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Abstract. In this paper, we introduce and study a new system of variational inclusions

with B-monotone operators in Banach spaces. By using the proximal mapping associated

with B- monotone operator, we construct a new iterative algorithm for approximating the

solution of this system of variational inclusions. We also prove the existence of solutions

and the convergence of the sequences generated by the algorithm for this system of vari-

ational inclusions. The results presented in this paper extend and improve some known

results in the literature.

1. Introduction

In recent years, variational inclusion theory has emerged one of the main branch
of mathematical and engineering sciences. This theory provides us with a simple,
natural, unified and general framework to study a wide class of unrelated prob-
lems in media, elasticity, transportation, economics, optimization, regional, physi-
cal, structural and applied science. For details see [1-9,11] and references therein.

In 2010, Luo and Huang [9] introduced and studied the following variational
inclusions with B-monotone operators in Banach spaces:

Suppose that E is a reflexive Banach space with the topological dual space E∗,
A : E → E∗, N : E × E × E → E∗, f, g : E → E are single-valued mappings,
S, T, W : E → CB(E) are set-valued mappings and M : E × E → 2E∗

is a B-
monotone mapping, where CB(E) denotes the family of all nonempty closed and
bounded subsets of E. For any given a ∈ E∗, find x ∈ E, s ∈ S(x), t ∈ T (x) and
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w ∈ W (x) such that

a ∈ A(x) + M(f(x), g(x))−N(s, t, w).(1.1)

Inspired and motivated by the results in Luo and Huang [9], the purpose of
this paper is to introduce and study a new system of generalized variational inclu-
sions with B-monotone operators in Banach spaces. By using the technique of the
proximal mapping, we establish the equivalence between the generalized variational
inclusions and the proximal mapping equations in reflexive Banach spaces. We use
this equivalence and Nadler’s theorem [10] to construct a new iterative algorithm
for solving this system of generalized variational inclusions. And we prove the ex-
istence of solutions for this system of generalized variational inclusions. We also
prove the convergence of an iterative algorithm approximating the solution for this
system of generalized variational inclusions in reflexive Banach spaces. The results
in this paper unify, extend and improve some results from [6,8,9,11].

2. Preliminaries

Throughout this paper we assume that E is a real Banach space with dual
space E∗, 〈·, ·〉 is the dual pair between E and E∗, 2E∗

denotes the family of all
the nonempty subsets of E∗ and CB(E) is the family of all nonempty closed and
bounded subsets of E.

Definition 2.1. Let A : E → E∗ be a single-valued mapping. A is said to be
(i) monotone if

〈A(x)−A(y), x− y〉 ≥ 0, ∀x, y ∈ E,

(ii) strictly monotone if

〈A(x)−A(y), x− y〉 ≥ 0, ∀x, y ∈ E,

and equality holds if and only if x = y.

Definition 2.2. Let T : E → 2E∗
be a multi-valued mapping. T is said to be

(i) monotone if

〈u− v, x− y〉 ≥ 0, ∀x, y ∈ E, u ∈ Tx, v ∈ Ty;

(ii) strictly monotone if

〈u− v, x− y〉 ≥ 0, ∀x, y ∈ E, u ∈ Tx, v ∈ Ty,

and equality holds if and only if x = y;
(iii) r-strongly monotone if there exists a constant r > 0 such that

〈u− v, x− y〉 ≥ r‖x− y‖2, ∀x, y ∈ E, u ∈ Tx, v ∈ Ty;
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(iv) s-relaxed monotone if there exists a constant s > 0 such that

〈u− v, x− y〉 ≥ −s‖x− y‖2, ∀x, y ∈ E, u ∈ Tx, v ∈ Ty.

Definition 2.3. Let M : E×E → 2E∗
be a multi-valued mapping and f, g : E → E

be single-valued mappings.
(i) M(f, ·) is said to be α-strongly monotone with respect to f if there exists a

constant α > 0 such that

〈u− v, x− y〉 ≥ α‖x− y‖2, ∀x, y, ω ∈ E, u ∈ M(f(x), ω), v ∈ M(f(y), ω),

(ii) M(·, g) is said to be β-relaxed monotone with respect to g if there exists a
constant β > 0 such that

〈u− v, x− y〉 ≥ −β‖x− y‖2, ∀x, y, ω ∈ E, u ∈ M(ω, g(x)), v ∈ M(ω, g(y)),

(iii) M(·, ·) is said to be (α, β)-symmetric monotone with respect to f and g if
M(f, ·) is α-strongly monotone with respect to f and M(·, g) is β-relaxed monotone
with respect to g with α ≥ β and α = β if and only if x = y.

