DOI QR코드

DOI QR Code

Twitter Sentiment Analysis for the Recent Trend Extracted from the Newspaper Article

신문기사로부터 추출한 최근동향에 대한 트위터 감성분석

  • 이경호 (충남대학교 정보통신공학과) ;
  • 이공주 (충남대학교 정보통신공학과)
  • Received : 2013.04.22
  • Accepted : 2013.06.28
  • Published : 2013.10.31

Abstract

We analyze public opinion via a sentiment analysis of tweets collected by using recent topic keywords extracted from newspaper articles. Newspaper articles collected within a certain period of time are clustered by using K-means algorithm and topic keywords for each cluster are extracted by using term frequency. A sentiment analyzer learned by a machine learning method can classify tweets according to their polarity values. We have an assumption that tweets collected by using these topic keywords deal with the same topics as the newspaper articles mentioned if the tweets and the newspapers are generated around the same time. and we tried to verify the validity of this assumption.

본 논문은 사회의 최근 동향에 대한 여론의 반응을 관찰하기 위한 방법을 나타낸다. 최근 동향을 나타내는 키워드를 신문기사로부터 추출하고, 추출된 키워드를 이용하여 수집된 트윗의 감성 분석을 통해 최근 동향에 대한 여론을 분석한다. 수집된 신문기사를 k-means알고리즘을 이용하여 군집화하고, 군집내의 단어의 출현 빈도를 이용하여 토픽 키워드를 선정하였다. 각 토픽에 대하여 수집된 트윗은 그 토픽 대한 트윗이라는 가정하에 기계학습 방법을 이용하여 긍/부정을 판별하여 감성을 판단하게 하였다. 그리고 이와 같은 가정에 대한 타당성을 검증해 보았다.

Keywords

References

  1. J. Dimmick., Y. Chen, and Z. Li, "Competition between the Internet and traditional news media: The gratification opportunities niche dimension," in The Journal of Media Economic, 17.1, pp.19-33, 2004. https://doi.org/10.1207/s15327736me1701_2
  2. D. A. Shamma, L. Kennedy, and E. F. Churchill, "Tweet the debates: understanding community annotation of uncollected sources," in Proceedings of the first SIGMM workshop on Social media. ACM, pp.3-10, 2009.
  3. Turney and D. Peter, "Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews," in Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, pp.417-424, 2002.
  4. G. Dray, M. Plantie, A. Harb, P. Poncelet, M. Roche, and F. Trousset, "Opinion mining from blogs," in IJCISIM'09: International Journal of Computer Information Systems and Industrial Management Applications, 1, pp.205-213, 2009.
  5. N. Godbole, M. Srinivasaiah, and S. Skiena, "Large-scale sentiment analysis for news and blogs," in Proceedings of the International Conference on Weblogs and Social Media (ICWSM), Vol.2, 2007.
  6. A. Bakliwal, P. Arora, S. Madhappan, N. Kapre, M. Singh, and V. Varma, "Mining sentiments from Tweets," in WASSA 2012, pp.11-18, 2012.
  7. A. Go, B. Richa, and H. Lei. "Twitter sentiment classification using distant supervision," in CS224N Project Report, Stanford, pp.1-12, 2009.
  8. N. N. Bora, "Summarizing Public Opinions in Tweets," in Journal Proceedings of CICLing, 2012.
  9. A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau, "Sentiment analysis of twitter data," in Proceedings of the Workshop on Languages in Social Media. Association for Computational Linguistics, pp.30-38, 2011.
  10. L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao, "Target-dependent twitter sentiment classification," in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Vol.1, pp.151-160, 2011.
  11. L. B. Batista, and S. Ratte, "A Multi-Classifier System for Sentiment Analysis and Opinion Mining," in Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining. pp.96-100, 2012.
  12. R. C. Prati, G. E. A. P. A. Batista, and M. C. Monard, "A survey on graphical methods for classification predictive performance evaluation," in Knowledge and Data Engineering, IEEE Transactions, pp.1601-1618, 2011.
  13. W. Khreich, E. Granger, A. Miri, and R. Sabourin, "Iterative Boolean combination of classifiers in the ROC space: An application to anomaly detection with HMMs," in Pattern Recognition, 43(8), pp.2732-2752, 2010. https://doi.org/10.1016/j.patcog.2010.03.006
  14. J. Li, and K. Zhang, "Keyword extraction based on tf/idf for Chinese news document," in Wuhan University Journal of Natural Sciences, pp.917-921, 2007.
  15. M. J. Pazzani, J. Muramatsu, and D. Billsus, "Syskill & Webert: Identifying interesting web sites," in Proceedings of the national conference on artificial intelligence. pp.54-61, 1996.
  16. P. S. Bradley, and U. M. Fayyad, "Refining initial points for k-means clustering," in Proceedings of the fifteenth international conference on machine learning. Vol.66, pp.91-99, 1998.
  17. C. D. Manning, P. Raghavan, and H. Schutze, "Introduction to information retrieval," Vol.1. Cambridge: Cambridge University Press, ch8, pp.148, 2008.

Cited by

  1. An Analysis of IT Trends Using Tweet Data vol.21, pp.1, 2015, https://doi.org/10.13088/jiis.2015.21.1.143
  2. A Method of Analyzing Sentiment Polarity of Multilingual Social Media: A Case of Korean-Chinese Languages vol.22, pp.3, 2016, https://doi.org/10.13088/jiis.2016.22.3.091
  3. Analysis of Research Trends on Social Network Service: focusing on the Studies of Twitter vol.14, pp.9, 2014, https://doi.org/10.5392/JKCA.2014.14.09.567
  4. Opinion Retrieval in Twitter Considering Syntactic Relations of Sentiment Phrase vol.20, pp.9, 2014, https://doi.org/10.5626/KTCP.2014.20.9.492