DOI QR코드

DOI QR Code

슬러리내 석탄입자의 광산란 특성 평가

Evaluation on Light Scattering Behavior of a Pulverized Coal Suspension

  • 황문경 (부산대학교 기계공학부 대학원) ;
  • 남현수 (부산대학교 기계공학부 대학원) ;
  • 김규보 (부산대학교 화력발전에너지 분석기술센터) ;
  • 송주헌 (부산대학교 기계공학부)
  • Hwang, Munkyeong (Graduate School of Mechanical Engineering Pusan Nat'l Univ.) ;
  • Nam, Hyunsoo (Graduate School of Mechanical Engineering Pusan Nat'l Univ.) ;
  • Kim, Kyubo (Pusan Clean Coal Center) ;
  • Song, Juhun (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 투고 : 2013.09.23
  • 심사 : 2013.10.31
  • 발행 : 2013.10.31

초록

In a direct coal fuel cell (DCFC) system, it is essential to identify volume fraction of coal suspended in electrolyte melt in order to control its dispersion and fluidity. This requirement is compelling especially at anode channel where hot slurry is likely to flow at low velocity. In this study, light scattering techniques were employed to measure the volume fraction for a pulverized coal suspension with relatively high absorption coefficient. The particle size, scattering angle, and volume fraction were varied to evaluate their effects on the scattering behavior as well as scattering regime. The larger coal size and smaller forward scattering angle could provide a shift to more favorable scattering regime, i.e., independent scattering, where interferences of light scattering from one particle with others are suppressed.

