KYUNGPOOK Math. J. 53(2013), 341-348 http://dx.doi.org/10.5666/KMJ.2013.53.3.341

Supra *b*-irresolutness and Supra *b*-connectedness on Topological Space

OSAMA RASHED SAYED* Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt e-mail: o_r_sayed@yahoo.com

TAKASHI NOIRI 2949-1 Shiokita-cho, Hinagu, Yatsushiri-shi, Kumamoto-ken, 869-5142, Japan e-mail:t.noiri@nifty.com

ABSTRACT. In this paper, the concept of supra *b*-irresolute maps is introduced and several properties of it is investigated. Furthermore, the notion of supra *b*-connectedness is defined and researched by means of supra *b*-separated sets.

1. Introduction

Many authors introduced and studied various generalized properties and conditions containing some forms of sets in topological spaces. In 1983, Mashhour et al. [2] developed the supra topological spaces and studied *s*-continuous maps and s^* -continuous maps. In 2008, Devi et al. [1] introduced and studied a class of sets and maps between topological spaces called supra α -open sets and supra α -continuous maps, respectively. In [3], the present authors introduced the concepts of supra *b*-open sets, supra *b*-continuous maps, supra *b*-open maps and supra *b*-closed maps and studied their properties. This paper is a continuation of the paper [3]. The purpose of this paper is to introduce the concept of supra *b*-irresolute maps. Besides developing the basic properties of these maps we study the notion of supra *b*-connectedness based on supra *b*-separated sets. We prove that supra *b*-connectedness is preserved by supra *b*-irresolute bijections.

Throughout this paper, (X, τ) , (Y, σ) and (Z, v) (or simply, X, Y and Z) denote topological spaces on which no separation axioms are assumed unless explicitly stated. All sets are assumed to be subsets of topological spaces. The closure

^{*} Corresponding Author.

Received June 14, 2011; accepted August 22, 2012.

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54C08, 54D05.

Key words and phrases: Supra *b*-open set, supra *b*-continuity, supra *b*-irresolute map, supra *b*-separated, supra *b*-connectedness, supra topological space.

O. R. Sayed and T. Noiri

and the interior of a set A are denoted by Cl(A) and Int(A), respectively. A subcollection $\mu \subset 2^X$ is called a supra topology [2] on a nonempty set X if $X \in \mu$ and μ is closed under arbitrary union. (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) and the complement of a supra open set is said to be supra closed. The supra closure of a set A, denoted by $Cl^{\mu}(A)$, is the intersection of supra closed sets including A. The supra interior of a set A,denoted by $Int^{\mu}(A)$, is the union of supra open sets included in A. The supra topology μ on X is said to be associated with the topology τ if $\tau \subset \mu$. A set A is said to be supra α -open [1] (resp. supra b-open [3]) if $A \subseteq Int^{\mu}(Cl^{\mu}(Int^{\mu}(A)))$ (resp. $A \subseteq Cl^{\mu}(Int^{\mu}(A)) \cup Int^{\mu}(Cl^{\mu}(A))$). A set A is said to be supra b-closed if its complement X - A is supra b-open. The supra b-closure of a set A, denoted by $Cl_b^{\mu}(A)$, is the intersection of supra b-closed sets including A. The supra b-interior of a set A,denoted by $Int_b^{\mu}(A)$, is the union of supra b-closure of a set A, denoted by $Cl_b^{\mu}(A)$, is the intersection of supra b-closed sets including A. The supra b-interior of a set A,denoted by $Int_b^{\mu}(A)$, is the union of supra b-open sets included in A. A map $f: X \to Y$ is called a supra b-continuous map [3] if the inverse image of each open set in Y is a supra b-open set in X.

2. Supra *b*-irresolute Maps

In this section, we introduce a new type of maps called a supra b-irresolute maps and obtain some of their properties and characterizations.

Definition 2.1. A map $f : (X, \tau) \to (Y, \sigma)$ is called a supra b-irresolute map if the inverse image of each supra b-open set in Y is a supra b-open set in X.