Definition 2.4([9]). Let E be a Banach space with the dual space E∗. Let

f, g : E → E, B : E → E∗ be single-valued mappings and M : E × E → 2E∗
be a

multi-valued mapping. Then M is said to be B-monotone if M is (α, β)-symmetric
monotone with respect to f and g and (B + ρM(f, g))(E) = E∗ for every ρ > 0.

Definition 2.5. Let E be a reflexive Banach space with the dual space E∗. Let

f, g : E → E be single-valued mappings, B : E → E∗ be a strictly monotone
mapping and M : E × E → 2E∗

be a B-monotone mapping and ρ > 0 be a
constant. Then a proximal mapping RB

M(·,·),ρ : E∗ → E is defined by

RB
M(·,·),ρ(x

∗) = (B + ρM(f, g))−1(x∗), ∀x∗ ∈ E∗.

Remark 2.1. If M(f, g) = M and M is a general H-monotone, then the proximal
mapping RB

M(·,·),ρ reduces to the proximal mapping RH
M considered in [6,11].

Definition 2.6. A multi-valued mapping T : E → CB(E) is said to be D-Lipschitz

continuous if there exists a constant h > 0 such that

D(T (x), T (y)) ≤ h‖x− y‖, ∀x, y ∈ E,

where D(·, ·) denotes the Hausdorff metric on CB(E).

Lemma 2.1([9]). Let E be a reflexive Banach space with the dual space E∗. Let
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f, g : E → E be single-valued mappings, B : E → E∗ be a strictly monotone
mapping and M : E × E → 2E∗

be a B-monotone mapping. Then the proximal
mapping RB

M(·,·),ρ : E∗ → E is Lipschitz continuous with constant 1
ρ(α−β) , i.e.,

‖RB
M(·,·),ρ(x

∗)−RB
M(·,·),ρ(y

∗)‖ ≤ 1
ρ(α− β)

‖x∗ − y∗‖, ∀x∗, y∗ ∈ E∗.

3. A System of Generalized Variational Inclusions with B-monotone
Mappings and Iterative Algorithm

In this section, we will introduce a new system of generalized variational inclu-
sions with B-monotone and construct a new iterative algorithm for this system.

Let E be a reflexive Banach space with the dual space E∗, A,B : E → E∗,
N : E×E×E → E∗, f, g : E → E be a single-valued mappings, M1,M2 : E×E →
2E∗

be B-monotone mappings, S, T, W : E → CB(E) be set-valued mappings. We
consider the following problem: for any given a1, a2 ∈ E find x, y ∈ E, s ∈ S(x),
s̄ ∈ S(y), t ∈ T (x), t̄ ∈ T (y), w ∈ W (x) and w̄ ∈ W (y) such that

ρa1 ∈ B(x)−B(y) + ρ[A(x) + M1(f(x), g(x))−N(s, t, w)],
λa2 ∈ B(y)−B(x) + λ[A(x) + M2(f(y), g(y))−N(s̄, t̄, w̄)],(3.1)

where ρ, λ > 0 are constants.
Problem (3.1) is called a system of generalized variational inclusions with B-

monotone mappings.

Below are some special cases of problem (3.1):

(I) If x = y, ρ = 1 and λ = 0, then the problem (3.1) reduces to the variational
inclusion problem with B-monotone operators (1.1) introduced and studied by Luo
and Huang [9].

(II) If x = y, ρ = 1, λ = 0 and g = I is an identity mapping on E, then the
problem (3.1) reduces to the following problem: for any given a1 ∈ E∗, find x ∈ E,
s ∈ S(x), t ∈ T (x) and w ∈ W (x) such that

a1 ∈ A(x) + M(f(x), x)−N(s, t, w).(3.2)

Problem (3.2) was introduced and studied by Ding and Feng [6].

(III) If x = y, ρ = 1, λ = 0, a1 = 0, N = 0 and M(f(x), g(x)) = M(f(x)), then
the problem (4.1) reduces to the following problem: find x ∈ E such that

0 ∈ A(x) + M(f(x)).(3.3)

Problem (3.3) was introduced and studied by Xia and Huang [11].



