13}
\end{equation*}
$$

Hence $(m+n) T(r, h)=S(r, h)$, which is a contradiction too.
Assume that $2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi} \not \equiv 0$. Since $h=e^{\gamma(z)}$ and $\xi=\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}$, by (2.9) and (2.12), we obtain

$$
N\left(r, \frac{h^{\prime}}{h}\right)=S(r, h), \quad N(r, \xi)=S(r, h),
$$

and

$$
\begin{align*}
(m+n) T(r, h)= & (m+n) m(r, h) \leq m\left(r, \frac{1}{2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}}\right) \\
& +m\left(r, \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi}\right)\right)+O(1) \\
\leq & m\left(r, \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi}\right)\right)+m\left(r, 2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}\right) \\
& +N\left(r, 2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}\right) \\
\leq & N\left(r, \frac{\xi^{\prime}}{\xi}\right)+S(r, h)+S(r, \xi) \\
\leq & T(r, \xi)+S(r, h)+S(r, \xi) \tag{2.14}
\end{align*}
$$

Observe that $h=e^{\gamma(z)}$ is a transcendental entire function, we deduce from (2.10) that

$$
\begin{align*}
2 T(r, \xi) & =T\left(r, \xi^{2}\right)+S(r, \xi)=T\left(r, \frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{\lambda^{2}}\right)+S(r, \xi) \\
& =N\left(r, \frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{\lambda^{2}}\right)+m\left(r, \frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{\lambda^{2}}\right)+S(r, \xi) \\
& \leq(m+n) m(r, h)+N\left(r,\left(\frac{h^{\prime}}{h}\right)^{2}\right)+S(r, h)+S(r, \xi) \\
& \leq(m+n) T(r, h)+S(r, h)+S(r, \xi) \tag{2.15}
\end{align*}
$$

Combining with (2.15), we obtain

$$
\frac{(m+n)}{2} T(r, h)=S(r, h)
$$

which leads to a contradiction. Therefore, $\gamma(z)$ is a constant, and so $h(z)=e^{\gamma(z)}$ is also a constant. By (2.6), we obtain

$$
\begin{equation*}
f(z) g(z)=e^{\alpha(z)} e^{\beta(z)}=C \tag{2.16}
\end{equation*}
$$

where $C(\neq 0)$ is a constant. So we have

$$
\begin{equation*}
\beta(z)=-\alpha(z)+c_{1} \tag{2.17}
\end{equation*}
$$

for a constant $c_{1}$. Substituting $f=e^{\alpha(z)}, g=e^{\beta(z)}$ into (2.8), we deduce from (2.17) and (2.18) that

$$
f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}
$$

where $b_{1}, \quad b_{2}$ and $b$ are three constants that satisfy $4 \lambda^{2}\left(b_{1} b_{2}\right)^{n+m}((m+n) b)^{2}=-1$. This completes the proof of Lemma 11.

## 3. Proof of Theorems

Proof of Theorem 1. We distinguish two cases.
(i) $\lambda \mu \neq 0$. Set

$$
\begin{equation*}
F=\frac{\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}}{z}, \quad G=\frac{\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}}{z} . \tag{3.1}
\end{equation*}
$$

Then $F$ and $G$ are transcendental meromorphic functions that share 1 IM . Let $H$ be given by (2.3). If $H \not \equiv 0$, from Lemma 3 we know that (2.4) holds. By Lemma 1 and (2.1), we get

$$
\begin{align*}
N_{2}\left(r, \frac{1}{F}\right) \leq & N_{2}\left(r, \frac{1}{\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}}\right)+S(r, f)  \tag{3.2}\\
\leq & T\left(r,\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}\right)-(m+n) T(r, f) \\
& +N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f) \\
= & T(r, F)-(m+n) T(r, f) \\
& +N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f) .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{G}\right) \leq T(r, G)-(m+n) T(r, g)+N_{k+2}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right)+S(r, g) . \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), we obtain

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{F}\right) \leq N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f), \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{G}\right) \leq N_{k+2}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right)+S(r, g) . \tag{3.5}
\end{equation*}
$$

Moreover, from (3.2) and (3.3), we have

$$
\begin{aligned}
(m+n)(T(r, f)+T(r, g)) \leq & T(r, F)+T(r, G)-N_{2}\left(r, \frac{1}{F}\right)-N_{2}\left(r, \frac{1}{G}\right) \\
& +N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right) \\
& +N_{k+2}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

We know that

$$
\bar{N}\left(r, \frac{1}{F}\right) \leq \bar{N}\left(r, \frac{1}{\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}}\right)+S(r, f)
$$