Theorem 2.1. Every supra b-irresolute map is a supra b-continuous map.

Proof. Straightforward.

The converse of the above theorem is not true as shown in the following example.

Example 2.1. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$ be a topology on X. The supra topology μ is defined as follows: $\mu = \{X, \phi, \{a\}, \{a, b\}\}$. Let $f : (X, \tau) \to (X, \tau)$ be a map defined as follows: f(a) = b, f(b) = c, and f(c) = a. The inverse image of the open set $\{a, b\}$ is $\{a, c\}$ which is a supra b-open set. Hence f is a supra b-continuous map. Furthermore, the inverse image of the supra b-open set $\{a\}$ is $\{c\}$ which is not a supra b-open set. Hence f is not a supra b-irresolute map.

Theorem 2.2. Let (X, τ) and (Y, σ) be two topological spaces and μ and ν associated supra topologies with τ and σ , respectively. Let f be a map from X into Y. Then the following are equivalent:

(1) f is a supra b-irresolute map;

(2) The inverse image of each supra b-closed set in Y is a supra b-closed set in X;

- (3) $Cl_b^{\mu}(f^{-1}(B)) \subseteq f^{-1}(Cl_b^{\nu}(B))$ for every set B in Y;
- (4) $f(Cl_h^{\mu}(A)) \subseteq Cl_h^{\nu}(f(A))$ for every set A in X;
- (5) $f^{-1}(Int_b^{\nu}(B)) \subseteq Int_b^{\mu}(f^{-1}(B))$ for every B in Y.

Proof. (1) \Rightarrow (2): Let *B* be a supra *b*-closed set in *Y*. Then *Y* – *B* is a supra *b*-open set in *Y*. Hence $f^{-1}(Y - B) = X - f^{-1}(B)$ is a supra *b*-open set in *X*. It follows that $f^{-1}(B)$ is a supra *b*-closed subset of *X*.

 $(2) \Rightarrow (3)$: Let *B* be any subset of *Y*. Since $Cl_b^{\nu}(B)$ is a supra *b*-closed set in *Y*, then $f^{-1}(Cl_b^{\nu}(B))$ is a supra *b*-closed set in *X*. Therefore $Cl_b^{\mu}(f^{-1}(B)) \subseteq Cl_b^{\mu}(f^{-1}(Cl_b^{\nu}(B))) = f^{-1}(Cl_b^{\nu}(B))$.

 $(3) \Rightarrow (4)$: Let A be any subset of X. By (3) we have $f^{-1}(Cl_b^{\nu}(f(A))) \supseteq Cl_b^{\mu}(f^{-1}(f(A))) \supseteq Cl_b^{\mu}(A)$. Therefore $f(Cl_b^{\mu}(A)) \subseteq Cl_b^{\nu}(f(A))$.

 $(4) \Rightarrow (5): \text{ Let } B \text{ be any subset of } Y. \text{ By } (4), \ f(Cl_b^{\mu}(X - f^{-1}(B))) \subseteq Cl_b^{\nu}(f(X - f^{-1}(B))) \text{ and } f(X - Int_b^{\mu}(f^{-1}(B))) \subseteq Cl_b^{\nu}(Y - B) = Y - Int_b^{\nu}(B). \text{ Therefore we have } X - Int_b^{\mu}(f^{-1}(B)) \subseteq f^{-1}(Y - Int_b^{\nu}(B)) \text{ and hence } f^{-1}(Int_b^{\nu}(B)) \subseteq Int_b^{\mu}(f^{-1}(B)).$

 $(5) \Rightarrow (1)$: Let *B* be a supra *b*-open set in *Y* and $f^{-1}(Int_b^{\nu}(B)) \subseteq Int_b^{\mu}(f^{-1}(B))$. Then $f^{-1}(B) \subseteq Int_b^{\mu}(f^{-1}(B))$. But, $Int_b^{\mu}(f^{-1}(B)) \subseteq f^{-1}(B)$. Hence $f^{-1}(B) = Int_b^{\mu}(f^{-1}(B))$. Therefore $f^{-1}(B)$ is supra *b*-open in *X*.