A New System of Variational Inclusions 311

(IV) If E is a Hilbert space, x = y, ρ = 1, λ = 0, a1 = 0, N = 0 and
M(f(x), g(x)) = M(x), then the problem (4.1) reduces to the following problem:
find x ∈ E such that

0 ∈ A(x) + M(x).(3.4)

Problem (3.4) was introduced and studied by Feng and Huang [8].

Theorem 3.1. Let A : E → E∗, N : E×E×E → E∗, f, g : E → E be single-valued
mappings, S, T, W : E → CB(E) be multi-valued mappings. Let B : E → E∗ be a
strictly monotone mapping and M1,M2 : E × E → 2E∗

be B-monotone mappings.
Then (x, y, s, s̄, t, t̄, w, w̄) with x, y ∈ E, s ∈ S(x), s̄ ∈ S(y), t ∈ T (x), t̄ ∈ T (y),
w ∈ W (x) and w̄ ∈ W (y) is a solution of problem (3.1) if and only if

x = RB
M1(·,·),ρ[ρa1 + B(y)− ρA(x) + ρN(s, t, w)],

y = RB
M2(·,·),λ[λa2 + B(x)− λA(x) + λN(s̄, t̄, w̄)].

Proof. The fact directly follows from Definition 2.5 and some arguments. 2

Remark 3.1. (i) If x = y, ρ = 1 and λ = 0, then Theorem 3.1 reduces to Theorem
4.1 in [9].

(ii) If x = y, ρ = 1, λ = 0, g = I is an identity mapping on E and M is a
general H-monotone mapping in the first argument, then Theorem 3.1 reduces to
Theorem 3.1 in [6].

(iii) If x = y, ρ = 1, λ = 0, a1 = 0, N = 0, M(f(x), g(x)) = M(f(x)) and M is
a general H-monotone mapping, then Theorem 3.1 reduces to Theorem 3.3 in [11].

For any given x0, y0 ∈ E, take s0 ∈ S(x0), s̄0 ∈ S(y0), t0 ∈ T (x0), t̄0 ∈ T (y0),
w0 ∈ W (x0) and w̄0 ∈ W (y0). It follows from Theorem 3.1 that there exist x1, y1 ∈
such that

x1 = RB
M1(·,·),ρ[ρa1 + B(y0)− ρA(x0) + ρN(s0, t0, w0)],

y1 = RB
M2(·,·),λ[λa2 + B(x0)− λA(x0) + λN(s̄0, t̄0, w̄0)].

Since s0 ∈ S(x0), s̄ ∈ S(y0), t0 ∈ T (x0), t̄0 ∈ T (y0), w0 ∈ W (x0) and w̄0 ∈ W (y0),
by Nadler’s theorem [10], there exist s1 ∈ S(x1), s̄1 ∈ S(x1), t1 ∈ T (x1), t̄1 ∈ T (y1),
w1 ∈ W (x1) and w̄1 ∈ W (y1) such that

‖s1 − s0| ≤ (1 + 1)D(S(x1), S(x0)),

‖s̄1 − s̄0‖ ≤ (1 + 1)D(S(y1), S(y0)),

‖t1 − t0‖ ≤ (1 + 1)D(T (x1), T (x0)),
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‖t̄1 − t̄0‖ ≤ (1 + 1)D(T (y1), T (y0)),

‖w1 − w0‖ ≤ (1 + 1)D(W (x1),W (x0)),

‖w̄1 − w̄0‖ ≤ (1 + 1)D(W (y1),W (y0)).

Hence we can construct an iterative algorithm for solving problem (3.1) as follows:
Algorithm 3.1. For any given x0, y0 ∈ E, s0 ∈ S(x0), s̄0 ∈ S(y0), t0 ∈ T (x0),
t̄0 ∈ T (y0), w0 ∈ W (x0), w̄ ∈ W (y0), we can obtain the sequence {xn}, {yn}, {sn},
{s̄n}, {tn}, {t̄n}, {wn}, {w̄n} such that

xn+1 = RB
M1(·,·),ρ[ρa1 + B(yn)− ρA(xn) + ρN(sn, tn, wn)],

yn+1 = RB
M2(·,·),λ[λa2 + B(xn)− λA(xn) + λN(s̄n, t̄n, w̄n)],(3.3)