Combining with (2.2), we have

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F}\right) \leq & N_{1}\left(r, \frac{1}{\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}}\right)+S(r, f) \\
\leq & k \bar{N}\left(r, f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)+N_{k+1}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f) \\
\leq & k \bar{N}(r, f(z))+N_{k+1}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f) \\
\leq & k \bar{N}(r, f(z))+N_{k+1}\left(r, \frac{1}{f^{n}(z)}\right)+N_{k+1}\left(r, \frac{1}{\lambda f^{m}(z)+\mu}\right)+S(r, f) \\
(3.6) \leq & k \bar{N}(r, f(z))+(k+1) \bar{N}\left(r, \frac{1}{f(z)}\right)+N_{k+1}\left(r, \frac{1}{\lambda f^{m}(z)+\mu}\right)  \tag{3.6}\\
& +S(r, f)
\end{align*}
$$

From the definition of $\bar{N}_{L}\left(r, \frac{1}{F-1}\right)$ and (3.6),

$$
\begin{align*}
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \leq & N\left(r, \frac{1}{F-1}\right)-\bar{N}\left(r, \frac{1}{F-1}\right) \leq N\left(r, \frac{F}{F^{\prime}}\right)+S(r, f) \\
\leq & \bar{N}\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+S(r, f) \\
\leq & (k+1)\left(\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right)+N_{k+1}\left(r, \frac{1}{\lambda f^{m}(z)+\mu}\right)  \tag{3.7}\\
& +S(r, f)
\end{align*}
$$

Similarly,

$$
\begin{align*}
\bar{N}_{L}\left(r, \frac{1}{G-1}\right) \leq & (k+1)\left(\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)\right)  \tag{3.8}\\
& +N_{k+1}\left(r, \frac{1}{\lambda g^{m}(z)+\mu}\right)+S(r, g)
\end{align*}
$$

Combining (2.4) and (3.4)-(3.8), we get

$$
\begin{aligned}
& (m+n)(T(r, f)+T(r, g)) \\
\leq & 2\left(N_{k+2}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+N_{k+2}\left(r, \frac{1}{g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)}\right)\right) \\
& +3\left(\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)\right)+S(r, f)+S(r, g) \\
\leq & (2 k+4)\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right)+2 N_{k+2}\left(r, \frac{1}{\lambda f^{m}(z)+\mu}\right) \\
& +2 N_{k+2}\left(r, \frac{1}{\lambda g^{m}(z)+\mu}\right)+3(k+1)\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right) \\
& +3\left(N_{k+1}\left(r, \frac{1}{\lambda f^{m}(z)+\mu}\right)+N_{k+1}\left(r, \frac{1}{\lambda g^{m}(z)+\mu}\right)\right) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

That is

$$
(m+n)(T(r, f)+T(r, g)) \leq(5 k+5 m+7)(T(r, f)+T(r, g))+S(r, f)+S(r, g)
$$

Thus,

$$
(n-(5 k+4 m+7))(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

which leads to a contradiction as $n>5 k+4 m+7$. Therefore $H \equiv 0$. Integrating twice, from (2.3) we obtain that

$$
\begin{equation*}
\frac{1}{F-1}=\frac{A}{G-1}+B \tag{3.9}
\end{equation*}
$$

where $A(\neq 0)$ and $B$ are constants. From (3.9), we have

$$
\begin{equation*}
F=\frac{(B+1) G+(A-B-1)}{B G+(A-B)}, \quad G=\frac{(B-A) F+(A-B-1)}{B F-(B+1)} \tag{3.10}
\end{equation*}
$$

We consider the following three cases.
Case 1. $(B \neq 0,-1)$. From (3.10) we have $\bar{N}\left(r, \frac{1}{F-\frac{B+1}{B}}\right)=\bar{N}(r, G)$. From the second fundamental theorem, we have

$$
\begin{gather*}
T(r, F) \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-\frac{B+1}{B}}\right)+S(r, F) \\
=\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+S(r, F) \leq \bar{N}\left(r, \frac{1}{F}\right)+S(r, F) \tag{3.11}
\end{gather*}
$$

From the above inequality and (3.2) applied to F, we obtain

$$
\begin{aligned}
T(r, F) & \leq N_{1}\left(r, \frac{1}{F}\right)+S(r, f) \\
& \leq T(r, F)-(m+n) T(r, f)+N_{k+1}\left(r, \frac{1}{f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)}\right)+S(r, f)
\end{aligned}
$$