Theorem 2.3. If $f : X \to Y$ and $g : Y \to Z$ are supra b-irresolute maps, then $g \circ f : X \to Z$ is supra b-irresolute.

Proof. Obvious.

3. Supra *b*-separated Sets

In this section, we shall research supra b-separated sets in supra topological spaces.

Definition 3.1. Let (X, μ) be a supra topological space and A, B be non-empty subsets of X. Then A and B are said to be supra b-separated if $A \cap Cl_b^{\mu}(B) = \phi$ and $Cl_b^{\mu}(A) \cap B = \phi$.

The following result is immediate from the above definition.

Theorem 3.1. Let C and D are non-empty subsets of the supra b-separated sets A and B, respectively. Then C and D are also supra b-separated in X.

Theorem 3.2. Let A, B be non-empty subsets of X such that $A \cap B = \phi$ and A, B are either both supra b-open or both supra b-closed. Then A and B are supra b-separated.

Proof. If both A and B are supra b-closed sets and $A \cap B = \phi$, then A and B are supra b- separated. Let now A and B be supra b-open and $A \cap B = \phi$. Then $A \subseteq X - B$. So $Cl_b^{\mu}(A) \subseteq Cl_b^{\mu}(X - B) = X - Int_b^{\mu}(B) = X - B$. Hence $Cl_b^{\mu}(A) \cap B = \phi$. Similarly, $A \cap Cl_b^{\mu}(B) = \phi$. Thus A and B are supra b-separated. \Box

Theorem 3.3. Suppose that A and B are non-empty subsets of X such that either they are both supra b-open or they are both supra b-closed. If $C = A \cap (X - B)$ and $D = B \cap (X - A)$, then C and D are supra b-separated, provided they are non-empty.

Proof. First suppose A and B are both supra b-open. Now $D = B \cap (X - A)$ implies $D \subseteq X - A$. Then $Cl_b^{\mu}(D) \subseteq Cl_b^{\mu}(X - A) = X - Int_b^{\mu}(A) = X - A$. Hence $A \cap Cl_b^{\mu}(D) = \phi$. Therefore $C \cap Cl_b^{\mu}(D) = \phi$. Similarly, $Cl_b^{\mu}(C) \cap D = \phi$. Thus C and D are supra b-separated.

Next, suppose that A and B are both supra b-closed sets. Then $C = A \cap (X - B)$ implies $C \subseteq A$. Hence $Cl_b^{\mu}(C) \subseteq Cl_b^{\mu}(A) = A$. Therefore $Cl_b^{\mu}(C) \cap D = \phi$. Similarly, $C \cap Cl_b^{\mu}(D) = \phi$. Thus C and D are supra b-separated. \Box

Theorem 3.4. Non-empty subsets A and B of X are supra b-separated if and only if there exist supra b-open sets U and V such that $A \subseteq U$, $B \subseteq V$, $A \cap V = \phi$, and $B \cap U = \phi$.

Proof. Suppose that A and B are supra b-separated. Now, $A \cap Cl_b^{\mu}(B) = \phi$ and $Cl_b^{\mu}(A) \cap B = \phi$. Then $A \subseteq X - Cl_b^{\mu}(B) = U$ (say); and $B \subseteq X - Cl_b^{\mu}(A) = V$ (say). Since both $Cl_b^{\mu}(A)$ and $Cl_b^{\mu}(B)$ are supra b-closed, then both U and V are supra b-open. Therefore $A \subseteq Cl_b^{\mu}(A) = X - V$ and $B \subseteq Cl_b^{\mu}(B) = X - U$. Hence $A \cap V = \phi$ and $B \cap U = \phi$.