sn ∈ S(xn), ‖sn+1 − sn‖ ≤ (1 +
1

n + 1
)D(S(xn+1), S(xn)),

s̄n ∈ S(yn), ‖s̄n+1 − s̄n‖ ≤ (1 +
1

n + 1
)D(S(yn+1), S(yn)),

tn ∈ T (xn), ‖tn+1 − tn‖ ≤ (1 +
1

n + 1
)D(T (xn+1), T (xn)),(3.4)

t̄n ∈ T (yn), ‖t̄n+1 − t̄n‖ ≤ (1 +
1

n + 1
)D(T (yn+1), T (yn)),

wn ∈ W (xn), ‖wn+1 − wn‖ ≤ (1 +
1

n + 1
)D(W (xn+1),W (xn)),

w̄n ∈ W (yn), ‖w̄n+1 − w̄n‖ ≤ (1 +
1

n + 1
)D(W (yn+1),W (yn)).

4. Convergence of an Iterative Algorithm

In this section, we show the existence of solutions for problem (3.1) and the
convergence of the iterative sequences generated by Algorithm 3.1.

Theorem 4.1. Let E be a reflexive Banach space with the dual space E∗. Let
f, g : E → E be single-valued mappings, A : E → E∗ be a τ -Lipschitz continuous
mapping, B : E → E∗ be a strictly monotone and δ-Lipschitz continuous mapping
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and M1,M2 : E × E → 2E∗
be B-monotone mappings. Let S, T, W : E → CB(E)

be D-Lipschitz continuous with constants kS > 0, kT > 0, kW > 0, respectively and
N : E ×E ×E → E∗ be ξ1-Lipschitz continuous in the first argument, ξ2-Lipschitz
continuous in the second argument, ξ3-Lipschitz continuous in the third argument.
If there exist constants ρ, λ > 0 such that

1
α− β

{τ + ξ1kS + ξ2kT + ξ3kW +
1
λ

(δ + λτ)} < 1,(4.1)

1
α− β

{ δ

ρ
+ ξ1kS + ξ2kT + ξ3kW } < 1,(4.2)

then problem (3.1) has a solution (x, y, s, s̄, t, t̄, w, w̄) and sequences {xn}, {yn},
{sn}, {s̄n}, {tn}, {t̄n}, {wn}, {w̄n} converge to x, y, s, s̄, t, t̄, w, w̄, respectively,
where {xn}, {yn}, {sn}, {s̄n}, {tn}, {t̄n}, {wn}, {w̄n} are the sequences gener-
ated by Algorithm 3.1.

Proof. For n = 1, 2, · · · , let

Ωn = ρa1 + B(yn)− ρA(xn) + ρN(sn, tn, wn),
∆n = λa2 + B(xn)− λA(xn) + λN(s̄n, t̄n, w̄n).

By (3.3) and Lemma 2.2, we have

‖xn+1 − xn‖ = ‖RB
M(·,·),ρ(Ωn)−RB

M(·,·),ρ(Ωn−1)‖

≤ 1
ρ(α− β)

‖Ωn − Ωn−1‖,(4.3)

‖yn+1 − yn‖ = ‖RB
M(·,·),λ(∆n)−RB

M(·,·),λ(∆n−1)‖

≤ 1
λ(α− β)

‖∆n −∆n−1‖.(4.4)

And

‖Ωn − Ωn−1‖ ≤ ‖B(yn)−B(yn−1)‖+ ρ‖A(xn −A(xn−1)‖
+ ρ‖N(sn, tn, wn)−N(sn−1, tn−1, wn−1)‖,(4.5)

‖∆n −∆n−1‖ ≤ ‖B(xn)−B(xn−1)‖+ λ‖A(xn)−A(xn−1)‖
+ λ‖N(s̄n, t̄n, w̄n)−N(s̄n−1, t̄n−1, w̄n−1)‖.(4.6)

Using the Lipschitz continuities of A,B,N, S, T and W we obtain

‖B(xn)−B(xn−1)‖ ≤ δ‖xn − xn−1‖,(4.7)
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‖B(yn)−B(yn1)‖ ≤ δ‖yn − yn−1‖,(4.8)

‖A(xn)−A(xn−1)‖ ≤ τ‖xn − xn−1‖,(4.9)

‖sn − sn−1‖ ≤ (1 +
1
n

)D(S(xn), S(xn−1))

≤ (1 +
1
n

)kS‖xn − xn−1‖,(4.10)

‖s̄n − s̄n−1‖ ≤ (1 +
1
n

)D(S(yn), S(yn−1))

≤ (1 +
1
n

)kS‖yn − yn−1‖,(4.11)