Thus

$$
\begin{aligned}
(m+n) T(r, f) & \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{\lambda f^{m}(z)+\mu}\right)+S(r, f) \\
& \leq(k+m+1) T(r, f)+S(r, f)
\end{aligned}
$$

which contradicts the assumption $n>5 k+4 m+7$.
Case 2. $(B=0)$. From (3.10), we obtain

$$
\begin{equation*}
F=\frac{G+(A-1)}{A}, \quad G=A F-(A-1) \tag{3.12}
\end{equation*}
$$

If $A \neq 1$, we get by (3.12) that $\bar{N}\left(r, \frac{1}{F-\frac{A-1}{A}}\right)=\bar{N}\left(r, \frac{1}{G}\right)$ and $\bar{N}\left(r, \frac{1}{F}\right)=$ $\bar{N}\left(r, \frac{1}{G+(A-1)}\right)$. By Lemma 5, we have $n \leq 2 k+2+m$. This contradicts $n>5 k+4 m+7$. Thus $A=1$ and $F=G$. From Lemma 6, we have $f^{d}(z) \equiv g^{d}(z)$, where $d=G C D(n, m)$.

Case 3. $(B=-1)$. From (3.10), we get

$$
\begin{equation*}
F=\frac{A}{-G+(A+1)}, \quad G=\frac{(A+1) F-A}{F} . \tag{3.13}
\end{equation*}
$$

If $A \neq-1$, we obtain from (3.13) that $\bar{N}\left(r, \frac{1}{F-\frac{A}{A+1}}\right)=\bar{N}\left(r, \frac{1}{G}\right), \bar{N}(r, F)=$ $\bar{N}\left(r, \frac{1}{G-A-1}\right)$. From the same reasoning mentioned in Case 1 and Case 2, we also get a contradiction. Thus $A=-1$. From (3.13), we have $F G=1$, That is

$$
\left(f^{n}(z)\left(\lambda f^{m}(z)+\mu\right)\right)^{(k)}\left(g^{n}(z)\left(\lambda g^{m}(z)+\mu\right)\right)^{(k)}=z^{2}
$$

from Lemma 7, this is impossible.
(ii) $\lambda \mu=0$. Since $|\lambda|+|\mu| \neq 0$, we distinguish two cases.

Case A. $\mu=0, \lambda \neq 0$. In this case, we have $F=\left(\lambda f^{n+m}(z)\right)^{(k)}$ and $G=$ $\left(\lambda g^{n+m}(z)\right)^{(k)}$. Let

$$
F_{1}=\frac{\left(\lambda f^{n+m}(z)\right)^{(k)}}{z}, \quad G_{1}=\frac{\left(\lambda g^{n+m}(z)\right)^{(k)}}{z} .
$$

Then $F_{1}$ and $G_{1}$ share 1 IM . By the similar arguments mentioned in the proof of (i), we have $F_{1} \equiv G_{1}$ or $F_{1} G_{1} \equiv 1$. If $F_{1} \equiv G_{1}$, we obtain from Lemma 9 that $f \equiv c g$, where $c$ is a constant that satisfies $c^{n+m}=1$. Now we assume that $F_{1} G_{1}$ $=1$.

If $k=1$, from Lemma 11 we get that $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ for three constants $b_{1}, b_{2}$ and $b$ that satisfy $4 \lambda^{2}\left(b_{1} b_{2}\right)^{n+m^{*}}\left(\left(n+m^{*}\right) b\right)^{2}=-1$.

If $k \geq 2$, then

$$
\begin{equation*}
\lambda^{2}\left(f^{n+m}\right)^{(k)}\left(g^{n+m}\right)^{(k)}=z^{2} . \tag{3.14}
\end{equation*}
$$

Since $f$ and $g$ are entire functions and $n>5 k+4 m+7$, by using the arguments similar to the proof of Lemma 7 in [10], we know from (2.6) that $f$ and $g$ have no zeros. Set

$$
\begin{equation*}
f=e^{\alpha(z)}, \quad g=e^{\beta(z)} \tag{3.15}
\end{equation*}
$$

where $\alpha(z), \beta(z)$ are nonconstant entire functions. From (3.14), we obtain

$$
\begin{equation*}
N\left(r, \frac{1}{\left(f^{m+n}\right)^{(k)}}\right)=N\left(r, \frac{1}{z^{2}}\right)=O(\log r) . \tag{3.16}
\end{equation*}
$$

Combining with (3.15) and (3.16), we get

$$
N\left(r, f^{m+n}\right)+N\left(r, \frac{1}{f^{m+n}}\right)+N\left(r, \frac{1}{\left(f^{m+n}\right)^{(k)}}\right)=O(\log r) .
$$

