DOI QR코드

DOI QR Code

Structural Optimization for Hybrid Vertical-Axis Wind Turbine Blade using Response Surface Method

반응표면법을 이용한 양항력형 수직축 풍력발전기 블레이드의 구조 최적 설계

  • So, Ki-Sung (Dept. of Mechanical Engineering, Kunsan Nat'l Univ.) ;
  • Choi, Chan-Woong (Dept. of Mechanical Engineering, Kunsan Nat'l Univ.) ;
  • Lee, Dong-Chul (Dept. of Mechanical Engineering, Kunsan Nat'l Univ.) ;
  • Kang, Ki-Weon (Dept. of Mechanical Engineering, Kunsan Nat'l Univ.)
  • Received : 2013.03.10
  • Accepted : 2013.09.14
  • Published : 2013.11.01

Abstract

This study deals with the structural optimization of hybrid vertical-axis wind turbine blades using a response surface method (RSM). The structural analysis results suggest that the stress of hybrid vertical-axis wind turbine blades exceeds the yield strength. Optimization techniques are then applied to structural design to ensure a safe structure. First, the design factors that strongly influence the structural response are identified. The RSM was applied based on the design of experiments. The objective function and constraint terms set the weight and allowable stress, respectively. Furthermore, sensitivity analysis was conducted to indicate the effects of the design factors on the stress and weight. Finally, structural design was performed for the hybrid vertical-axis wind turbine blade.

본 논문에서는 반응표면법을 이용하여 양항력형 수직축 풍력발전기 블레이드의 구조 최적설계를 수행하였다. 선행연구의 구조해석 결과를 살펴보면 양항력형 수직축 풍력발전기 블레이드가 항복강도 이상의 응력이 발생하였으므로, 구조적 안전성을 확보하고자 최적화 기법을 적용한 구조설계를 재수행하였다. 이를 위해 먼저 블레이드에 발생하는 응력에 큰 영향을 주는 설계인자를 선정하였다. 이에 실험계획법 기반 반응표면법을 적용하였다. 목적함수 및 제한조건은 각각 중량 및 허용응력으로 설정하였다. 또한 중량 및 응력에 대한 설계인자의 영향을 평가하기 위한 민감도 해석을 수행하였다. 이러한 과정을 통해 양항력형 수직축 풍력발전기 블레이드의 구조 최적 설계를 수행하였다.

Keywords

Acknowledgement

Supported by : 한국연구제단(NRF)

References

  1. Kim, H. K., Lee, J. H., Jang, S. M. and Kang, K. W., 2010, "Structural Analysis and Testing of 1.5 kW Class Wind Turbine Blade," Journal of Fluid Machinery, Vol. 13, No. 4, pp. 51-57.
  2. Lee, D. C., Jun, H. J., Jin, J. W. and Kang, K. W., 2012, "Structural Test for Hybrid Type Vertical Axis Wind Turbine Blade Using Aerodynamic and Centrifugal Force," Journal of Korea Wind Energy Association, Vol. 3, No. 2, pp. 47-53.
  3. Kong, C. D., Lee, H. S., Kim, M. W. and Lee, K. S., 2010, "Study on Design, Manufacturing and Structural Test of 500W Class Vertical Axis Wind Turbine Blade," Journal of Korea Society for Aeronautical & Space Sciences, pp. 212-215.
  4. Jang, Y. J., Jeong, J. H., Lee, J. H. and Kang, K. W., 2011, "Structural Integrity Through Aerodynamic Analysis and Structural Test for Small Wind Turbine Composite Blade," Journal of Fluid Machinery, Vol. 15, No. 2, pp. 63-68.
  5. International Standard, IEC 61400-2, 2006, "Design Requirements for Small Wind Turbines," Second edition.
  6. Lee, J. H. and Yun, T. W., 2010, "Optimum Design Criteria of 250kW Premium Efficiency Traction Induction Motor Using RSM & FEM," Journal of the Korean Magnetics Society, Vol. 20, No. 6, pp. 239-243. https://doi.org/10.4283/JKMS.2010.20.6.239
  7. Sun, H. S. and Lee, S. G., 2004, "Aerodynamic Design of Helicopter Rotor Airfoil in Forward Flight Using Response Surface Method," The Korean Society for Aeronautical & Space Sciences, Vol. 32, No. 7, pp. 13-18. https://doi.org/10.5139/JKSAS.2004.32.7.013
  8. Lee, C. H., Min, S. Y., Park, C. J. and Kim, S. J., 2012, " Optimal Design of Cycloidal Vertical Axis Wind Turbine," The Korean Society for Industrial and Applied Mathematics, Vol. 7, No. 1, pp. 249-252.
  9. Mayers, R. and Montgomery, D. C., 1995, "Response Surface Methodology - Process and Product Optimization Using Designed Experiments," John Wiley & Sons.
  10. ABAQUS Version 6.10-1, 2010, Dassault Systems Simulia. Inc.
  11. MINITAB Version 16, 2010, Minitab. Inc.