DOI QR코드

DOI QR Code

Relationships between Fatty Acids and Tocopherols of Conventional and Genetically Modified Peanut Cultivars Grown in the United States

미국산 전통품종과 유전자 재조합 땅콩품종의 지방산과 토코페롤의 상관관계

  • Shin, Eui-Cheol (Dept. of Food Science, Gyeongnam National University of Science and Technology)
  • 신의철 (경남과학기술대학교 식품과학부)
  • Received : 2013.06.27
  • Accepted : 2013.09.03
  • Published : 2013.10.31

Abstract

Relationships between fatty acids and tocopherols in conventional and genetically modified peanut cultivars were studied by gas chromatography with flame ion detector and high performance liquid chromatography with fluorescence detection. Eight fatty acids and four tocopherol isomers in the sample set were identified and quantified. Oleic acid and linoleic acid are major fatty acids and the ratio of oleic and linoleic acids ranged from 1.11 to 16.26. Tocopherols contents were 6.76 to 12.24 for ${\alpha}$-tocopherol (T), 0.08 to 0.39 for ${\beta}$-T, 5.28 to 15.02 for ${\gamma}$-T, and 0.17 to 1.17 mg/100 g for ${\delta}$-T. Correlation coefficient (r) for fatty acids and tocopherols indicated a strong inverse relationship between oleic & linoleic acids (r=-0.97, P<0.05) and positive relationships between palmitic & linoleic acids (r=0.95, P<0.05) and ${\gamma}$-T & ${\delta}$-T (r=0.83, P<0.05). Principal component analysis (PCA) of fatty acids and tocopherols gave four significant principal components (PCs, with eigenvalues>1), which together account for 85.49% of the total variance in the data set with PC1 and PC2 contributing 45.27% and 21.33% of the total variability, respectively. Eigen analysis of the correlation matrix loadings of the four significant PCs revealed that PC1 was mainly contributed by palmitic, oleic, linoleic, and gondoic acids, while PC2 was by behenic acid, ${\beta}$-T, and ${\gamma}$-T. The score plot generated by PC1-PC2 identified sample clusters in the two spatial planes based on the oleic and linoleic acids. The score plot PC3-PC4 didn't separate sample groups.

미국산 땅콩의 지용성 성분의 연구를 위해 일반 품종과 hioleic 품종이 가지는 지방산과 지용성 vitamin 중 하나인 tocopherol의 구성과 그에 대한 상관관계를 살펴보았다. 두 가지 품종에서 확연한 지방산 조성의 차이를 대표적 지방산인 palmitic acid, oleic acid, 그리고 linoleic acid를 중심으로 상관관계를 확인할 수 있었으며, 포화지방산과 ${\beta}$-T 반비례 관계를 통계적 접근을 통해 확인할 수 있었다. 또한 correlation을 통해서 ${\gamma}$-T와 ${\delta}$-T가 높은 비례관계를 가지는 것을 확인하였다. 다변량 분석을 위한 통계기법 중 대표적인 PCA를 통해서 땅콩의 지용성 성분에 대한 해석을 시도하였고, 그 결과 변수로 분류한 지방산과 tocopherol과의 관계를 loading plot을 통해서 확인하였고, score plot을 통해 개별 땅콩 품종들이 보이는 그룹간의 유의성과 차이를 확인할 수 있었다. 통계적 접근을 통해서 일반적인 분석 데이터에서 보여주는 정보 이외의 숨은 결과를 수학적 계산을 근거로 얻을 수 있다는 점에서 PCA를 이용한 통계적 접근법은 앞으로 여타의 땅콩품종이 가진 지용성 및 수용성 성분의 상관관계 및 품종간 그룹별 분류에 좀 더 체계적인 수단으로써 이용될 것으로 판단된다. 그리고 우수한 영양 및 기능성 성분을 가진 땅콩이 육종이라는 과정을 통해서 개량된 high-oleic 품종은 더욱 우수한 영양성분 및 식품으로서의 가공 안정성을 가지고 있어, 식품소재로서의 high-oleic 품종은 전통 품종보다 더욱 유리한 위치에 있다고 판단된다. 또한 연구에서는 선행 연구들에서 발견한 fatty acid와 tocopherol 함량의 유의적인(P<0.05) 상호관계가 나타나지는 않았으나 향후 땅콩을 포함한 식품소재의 성분 분석에 대한 연구 과정에서 잠재적으로 발생 가능한 영양 및 기능성 성분에 대한 상호관계를 탐색 연구하는 연구가 계속적으로 시도되어야 할 것이다.