‖tn − tn−1‖ ≤ (1 +
1
n

)D(T (xn), T (xn−1))

≤ (1 +
1
n

)kT ‖xn − xn−1‖,(4.12)

‖t̄n − t̄n−1‖ ≤ (1 +
1
n

)D(T (yn), T (yn−1))

≤ (1 +
1
n

)kT ‖yn − yn−1‖,(4.13)

‖wn − wn−1‖ ≤ (1 +
1
n

)D(W (xn),W (xn−1))

≤ (1 +
1
n

)kW ‖xn − xn−1‖,(4.14)

‖w̄n − w̄n−1‖ ≤ (1 +
1
n

)D(W (yn),W (yn−1))

≤ (1 +
1
n

)kW ‖yn − yn−1‖,(4.15)

‖N(sn, tn, wn)−N(sn−1, tn−1, wn−1)‖
≤ ‖N(sn, tn, wn)−N(sn−1, tn, wn)‖

+ ‖N(sn−1, tn, wn))−N(sn−1, tn−1, wn)‖
+ ‖N(sn−1, tn−1, wn)−N(sn−1, tn−1, wn−1)‖

≤ ξ1‖sn − sn−1‖+ ξ2‖tn − tn−1‖+ ξ3‖wn − wn−1‖

≤ (1 +
1
n

)(ξ1kS + ξ2kT + ξ3kW )‖xn − xn−1‖,(4.17)
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‖N(s̄n, t̄n, w̄n)−N(s̄n−1, t̄n−1, w̄n−1)‖
≤ ‖N(s̄n, t̄n, w̄n)−N(s̄n−1, t̄n, w̄n)‖

+ ‖N(s̄n−1, t̄n, w̄n)−N(s̄n−1, t̄n−1, w̄n)‖
+ ‖N(s̄n−1, t̄n−1, w̄n)−N(s̄n−1, t̄n−1, w̄n−1)‖

≤ ξ1‖s̄n − s̄n−1‖+ ξ2‖t̄n − t̄n−1‖+ ξ3‖w̄n − w̄n−1‖

≤ (1 +
1
n

)(ξ1kS + ξ2kT + ξ3kW )‖yn − yn−1‖.(4.18)

It follows from (4.3)-(4.18) that

‖xn+1 − xn‖

≤ 1
ρ(α− β)

[‖B(yn)−B(yn−1)‖+ ρ‖A(xn)−A(xn−1)‖

+ ρ‖N(sn, tn, wn)−N(sn−1, tn−1, wn−1)‖]

≤ 1
ρ(α− β)

[δ‖yn − yn−1‖+ ρτ‖xn − xn−1‖

+ ρ(1 +
1
n

)(ξ1kS + ξ2kT + ξ3kW )‖xn − xn−1‖],(4.19)

‖yn+1 − yn‖

≤ 1
λ(α− β)

[‖B(xn −B(xn−1)‖+ λ‖A(xn)−A(xn−1)‖

+ λ‖N(s̄n, t̄n, w̄n)−N(s̄n−1, t̄n−1, w̄n−1)‖]

≤ 1
λ(α− β)

[δ‖xn − xn−1‖+ λτ‖xn − xn−1‖

+ λ(1 +
1
n

)(ξ1kS + ξ2kT + ξ3kW )‖yn − yn−1‖].(4.20)

Thus

‖xn+1 − xn‖+ ‖yn+1 − yn‖

≤ 1
α− β

[τ + (1 +
1
n

)(ξ1kS + ξ2kT + ξ3kW ) +
1
λ

(δ + λτ)]‖xn − xn−1‖

+
1

α− β
[
δ

ρ
+ (1 +

1
n

)(ξ1kS + ξ2kT + ξ3kW )]‖yn − yn−1‖

≤ θn[‖xn − xn−1‖+ ‖yn − yn−1‖],(4.21)

where

θn = max{ 1
α− β

[τ + (1 +
1
n

)(ξ1kS + ξ2kT + ξ3kW ) +
1
λ

(δ + λτ)],

1
α− β

[
δ

ρ
+ (1 +

1
n

)(ξ1kS + ξ2kT + ξ3kW )]}.
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Let

θ = max{ 1
α− β

[τ + ξ1kS + ξ2kT + ξ3kW +
1
λ

(δ + λτ)],

1
α− β

[
δ

ρ
+ ξ1kS + ξ2kT + ξ3kW ]}.

