DOI QR코드

DOI QR Code

인조골에 체결된 유리섬유/폴리프로필렌 복합재료 고정판의 수분 환경 피로 특성

Fatigue Characterization of Glass/Polypropylene Composite Bone Plates Locked with an Artificial Tibia under Moisture Environment

  • 투고 : 2013.07.08
  • 심사 : 2013.10.05
  • 발행 : 2013.10.31

초록

본 연구에서는 유리섬유/폴리프로필렌 복합재료 고정판을 인조골에 체결하여 실제 골절치료 시술 상황을 모사하였으며, 고정판의 적합성을 판단하기 위하여 수분 흡수율, 스크류의 체결 상태, 하중 조건의 변화에 따른 피로 실험을 진행하였다. 실험 결과 0~12주 동안 수분 흡수가 이루어진 모든 시편에서 기대 수명인 65만 사이클을 넘는 100만 사이클 이상의 피로 수명을 가짐을 확인하였다. 스크류 체결 상태는 골절부의 변형률 차이에 주목할만한 영향을 미치지 못하였다. 본 논문에서는 유리섬유/폴리프로필렌 복합재료 고정판을 다양한 환경조건 하에서 압축-압축 피로실험을 수행하여 기계적 우수성을 입증하였으며, 이 결과는 향후 금속 고정판을 복합재료 고정판으로 대체하기 위한 관련 연구에 유용한 정보를 제공할 것으로 기대된다.

In this study, bone plate made of glass/polypropylene composite material which was applied to an artificial bone was tested to check the service ability under fatigue loading. To check serviceability of composite bone plates fatigue test was carried out considering changes in the moisture absorption rate, locking position of screws and loading condition. Test results showed that all the tested specimens had the fatigue life more than one million cycles which was much higher fatigue life than the expected value of 650,000 cycles. Screw position was not critical impact on the deformation of the fracture site. In this paper, the mechanical performance of the glass/polypropylene composite was verified by fatigue test under various water absorption conditions, and this result may give useful information on the design of composite bone plate.

키워드

참고문헌

  1. Park, S.W., Yoo, S.H., An, S.D., and Chang, S.H., "Material Characterization of Glass/Polypropylene Composite Bone Plates According to the Forming Condition and Performance Evaluation under a Simulated Human Body Environment," Composites: Part B, Vol. 43, No. 3, 2012, pp. 1101-1108.
  2. Sivakumar, M., Mudali, U.K., and Rajeswari, S., "Investigation of Failures in Stainless Steel Orthopaedic Implant Devices: Fatigue Failure due to improper fixation of a Compression Bone Plate," Journal of Materials Science Letters, Vol. 13, No. 2, 1994, pp. 142-145. https://doi.org/10.1007/BF00416827
  3. Kanchanomai, C., Phiphobmongkol, V., and Muanjan, P., "Fatigue Failure of an Orthopedic Implant - A Locking Compression Plate," Engineering Failure Analysis, Vol. 15, No. 5, 2008, pp.521-530. https://doi.org/10.1016/j.engfailanal.2007.04.001
  4. Son, D.S., and Chang S.H., "The Simulation of Bone Healing Process of Fractured Tibia Applied with Composite Bone Plates According to the Diaphyseal Oblique Angle and Plate Modulus," Composites: Part B, Vol. 45, No. 1, 2013, pp. 1325-1335. https://doi.org/10.1016/j.compositesb.2012.07.037
  5. Wehner, T., Claes, L., and Simon, U., "Internal Loads in the Human Tibia During Gait," Clinical Biomechanics, Vol. 24, No. 3, 2009, pp. 299-302. https://doi.org/10.1016/j.clinbiomech.2008.12.007
  6. Taylor, S.J.G., and Walker, P.S., "Forces and Moments Telemetered from Two Distal Femoral Replacements during Various Activities," Journal of Biomechanics, Vol. 32, No. 7, 2001, pp. 839-848.
  7. Ellis, T., Bourgeault, C.A., and Kyle, R.F., "Screw Position Affects Dynamic Compression Plate Strain in an in vitro Fracture Model," Journal of Orthopaedic Trauma, Vol. 15, No. 5, 2001, pp. 333-337. https://doi.org/10.1097/00005131-200106000-00005
  8. Tornkvist, H., Hearn, T.C., and Schatzker, J., "The Strength of Plate Fixation in Relation to the Number and Spacing of Bone Screws," Journal of Orthopaedic Trauma, Vol. 10, No. 3, 1996, pp. 204-208. https://doi.org/10.1097/00005131-199604000-00009
  9. Sanders, R., Haidukewych, G.J., Milne, T., Dennis, J., and Latta, L.L., "Minimal Versus Maximal Plate Fixation Techniques of the Ulna : The Biomechanical Effect of Number of Screws and Plate Length," Journal of Orthopaedic Trauma, Vol. 16, No. 3, 2002, pp. 166-171. https://doi.org/10.1097/00005131-200203000-00005
  10. Seo, S.H., Lee, D.B., and Moon, C.K., "A Study on Degradation in the Moisture Environment and Recovery of Carbon Fiber Reinforced Composites," Journal of the Korean Society for Composite Materials, Vol. 17, No. 3, 2004, pp. 8-14.
  11. Schambron, T., Lowe, A., and McGregor, H.V., "Effects of Environmental Ageing on the Static and Cyclic Bending Properties of Braided Carbon Fibre/PEEK Bone Plates," Composites: Part B, Vol. 39, No. 7-8, 2008, pp. 1216-1220. https://doi.org/10.1016/j.compositesb.2008.03.001