From (3.15), $T\left(r, \frac{\left(f^{m+n}\right)^{\prime}}{f^{m+n}}\right)=T\left(r,(m+n) \alpha^{\prime}\right)$. If $\alpha$ is transcendental, we get from Lemma 10 that $f=e^{\alpha}=e^{a z+b}$ for some constants $a \neq 0$ and $b$. This is impossible. Therefore $\alpha$ must be a polynomial, and $\beta$ is also a polynomial. We assume that $\operatorname{deg}(\alpha)=p$ and $\operatorname{deg}(\beta)=p$. If $p=q=1$, we get

$$
\begin{equation*}
f=e^{A z+B}, \quad g=e^{C z+D}, \tag{3.17}
\end{equation*}
$$

where $A, B, C$ and $D$ are constants that satisfy $A C \neq 0$. Substituting (3.17) into (3.14), we get

$$
\lambda^{2}(m+n)^{2 k}(A C)^{k} e^{(m+n)(A+C) z+(m+n)(B+D)}=z^{2},
$$

which is impossible. Therefore $\max \{p, q\}>1$. Without loss of generality, we assume that $p>1$. Then $\left(f^{m+n}\right)^{(k)}=P e^{(m+n) \alpha}$, where $P$ is a polynomial of degree $k p-k \geq k \geq 2$. From (3.14), we have $p=k=2$ and $q=1$. Assume that

$$
f^{m+n}=e^{(m+n)\left(A_{1} z^{2}+B_{1} z+C_{1}\right)}, \quad g^{m+n}=e^{(m+n)\left(D_{1} z+E_{1}\right)},
$$

where $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$ are constants such that $A_{1} D_{1} \neq 0$. Then we obtain

$$
\begin{align*}
\left(f^{m+n}\right)^{\prime \prime}= & (m+n)\left(4(m+n) A_{1}^{2} z^{2}+4(m+n) A_{1} B_{1} z+(m+n) B_{1}^{2}\right.  \tag{3.18}\\
& \left.+2 A_{1}\right) e^{(m+n)\left(A_{1} z^{2}+B_{1} z+C_{1}\right)}, \\
\left(g^{m+n}\right)^{\prime \prime}= & (m+n)^{2} D_{1}^{2} e^{(m+n)\left(D_{1} z+E_{1}\right)} . \tag{3.19}
\end{align*}
$$

Substituting (3.18) and (3.19) into (3.14), we get

$$
Q(z) e^{(m+n)\left(A_{1} z^{2}+\left(B_{1}+D_{1}\right) z+C_{1}+E_{1}\right)}=z^{2},
$$

where $Q(z)$ is a polynomial of degree 2 . Since $A_{1} \neq 0$, we get a contradiction.
Case B. $\lambda=0, \mu \neq 0$. In this case, by the similar arguments mentioned in the Case $A, f$ and $g$ must satisfy $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ or $f=c g$, where $b_{1}, b_{2}$, $b$ and $c$ are constants that satisfy $4 \mu^{2}\left(b_{1} b_{2}\right)^{n}(n b)^{2}=-1$ and $c^{n}=1$. This completes the proof of Theorem 1.

Proof of Theorem 2. By using the similar arguments to those in the proof of Theorem 1, and Lemma 6-Lemma 9 in [1], we can prove Theorem 2.

Acknowledgment. The author would like to thank the referee for his/her valuable suggestions.

## References

[1] J. Dou, X. G. Qi and L. Z. Yang, Entire functions that share fixed points, Bull. Malays. Math., 34(2)(2011), 355-367.
[2] M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl., 44(2002), 823-831.
[3] M. L. Fang and X. H. Hua, Entire functions that share one value, Nanjing Daxue Xuebao Shuxue Bannian Kan., 13(1)(1996), 44-48.
[4] M. L. Fang and H. L. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal. Appl., 268(2000), 426-439.
[5] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math., $\mathbf{7 0}$ (1959), 9-42.
[6] W. K. Hayman, Meromorphic Functions, Oxford, 1964.
[7] X. H. Hua and C. C. Yang, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22(2)(1997), 395-406.
[8] W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic function concerning fixed-points, Complex Var. Theory Appl., 49(11)(2004), 793-806.
[9] W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic functions, Indian J. Pure Appl. Math., 35(2)(2004), 121-132.
[10] X. G. Qi and L. Z. Yang, Uniqueness of entire functions and fixed points, Ann. Polon. Math., 97(2010), 87-100.
[11] H. X. Yi, Meromorphic Functions that share one or two values, Kodai Math. J., 22(2)(1999), 264-272.
[12] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, The Netherlands, 2003.
[13] J. L. Zhang, Uniqueness theorems for meromorphic function concerning fixed-points, Comput. Math. Appl., 56(2008), 3079-3087.