Keywords

References

  1. Woodroof JG. 1983. Peanuts: production, processing, products. 3rd ed. AVI Pub. Co., Westport, CT, USA. p 1-50.
  2. King JC, Blumberg J, Ingwersen L, Jenab M, Tucker KL. 2008. Tree nuts and peanuts as components of a healthy diet. J Nutr 138: 1736S-1740S. https://doi.org/10.1093/jn/138.9.1736S
  3. Resurreccion AVA, Sales JM, Potrebko I, Francisco MLLD, Hitchcock HL. 2009. Peanuts: bioactive food in a shell. Food Tech 63: 30-36.
  4. Jenkins DJ, Hu FB, Tapsell LC, Josse AR, Kendall CW. 2008. Possible benefit of nuts in type 2 diabetes. J Nutr 138: 1752S-1756S. https://doi.org/10.1093/jn/138.9.1752S
  5. Kris-Etherton PM, Hu FB, Ros E, Sabate J. 2008. The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr 138: 1746S-1751S. https://doi.org/10.1093/jn/138.9.1746S
  6. Mattes RD, Kris-Etherton PM, Foster GD. 2008. Impact of peanuts and tree nuts on body weight and healthy weight loss in adults. J Nutr 138: 1741S-1745S. https://doi.org/10.1093/jn/138.9.1741S
  7. Li TY, Brennan AM, Wedick NM, Mantzoros C, Rifai N, Hu FB. 2009. Regular consumption of nuts is associated with a lower risk of cardiovascular disease in women with type 2 diabetes. J Nutr 139: 1333-1338. https://doi.org/10.3945/jn.108.103622
  8. Ros E. 2009. Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr 89: 1649S-1656S. https://doi.org/10.3945/ajcn.2009.26736R
  9. Sabate J, Ang Y. 2009. Nuts and health outcomes: new epidemiologic evidence. Am J Clin Nutr 89: 1643S-1648S. https://doi.org/10.3945/ajcn.2009.26736Q
  10. Sabate J, Oda K, Ros E. 2010. Nut consumption and blood lipid levels: a pooled analysis of 25 intervention trials. Arch Intern Med 170: 821-827. https://doi.org/10.1001/archinternmed.2010.79
  11. Awad AB, Chan KC, Downie AC, Fink CS. 2000. Peanuts as a source of ${\beta}$-sitosterol, a sterol with anticancer properties. Nutr Cancer 36: 238-241. https://doi.org/10.1207/S15327914NC3602_14
  12. Bes-Rastrollo M, Wedick NM, Martinez-Gonzalez MA, Li TY, Sampson L, Hu FB. 2009. Prospective study of nut consumption, long-term weight change, and obesity risk in women. Am J Clin Nutr 89: 1913-1919. https://doi.org/10.3945/ajcn.2008.27276
  13. Seddon JM, Cote J, Rosner B. 2003. Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol 121: 1728-1737. https://doi.org/10.1001/archopht.121.12.1728
  14. Pan Y, Zhu J, Wang H, Zhang X, Zhang Y, He CH, Ji X, Li H. 2007. Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem 103: 913-918. https://doi.org/10.1016/j.foodchem.2006.09.044
  15. Davis JP, Dean LL, Price KM, Sanders TH. 2010. Roast effects on the hydrophilic and lipophilic antioxidant capacities of peanut flours, blanched peanut seed and peanut skins. Food Chem 119: 539-547. https://doi.org/10.1016/j.foodchem.2009.06.057
  16. Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A. 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem 121: 178-184. https://doi.org/10.1016/j.foodchem.2009.12.027
  17. Kris-Etherton PM, Zhao G, Binkoski AE, Coval SM, Etherton TD. 2001. The effects of nuts on coronary heart disease risk. Nutr Rev 59: 103-111.
  18. Norden AJ, Gorbet DW, Knauft DA, Young CT. 1987. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14: 7-11. https://doi.org/10.3146/i0095-3679-14-1-3
  19. Moore KM, Knauft DA. 1989. The inheritance of high oleic acid in peanut. J Hered 80: 252-253. https://doi.org/10.1093/oxfordjournals.jhered.a110845