Conversely, let U and V be supra b-open sets such that $A \subseteq U$, $B \subseteq V$, $A \cap V = \phi$ and $B \cap U = \phi$. Then X - U and X - V are supra b-closed. Also, $A \cap V = \phi$ implies $A \subseteq X - V$. Therefore $Cl_b^{\mu}(A) \subseteq Cl_b^{\mu}(X - V) = X - V$. Hence $Cl_b^{\mu}(A) \cap V = \phi$ and $Cl_b^{\mu}(A) \cap B = \phi$. Similarly, $U \cap Cl_b^{\mu}(B) = \phi$ and $A \cap Cl_b^{\mu}(B) = \phi$. Thus A and B are supra b-separated. \Box

4. Supra *b*-connectedness

In this section, we research supra b-connectedness by means of supra b-separated sets.

Definition 4.1. A subset A of X is said to be supra b-connected if it can't be represented as a union of two non-empty supra b-separated sets. If X is supra b-connected, then X is called a supra b-connected space.

Theorem 4.1. A non-empty subset C of X is supra b-connected if and only if for every pair of supra b-separated sets A and B in X with $C \subseteq A \cup B$, one of the following possibilities holds:

(a) $C \subseteq A$ and $C \cap B = \phi$,

(b)
$$C \subseteq B$$
 and $C \cap A = \phi$.

Proof. Let C be supra b-connected. Since $C \subseteq A \cup B$, then both $C \cap A = \phi$ and $C \cap B = \phi$ can not hold simultaneously. If $C \cap A \neq \phi$ and $C \cap B \neq \phi$, then by Theorem 3.1 they are also supra b-separated and $C = (C \cap A) \cup (C \cap B)$ which goes against the supra b-connectedness of C. Now, if $C \cap A = \phi$, then $C \subseteq B$, while $C \subseteq A$ holds if $C \cap B = \phi$.

Conversely, suppose that the given condition holds. Assume that C is not supra b-connected. Then there exist non-empty supra b-separated sets A and B in X

such that $C = A \cup B$. By hypothesis, either $C \cap A = \phi$ or $C \cap B = \phi$. So, either $A = \phi$ or $B = \phi$, none of which is true. Thus C is supra b-connected.

Theorem 4.2. The following properties are equivalent:

(1) A space X is not supra b-connected.

(2) There exist non-empty supra b-closed sets A and B such that $A \cup B = X$ and $A \cap B = \phi$.

(3) There exist non-empty supra b-open sets A and B such that $A \cup B = X$ and $A \cap B = \phi$.

Proof. (1) \Rightarrow (2): Suppose that X is not supra *b*-connected. Then there exist nonempty subsets A and B such that $Cl_b^{\mu}(A) \cap B = A \cap Cl_b^{\mu}(B) = \phi$ and $A \cup B = X$. It follows that $Cl_b^{\mu}(A) = Cl_b^{\mu}(A) \cap (A \cup B) = (Cl_b^{\mu}(A) \cap A) \cup (Cl_b^{\mu}(A) \cap B) = A \cup \phi = A$. Hence A is a supra *b*-closed set. Similarly, B is supra *b*-closed. Thus (2) is held. (2) \Rightarrow (3) and (3) \Rightarrow (1): Obvious. \Box

Corollary 4.1. The following are properties equivalent:

(1) A space X is supra b-connected.

(2) If A and B are supra b-open sets, $A \cup B = X$ and $A \cap B = \phi$, then $A = \phi$ or $B = \phi$.

(3) If A and B are supra b-closed sets, $A \cup B = X$ and $A \cap B = \phi$, then $A = \phi$ or $B = \phi$.

Theorem 4.3. For a subset G of X, the following conditions are equivalent: (1) G is supra b-connected.

(2) There do not exist two supra b-closed sets A and B such that $A \cap G \neq \phi$, $B \cap G \neq \phi, G \subseteq A \cup B$ and $A \cap B \cap G = \phi$.