키워드

참고문헌

  1. G.A. Hackett, J.W. Zondlo, R. Svensson, "Evaluation of carbon materials for use in a direct carbon fuel cell," Journal of Power Sources, Vol. 168, 2007, p. 111-118. https://doi.org/10.1016/j.jpowsour.2007.02.021
  2. D. Cao, Y. Sun, G. Wang, "Direct Carbon Fuel Cell: Fundamentals and Recent Developments," Journal of Power Sources, Vol. 167, 2007, p. 250-257. https://doi.org/10.1016/j.jpowsour.2007.02.034
  3. S.C. Lee, M.S. Kim, M.K. Hwang, K.B. Kim, C.H. Jeon, and J.H. Song, "Thermal stability and viscosity behaviors of hot molten carbonate mixtures," Experimental Thermal and Fluid Science, Vol. 49, 2013, p. 94-100. https://doi.org/10.1016/j.expthermflusci.2013.04.006
  4. F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, Y. Chi, "Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser," Flow Measurement and Instrumentation, Vol. 21, 2010, p. 382-387. https://doi.org/10.1016/j.flowmeasinst.2010.04.009
  5. N. A. Frankel and A. Acrivos, "The constitutive equation for a dilute emulsion," J. Fluid Mech., Vol. 44, 1970, p. 65-78. https://doi.org/10.1017/S0022112070001696
  6. N. Masoumi, N. Sohrabi, and A. Behzamehr, "A new model for calculating the effective viscosity of nanofluids," Journal of Physics D: Applied Physics, Vol. 42, 2009, p. 1-6.
  7. T. Y. Yun, "Analysis of radiative heat transfer in the entrained flow coal gasifier," Dissertation, Sogang Univ. Seoul, 1999.
  8. G. A. Nunez, M. I. Briceno, D. D. Joseph, T. Asa, "Colloidal coal in water suspensions," Nano Dispersions Technology Inc., Clayton, Panama, 2000.
  9. G.S. Khodakov, "Coal-water suspensions in power engineering," Thermal Engineering, Vol. 54, 2007, p. 36-47. https://doi.org/10.1134/S0040601507010077
  10. H. Dincer, F. Boylu, A.A. Sirkeci, and G. Atesok, "The effect of chemicals on the viscosity and stability of coal water slurries," International Journal of Mineral Processing, Vol. 70, 2003, p. 41-51. https://doi.org/10.1016/S0301-7516(02)00149-7
  11. F. Boylu, and G. Atesok, "Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries," Fuel Processing Technology, Vol. 85, 2004, p. 241-250. https://doi.org/10.1016/S0378-3820(03)00198-X
  12. P.R. Tudor, D. Atkinson, R.J. Crawford and D.E. Mainwaring, "The effect of adsorbed and nonadsorbed coal-water suspensions," Fuel, Vol. 75, 1996, p. 443-452. https://doi.org/10.1016/0016-2361(95)00267-7
  13. http://snowxtal.egloos.com/38446/
  14. M. Xue, M Su, L. Dong, Z. Shang, and X. Cai, "An investigation on characterizing dense coalwater slurry with ultrasound: theoretical and experimental method," Chem. Eng. Comm., Vol. 197, 2010, p. 169-179.
  15. O. Mengual, G. Meunier, I. Cayre, K. Puech, P. Snabre, "Characterization of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000," Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 152, 1999, p. 111-123. https://doi.org/10.1016/S0927-7757(98)00680-3
  16. O. Mengual, G. Meunier, I. Cayre, K. Puech, P. Snabre, "TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis," Talanta, Vol. 50, 1999, p. 445-456. https://doi.org/10.1016/S0039-9140(99)00129-0
  17. C. Bordes, P. Snabre, C. Frances, B. Biscans, "Optical investigation of shear- and time-dependent micro-structural changes to stabilized and depletionflocculated concentrated latex sphere suspensions," Powder Technology, Vol. 130, 2003, p. 331-337. https://doi.org/10.1016/S0032-5910(02)00212-7
  18. P.W. Li, D.J. Yang, L. H.M. Lou, X.Q. Qiu, "Study on the stability of coal water slurry using dispersion-stability analyzer," Journal of Fuel Chemistry and Technology, Vol. 36, No. 5, 2008, p. 524-529. https://doi.org/10.1016/S1872-5813(08)60033-X
  19. J.R. Howell, R. Siegel, M.P. Menguc, Thermal Radiation Heat Transfer, Chap. 15, CRC press (2011)
  20. S. Prahl, "Mie scattering calculator," available online, http://omlc.ogi.edu/calc/mie_calc.html, oregon medical Laser Center, 2009.
  21. M. P. Menguc, S. Manickavasagam, D. A. D' Sa "Determination of radiative properties of pulverized coal particles from experiments," Fuel, Vol. 73, No. 4, 1994, p. 613-625. https://doi.org/10.1016/0016-2361(94)90048-5
  22. M. P. Menguc and R. Viskanta, "On the radiative properties of polydispersions: a simplified approach," Combust, Sci. and Tech., Vol. 44, 1985, p, 143-159. https://doi.org/10.1080/00102208508960300
  23. M. Michael, M. F. Modest, Radiative Heat Transfer, Academic Press, 2003.
  24. C. L. Tien and B. L. Drolen, "Thermal radiation in particulate media with dependent and independent scattering," Annual Review of Numerical Fluid Mechanics and Heat Transfer, Vol. 1, 1987, p. 1-32. https://doi.org/10.1615/AnnualRevHeatTransfer.v1.30
  25. D. L. Black, M. Q. Mcquay, M. P. Bonin, "Laserbased techniques for particle size measurement: a review of sizing methods and their industrial applications" Prog. Energy Combust. Sci., Vol. 22, 1996, p. 267-306. https://doi.org/10.1016/S0360-1285(96)00008-1
  26. I. Gianinoni, E. Golinelli, G. Melzi, S. Musazzi, U. Perini, F. Trespi, "Optical particle sizers for on-line applications in industrial plants," Optics and Lasers in Engineering, Vol. 39, 2003, p. 141-154. https://doi.org/10.1016/S0143-8166(01)00090-2
  27. X. Li, Z. Zhu, R. Marco, A. Dicks, J. Bradley, S. Liu, and G. Lu, "Factors That Determine the Performance of Carbon Fuels in the Direct Carbon Fuel Cell," Ind. Eng. Chem. Res., Vol. 47, 2008, p. 9670-9677. https://doi.org/10.1021/ie800891m