DOI QR코드

DOI QR Code

Development of Heat Dissipation Measuring System for 1.2-kW BLDC Motor

1.2kW 급 BLDC 모터의 열 발산 측정 시스템 개발

  • Lee, Injun (School of Mechanical Engineering, Yeungnam Univ.) ;
  • Ye, Jungwoo (School of Mechanical Engineering, Yeungnam Univ.) ;
  • Lee, Daehun (School of Mechanical Engineering, Yeungnam Univ.) ;
  • Hwang, Pyung (School of Mechanical Engineering, Yeungnam Univ.) ;
  • Shim, Jaesool (School of Mechanical Engineering, Yeungnam Univ.)
  • 이인준 (영남대학교 기계공학부) ;
  • 예정우 (영남대학교 기계공학부) ;
  • 이대훈 (영남대학교 기계공학부) ;
  • 황평 (영남대학교 기계공학부) ;
  • 심재술 (영남대학교 기계공학부)
  • Received : 2013.03.28
  • Accepted : 2013.09.06
  • Published : 2013.11.01

Abstract

In this study, a heat dissipation measurement system is developed to analyze a 1.2-kW BLDC motor. It is important to check the temperature of the motor because an increase in temperature causes problems in the motor insulations, which in turn influences the motor life. A generator for a vehicle is installed to set up a load. We changed the load from 165 to 495 W. While the rpm varies from 2000 to 4000 under various load conditions, the changes in temperature were measured for the operating period by using a thermocouple. The results of experiments conducted under natural convection conditions suggest that the temperature was not stationary with the rpm, load, and coil of the motor and it kept increasing over $120^{\circ}C$. However, under forced convection conditions, the temperature stationarily reached $84^{\circ}C$ after 4000 s. The difference between the maximum and the minimum temperatures was $10-26^{\circ}C$ with an increase in the rpm and load. The orders of high temperature were as follows: motor coil (Ch#1), side of motor surface (Ch#5), inside of motor cap (Ch#2), upper side of motor surface (Ch#4), and inner wall of the motor (Ch#3).

본 논문은 1.2kW 급 BLDC 모터의 분석을 위하여 열 발산 측정 시스템을 제작하였다. 온도증가는 모터절연체의 문제를 일으켜 모터 수명과 연결되므로 모터의 온도를 아는 것은 중요하다. 실험에서 모터의 부하를 설정하기 위해 자동차용 제너레이터를 장착하였고, 부하의 변경을 위해 165W~495W를 변화를 주었다. 다양한 부하조건하에 분당 모터 회전 수를 2000~4000 까지 변경하면서 모터 각 부분에 열전대로 시간에 따른 온도변화를 측정하였다. 실험 결과로서 자연대류조건하에서는 모터의 회전 수 및 부하가 증가할수록 온도는 수렴하지 않으며 모터코일의 온도가 최고 $120^{\circ}C$ 이상까지 증가하였으나, 강제 대류조건하에서는 4000s 이상에서 $84^{\circ}C$에 수렴하였다. 모터의 최대/최소 온도 차이는 회전 수 및 부하가 증가할수록 최소 $10^{\circ}C{\sim}26^{\circ}C$의 차이를 보였다. 온도의 분포는 모터코일(1 번채널), 모터외부옆면(5 번채널), 모터내부 캡(2 번채널), 모터외부상부(4 번채널), 모터내부벽면(3 번채널)순으로 나타났다.

Keywords

References

  1. Andreas, J. C., 1992 ,"Energy -Efficient Electronic Motor," Selection and Application, Marcel Dekker Inc., pp. 243-245.
  2. Pelle, J. and Harmand, S., 2007 "Heat Transfer Measurements in an Opened Rotor-Stator System Air- Gap," Experimental Thermal and Fluid Science, Vol 31, Issure 3, pp. 165-180. https://doi.org/10.1016/j.expthermflusci.2006.03.018
  3. Lee, T.-G., Moon, J.-S., Yoo, H. and Lee, J.-H., 2005 "Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by the Accelerated Life Test," Journal of the SAREK, Vol. 17, No.12, pp. 1169-1176
  4. Kang, S., Lee, K.-S., Wang, S. and Shim, H., 2007 "Thermal and Flow Analysis of Outer-Rotor Type Bldc Motor," Trans. Korean Soc. Mech. Eng. B, No.31, Vol.9, pp772-779. https://doi.org/10.3795/KSME-B.2007.31.9.772
  5. Kim, M.-s. and Lee, K.-s., 2007 "Thermo-Flow Behavior of a BLDC Motor According to Design Parameters," Trans. Korean Soc. Mech. Eng. pp.2-293.
  6. Kim, M.-s. and Lee, K.-s., 2008 "Effects of Design Parameterson the Thermal Performance of a Brushless DC Motor," Trans. Korean Soc. Mech. Eng. B, No.32, Vol.2, pp. 141-148. https://doi.org/10.3795/KSME-B.2008.32.2.141
  7. Hur, J.-H., Lee, T.-G., Moon, S.-A., Lee, S.-J., Yoo, H., Moon, S.-J. and Lee, J.-H., 2008 "Thermal Reliability Analysis of a BLDC Motor in a High- Speed Axial Fan by the Accelerated-Life Test and Numerical Methods," Heat Mass Transfer, Vol. 44, pp. 1355-1369. https://doi.org/10.1007/s00231-008-0375-7
  8. Kuria, J. and Hwang, P., 2011 "Optimizing Heat Sink Geometry for Electric Vehicle BLDC Motor Using CFD," Sustainable Research and Innovation conference Proceedings, Vol.3.
  9. Hwang․ H.-Y., Chung․ T.-U., Lee, D.-Y., Hwang, P. and Shim, J.-S., 2012 "The Heat Transfer Analysis of 1.2[kW] BLDC Motor on the Condition of the External Flow," Journal of the Korean Institute of IIIuminating and Electrical Installation Engineers, Vol. 26, No. 2, pp. 27-33. https://doi.org/10.5207/JIEIE.2012.26.2.027
  10. Gnacinski, P., 2008, "Prediction of Windings Temperaturerise in Induction Motors Supplied with Distorted Voltage," Energy Conversion and Management, Vol.49, Issue 4, pp. 707-717. https://doi.org/10.1016/j.enconman.2007.07.023
  11. Lim, B.-J. and Park, C.-D., 2009, "Development of Load Apparatus for Motor," Journal of Fluid Machinery, No.6 ,Vol.12, pp. 26-32.
  12. "http://www.youtube.com/watch?v=0y64QiC9mkA"
  13. "http://www.schneider-electric.hu/documents/ automation-and-control/asg-3-motors-and-loads.pdf"

Cited by

  1. Study on Temperature and Vibration of BLDC Motor vol.18, pp.4, 2014, https://doi.org/10.9726/kspse.2014.18.4.043
  2. Thermal Characteristics of 600 W Brushless DC Motor under Axial Loading Condition vol.33, pp.12, 2016, https://doi.org/10.7736/KSPE.2016.33.12.999