(3) There do not exist two supra b-closed sets A and B such that $G \nsubseteq A$, $G \nsubseteq B$, $G \subseteq A \cup B$ and $A \cap B \cap G = \phi$.

Proof. (1) \Rightarrow (2): Suppose that G is supra b-connected and there exist two supra b-closed sets A and B such that $A \cap G \neq \phi$, $B \cap G \neq \phi$, $G \subseteq A \cup B$ and $A \cap B \cap G = \phi$. Then $(A \cap G) \cup (B \cap G) = (A \cup B) \cap G = G$. Also, $Cl_b^{\mu}(A \cap G) \cap (B \cap G) \subseteq Cl_b^{\mu}(A) \cap (B \cap G) = A \cap B \cap G = \phi$. Similarly, $(A \cap G) \cap Cl_b^{\mu}(B \cap G) = \phi$. This shows that G is not supra b-connected, which is a contradiction.

(2) \Rightarrow (3): Suppose that there exist two supra *b*-closed sets *A* and *B* such that $G \nsubseteq A$, $G \nsubseteq B, G \subseteq A \cup B$ and $A \cap B \cap G = \phi$. Then $A \cap G \neq \phi$ and $B \cap G \neq \phi$. This is a contradiction.

 $(3) \Rightarrow (1)$: Suppose that (3) is satisfied and G is not supra b-connected. Then there exist two non-empty supra b-separated sets C and D such that $G = C \cup D$. Thus $Cl_b^{\mu}(C) \cap D = C \cap Cl_b^{\mu}(D) = \phi$. Assume that $A = Cl_b^{\mu}(C)$ and $B = Cl_b^{\mu}(D)$. Hence $G \subseteq A \cup B$ and $Cl_b^{\mu}(C) \cap Cl_b^{\mu}(D) \cap (C \cup D) = (Cl_b^{\mu}(C) \cap Cl_b^{\mu}(D) \cap C) \cup (Cl_b^{\mu}(C) \cap Cl_b^{\mu}(D) \cap D) \subset (Cl_b^{\mu}(D) \cap C) \cup (Cl_b^{\mu}(C) \cap D) = \phi \cup \phi = \phi$. Now we prove that $G \nsubseteq A$ and $G \nsubseteq B$. In fact, if $G \subseteq A$, then $Cl_b^{\mu}(D) \cap G = B \cap G = B \cap (G \cap A) = \phi$, a contradiction. Thus $G \nsubseteq A$. Analogously we have $G \nsubseteq B$. This contradicts (3). Therefore G is supra b-connected.

Corollary 4.2. A space X is supra b-connected if and only if there do not exist two non-empty supra b-closed sets A and B such that $A \cup B = X$ and $A \cap B = \phi$.

Theorem 4.4. For a subset G of X, the following conditions are equivalent: (1) G is supra b-connected.

(2) For any supra b-separated sets A and B with $G \subseteq A \cup B$, we have $G \cap A = \phi$ or $G \cap B = \phi$.

(3) For any supra b-separated sets A and B with $G \subseteq A \cup B$, we have $G \subseteq A$ or $G \subseteq B$.

Proof. (1) \Rightarrow (2): Suppose that A and B are supra b-separated and $G \subseteq A \cup B$. Then by Theorem 3.1 we have $G \cap A$ and $G \cap B$ are also supra b-separated. Since G is supra b-connected and $G = G \cap (A \cup B) = (G \cap A) \cup (G \cap B)$, then $G \cap A = \phi$ or $G \cap B = \phi$.

(2) \Rightarrow (3): If $G \cap A = \phi$, then $G = G \cap (A \cup B) = (G \cap A) \cup (G \cap B) = G \cap B$. So, $G \subseteq B$. Similarly, $G \cap B = \phi$ implies $G \subseteq A$.

