DOI QR코드

DOI QR Code

Measurement of Autoignition Temperature of n-Propanol and Formic acid System

n-Propanol과 Formic acid계의 최소자연발화온도의 측정

  • Cho, Young-Se (Dept. of Fire and Disaster Prevention Engineering, Graduate School, Semyung University) ;
  • Ha, Dong-Myeong (Dept. of Occupational Health and Safety Engineering, Semyung University)
  • 조영세 (세명대학교 대학원 소방방재공학과) ;
  • 하동명 (세명대학교 보건안전공학과)
  • Received : 2013.06.04
  • Accepted : 2013.10.11
  • Published : 2013.10.31

Abstract

The autoignition temperatures (AITs) of solvent mixture was important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs and ignition delay time for n-propanol and formic acid system by using ASTM E659 apparatus. The AITs of n-Propanol and Formic acid which constituted binary system were $435^{\circ}C$ and $498^{\circ}C$, respectively. The experimental AITs of n-propanol and formic acid system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation). And n- Propanol and formic acid system was shown the minimum autoignition temperature behavior (MAITB).

가연성 혼합물의 최소자연발화온도는 가연성액체의 안전한 취급을 위해서 중요한 지표가 된다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 n-Propanol과 Formic acid 계의 최소자연발화온도와 발화지연시간을 측정하였다. 2성분계를 구성하는 순수물질인 n-Propanol과 Formic acid의 최소자연발화온도는 각 각 $435^{\circ}C$$498^{\circ}C$로 측정되었다. 그리고 측정된 n-Propanol과 Formic acid 계의 최소자연발화온도는 제시된 식에 의한 예측값과 작은 평균절대오차에서 일치하였다. 그리고 n-Propanol과 Formic acid 계는 일부 혼합 조성에서 두 개의 순수물질 가운데 낮은 AIT보다 낮게 측정된 최소자연발화온도거동(MAITB, Minimum Autoignition Temperature Behavior)을 보이고 있다.

Keywords

References

  1. F. P. Lees, "Loss Prevention in the Process Industries Vol. 1", 2nd ed., Oxford Butterworth-Heinemann (1996).
  2. D. M. Ha, "Prediction of Autoignition Temperature of n-Decane and sec-Butanol Mixture", Journal of the Korean Institute of Fire Science & Engineering, Vol. 26, No. 3, pp. 85-90 (2012). https://doi.org/10.7731/KIFSE.2012.26.3.085
  3. D. M. Ha, "Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture", Journal of the Korean Institute of Gas, Vol. 17, No. 2, pp. 21-27 (2013). https://doi.org/10.7842/kigas.2013.17.2.21
  4. I. Goldfrab and A. Zinoviev, "A Study of Delay Spontaneous Insulation Fires", Physics Letter, A 311, pp. 491-500 (2003).
  5. R. H. Myers, "Response Suface Methodology", Allyn and Bacon, Inc. (1971).
  6. F. T. Bodurtha, "Industrial Explosion Prevention and Protection", McGraw-Hill (1980).
  7. N. N. Semenov, "Some Problems in Chemical Kinetics and Reactivity, Vol. 2", Princeton University Press, Princeton, N.J. (1959).
  8. NFPA, "Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids", NFPA 325M, NFPA (1991).
  9. R. E. Lenga and K. L. Votoupal, "The Sigma Aldrich Library of Regulatory and Safety Data, Volume I-III", Sigma Chemical Company and Aldrich Chemical Company Inc. (1993).
  10. A. M. Kanury, "SFPE Handbook of Fire Protection Engineering: Ignition of Liquid Fuels", 2nd ed., SFPE (1995).
  11. V. Babrauskas, "Ignition Handbook", Fire Science Publishers, SFPE (2003).
  12. R. J. Lewis, "SAX's Dangerous Properties of Industrial Materials", 11th ed., John Wiley & Son, Inc., N.J. (2004).
  13. C. J. Hilado and S. W. Clark, "Autoignition Temperature of Organic Chemicals", Chemical Engineering, Vol. 4, pp. 75-80 (1972).
  14. G .S. Scott, G .W. Jones and F. E. Scott, "Determination of Ignition Temperature of Combustible Liquids and Gases", Analytical Chemistry, Vol. 20, No. 3, pp. 238-241 (1948). https://doi.org/10.1021/ac60015a015
  15. J. A. Dean, "Lange's Handbook of Chemistry", 14th ed., McGraw Hill (1992).
  16. D. R. Lide, "Handbook Chemistry and Physics", 76th ed., CRC Press (1996).
  17. I. M. Smallwood, "Handbook of Organic Solvent Properties", John Wiley & Sons (1996).