Then θn → θ as n → ∞. By (4.1)-(4.2), we know that 0 < θ < 1 and hence there
exists an n0 > 0 and θ0 ∈ (0, 1) such that θn ≤ θ0 for all n ≥ n0. Therefore by
(4.21),we have

‖xn+1 − xn‖+ ‖yn+1 − yn‖
≤ θ0[‖xn − xn−1‖+ ‖yn − yn−1‖]
≤ θn−n0

0 [‖xn0+1 − xn0‖+ ‖yn0+1 − yn0‖], ∀n ≥ n0.

Hence for any m ≥ n ≥ n0, it follows that

‖xm − xn‖ ≤
m−1∑
i=n

[‖xi+1 − xi‖+ ‖yi+1 − yi‖]

≤
m−1∑
i=n

θi−n0
0 [‖xn0+1 − xn0‖+ ‖yn0+1 − yn0 ]‖.(4.22)

Since 0 < θ0 < 1, it follows from (4.22) that

‖xm − xn‖ → 0 as n →∞

and hence {xn} is a Cauchy sequence in E. By the same argument, we also have
that {yn} is a Cauchy sequence. Thus, there exist x, y ∈ E such that xn → x,
yn → y as n →∞.

Now we prove that sn → s ∈ S(x), s̄n → s̄ ∈ S(y), tn → t ∈ T (x), t̄n → t̄ ∈
T (y), wn → w ∈ W (x) and w̄n → w̄ ∈ W (y) as n →∞.

In fact, it follows from (4.10)-(4.15) that {sn}, {s̄n}, {tn}, {t̄n}, {wn}, {w̄n} are
also Cauchy sequences. Therefore there exist s, s̄, t, t̄, w, w̄ ∈ E such that sn → s,
s̄n → s̄, tn → t, t̄n → t̄, wn → w and w̄ → w̄ as n →∞. Further,

d(s, S(x)) ≤ ‖s− sn‖+ d(sn, S(x))
≤ ‖s− sn‖+ D(S(xn), S(x))
≤ ‖s− sn‖+ kS‖xn − x‖
→ 0 as n →∞,

d(s̄, S(y)) ≤ ‖s̄− s̄n‖+ d(s̄n, S(y))
≤ ‖s̄− s̄n‖+ D(S(yn), S(y))
≤ ‖s̄− s̄n‖+ kS‖yn − y‖
→ 0 as n →∞.
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Similarly, we obtain

d(t, T (x)) ≤ ‖t− tn‖+ kT ‖xn − x‖
→ 0 as n →∞,

d(t̄, T (y)) ≤ ‖t̄− t̄n‖+ kT ‖yn − y‖
→ 0 as n →∞,

d(w,W (x)) ≤ ‖w − wn‖+ kW ‖xn − x‖
→ 0 as n →∞,

d(w̄,W (y)) ≤ ‖w̄ − w̄n‖+ kW ‖yn − y‖
→ 0 as n →∞.

Since S(x), S(y), T (x), T (y), W (x), W (y) are closed, we have s ∈ S(x), s̄ ∈ S(y),
t ∈ T (x), t̄ ∈ T (y), w ∈ W (x), w̄ ∈ W (y). By the continuities of f , A, B, N ,
RB

M1(·,·),ρ, RB
M2(·,·),λ and Algorithm 3.1, we know that x, y, s, s̄, t, t̄, w, w̄ satisfy

the following relations:

x = RB
M1(·,·),ρ[ρa1 + B(y)− ρA(x) + ρN(s, t, w)],

y = RB
M2(·,·),λ[λa2 + B(x)− λA(x) + λN(s̄, t̄, w̄)].

By Theorem 3.1, (x, y, s, s̄, t, t̄, w, w̄) is a solution of problem (3.1). This completes
the proof. 2

Remark 4.1. (i) If x = y, ρ = 1 and λ = 0, then Theorem 4.1 reduces to Theorem

4.2 in [9].
(ii) If x = y, ρ = 1, λ = 0, g = I is an identity mapping on E and M1 is a

general H-monotone mapping in the first argument, then Theorem 4.1 reduces to
Theorem 3.2 in [6].

(iii) If x = y, ρ = 1, λ = 0, a1 = 0, N = 0, M1(f(x), g(x)) = M1(f(x)) and
M1 is a general H-monotone mapping, then Theorem 4.1 reduces to Theorem 3.4
in [11].
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