 $(3)\Rightarrow(1)$: Suppose that A and B are supra b-separated and $G = A \cup B$. Then by (3) either $G \subseteq A$ or $G \subseteq B$. If $G \subseteq A$, then $B = B \cap G \subseteq B \cap A \subseteq B \cap Cl_b^{\mu}(A) = \phi$. Similarly, if $G \subseteq B$, then $A = \phi$. So G can not be represented as a union of two non-empty supra b-separated sets. Therefore G is supra b-connected. \Box

Theorem 4.5. Let G be a supra b-connected subset of X. If $G \subseteq H \subseteq Cl_b^{\mu}(G)$, then H is also supra b-connected.

Proof. Suppose that H is not supra b-connected. By Theorem 4.3 there exist two supra b-closed sets A and B such that $H \nsubseteq A, H \nsubseteq B, H \subseteq A \cup B$ and $A \cap B \cap H = \phi$. Since $G \subseteq H$, then $G \subseteq A \cup B$ and $A \cap B \cap G = \phi$. Now we prove that $G \nsubseteq A$ and $G \nsubseteq B$. In fact, if $G \subseteq A$, then $Cl_b^{\mu}(G) \subseteq Cl_b^{\mu}(A) = A$. Therefore by hypothesis $H \subseteq A$ which is a contradiction. Hence $G \nsubseteq A$. Similarly, $G \nsubseteq B$. This contradicts that G is supra b-connected.

Theorem 4.6. Let G and H be supra b-connected. If G and H are not supra b-separated, then $G \cup H$ is supra b-connected.

Proof. Suppose that $G \cup H$ is not supra *b*-connected. By Theorem 4.3 there exist two supra *b*-closed sets A and B such that $G \cup H \nsubseteq A, G \cup H \nsubseteq B, G \cup H \subseteq A \cup B$ and $(G \cup H) \cap (A \cap B) = \phi$. So, either $G \nsubseteq A$ or $H \nsubseteq A$. Assume $G \nsubseteq A$. Thus $A \cap G \subseteq B$ because G is supra *b*-connected. Hence $H \oiint B$ and $H \subseteq A$. Thus $A \cap G \subseteq A \cap B \cap (G \cup H) = \phi$. Therefore $Cl_b^{\mu}(H) \cap G \subseteq Cl_b^{\mu}(A) \cap G = A \cap G = \phi$. Similarly, $H \cap Cl_b^{\mu}(G) = \phi$. This shows that G and H are supra *b*-separated, a contradiction.

Theorem 4.7. Let $\{G_i\}_{i \in I}$ be a family of supra b-connected subsets of X. If there is $j \in I$ such that G_i and G_j are not supra b-separated for each $i \neq j$, then $\bigcup_{i \in I} G_i$

is supra b-connected.

Proof. Suppose that $\bigcup_{i \in I} G_i$ is not supra b-connected. Then there exist non-empty

supra *b*-separated subsets *A* and *B* of *X* such that $\bigcup_{i \in I} G_i = A \cup B$. For each $i \in I$, G_i is supra *b*-connected and $G_i \subseteq A \cup B$. Then by Theorem 4.1 either $G_i \subseteq A$ and $G_i \cap B = \phi$, or else $G_i \subseteq B$ and $G_i \cap A = \phi$. If possible, let for some $r, s \in I$ with $r \neq s, G_r \subseteq A$ and $G_s \subseteq B$. Then G_r, G_s being non-empty of supra *b*-separated sets which is not the case. Thus either $G_i \subseteq A$ with $G_i \cap B = \phi$ for each $i \in I$ or else $G_i \subseteq B$ with $G_i \cap A = \phi$ for each $i \in I$. In the first case $B = \phi$ (since $B \subseteq \bigcup_{i \in I} G_i$) and in the second case $A = \phi$. Non of which is true. Thus $\bigcup_{i \in I} G_i$ is supra *b*-connected.

Corollary 4.3. Let $\{G_i\}_{i \in I}$ be a family of supra b-connected sets. If $\bigcap_{i \in I} G_i \neq \phi$,

then $\bigcup_{i \in I} G_i$ is supra b-connected.

Theorem 4.8. A non-empty subset G of X is supra b-connected if and only if for any two elements x and y in G there exists a supra b-connected set H such that $x, y \in H \subseteq G$.

Proof. The necessity is obvious. Now we prove the sufficiency. Suppose by contrary that G is not supra b-connected. Then there exist two non-empty supra b-separated P, Q in X such that $G = P \cup Q$. Choose $x \in P$ and $y \in Q$. So, $x, y \in G$ and hence by hypothesis there exists a supra b-connected set H such that $x, y \in H \subseteq G$. Thus $H \cap P$ and $H \cap Q$ are non-empty supra b-separated sets with $H = (P \cap H) \cup (Q \cap H)$. This is contrary to the supra b-connectedness of H.

Theorem 4.9. If $f: X \longrightarrow Y$ is a supra b-irresolute surjective map and C, D are supra b-separated sets in Y, then $f^{-1}(C)$ and $f^{-1}(D)$ are supra b-separated in X.

Proof. Since C and D are supra b-separated, we have $Cl_b^v(C) \cap D = C \cap Cl_b^v(D) = \phi$. By Theorem 2.2, $Cl_b^{\mu}(f^{-1}(C)) \cap f^{-1}(D) \subset f^{-1}(Cl_b^v(C)) \cap f^{-1}(D) = f^{-1}(Cl_b^v(C)) \cap D) = \phi$. Similarly, we have $f^{-1}(C) \cap Cl_b^{\mu}(f^{-1}(D)) = \phi$. Therefore, $f^{-1}(C)$ and $f^{-1}(D)$ are supra b-separated.

Theorem 4.10. If $f : X \longrightarrow Y$ is supra b-irresolute bijective and A is supra b-connected in X, then f(A) is supra b-connected in Y.

Proof. Suppose that f(A) is not supra *b*-connected in *Y*. Then $f(A) = C \cup D$, where *C* and *D* are two non-empty supra *b*-separated in *Y*. By Theorem 4.9 $f^{-1}(C)$ and $f^{-1}(D)$ are supra *b*-separated in *X*. Since *f* is bijective, then $A = f^{-1}(f(A)) = f^{-1}(C) \cup f^{-1}(D)$. Hence *A* is not supra *b*-connected in *X*. This is a contradiction. Thus f(A) is supra *b*-connected in *Y*. \Box

Theorem 4.11. If $f : X \longrightarrow Y$ is a supra b-irresolute map and G is supra b-connected in X, then f(G) is supra b-connected in Y.

Proof. Suppose that f(G) is not supra *b*-connected in *Y*. Then, by Theorem 4.3, there exist two supra *b*-closed sets *A* and *B* in *Y* such that $f(G) \not\subseteq A$, $f(G) \not\subseteq B$, $f(G) \subseteq A \cup B$ and $f(G) \cap A \cap B = \phi$. Hence we have that $G \not\subseteq f^{-1}(A)$, $G \not\subseteq f^{-1}(B)$, $G \subseteq f^{-1}(A) \cup f^{-1}(B)$ and $G \cap f^{-1}(A) \cap f^{-1}(B) \subseteq f^{-1}(f(G)) \cap f^{-1}(A) \cap f^{-1}(B) = f^{-1}(f(G) \cap A \cap B) = \phi$. This implies that *G* is not supra *b*-connected, a contradiction. Therefore f(G) is supra *b*-connected in *Y*.

Corollary 4.4. If $f : X \longrightarrow Y$ is a supra b-irresolute surjective map and X is supra b-connected, then so is Y.

References

- R. Devi, S. Sampathkumar and M. Caldas, On supra α-open sets and sα-continuous functions, General Mathematics, 16(2)(2008), 77-84.
- [2] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, Indian J. Pure Appl. Math., 14(4)(1983), 502-510.
- [3] O. R. Sayed and T. Noiri, On supra b-open sets and supra b-continuity on topological spaces, Europ. J. Pure Appl. Math., 3(2)(2010), 295-302.