  20. Gorbet DW, Knauft DA. 1997. Registration of 'SunOleic 95R peanut. Crop Sci 37: 1392.
  21. Ray TK, Holly SP, Knauft DA, Abbott AG, Powell GL. 1993. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of ${\Delta}^{12}$-desaturase activity. Plant Sci 91: 15-21. https://doi.org/10.1016/0168-9452(93)90184-2
  22. O'Keefe SF, Wiley VA, Knauft DA. 1993. Comparison of oxidative stability of high-and normal-oleic peanut oils. J Am Oil Chem Soc 70: 489-492. https://doi.org/10.1007/BF02542581
  23. Yang KW, Pae SB, Park CH, Lee MH, Jung CS, Son JH, Park KY. 2010. Development of selectable marker of high oleate trait in peanut (Arachis hypogaea L.). Kor J Breed Sci 42: 507-514.
  24. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911-917. https://doi.org/10.1139/o59-099
  25. Dhanda JS, Pegg RB, Shand PJ. 2003. Tenderness and chemical composition of elk (Cervus elaphus) meat: Effects of muscle type, marinade composition, and cooking method. J Food Sci 68: 1882-1888. https://doi.org/10.1111/j.1365-2621.2003.tb12347.x
  26. Andersen PC, Gorbet DW. 2002. Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. J Agric Food Chem 50: 1298-1305. https://doi.org/10.1021/jf0113171
  27. Shin EC, Huang YZ, Pegg RB, Phillips RD, Eitenmiller RR. 2009. Commercial Runner peanut cultivars in the United States: tocopherol composition. J Agric Food Chem 57: 10289-10295. https://doi.org/10.1021/jf9029546
  28. Kaiser HF. 1960. The application of electronic computers to factor analysis. Educ Psychol Meas 20: 141-151. https://doi.org/10.1177/001316446002000116
  29. Acquaah G. 2007. Breeding peanut. In Principles of plant genetics and breeding. Blackwell Publishing Co., Malden, MA, USA. p 529-536.
  30. Park CH, Park HW. 2002. Review of the studies on the qualities in peanut. Korean J Crop Sci 47: 163-174.
  31. Shin EC, Craft BD, Pegg RB, Phillips RD, Eitenmiller RR. 2010. Chemometric approach to fatty acid profiles in Runner-type peanut cultivars by principal component analysis (PCA). Food Chem 119: 1262-1270. https://doi.org/10.1016/j.foodchem.2009.07.058
  32. US. Department of Agriculture. 2012. USDA National Nutrient Database for Standard Reference. USA. Release 25.
  33. Groff JL, Gropper SS, Hunt SM. 1996. Lipid. In Advanced Nutrition and Human Metabolism. West Publishing, Minneapolis, St. Paul, MN, USA. p 113-146.
  34. Golombek SD, Sridhar R, Singh U. 1995. Effect of soil temperature on the seed composition of three Spanish cultivars of groundnut (Arachis hypogae L.). J Agric Food Chem 43: 2067-2070. https://doi.org/10.1021/jf00056a021
  35. Mensink RP, Katan MB. 1989. Effect of a diet enriched with monounsaturated or polyunsaturated fatty acids on levels of low-density and high-density lipoprotein cholesterol in healthy women and men. N Engl J Med 321: 436-441. https://doi.org/10.1056/NEJM198908173210705
  36. Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD. 1999. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr 70: 1009-1015. https://doi.org/10.1093/ajcn/70.6.1009
  37. Kris-Etherton PM, Yu-Poth S, Sabate, J, Ratcliffe HE, Zhao G, Etherton TD. 1999. Nuts and their bioactive constituents: effects on serum lipids and other factors that affect disease risk. Am J Clin Nutr 70: 504S-511S. https://doi.org/10.1093/ajcn/70.3.504s
  38. Eitenmiller RR, Lee JS. 2004. Vitamin E. Marcel Dekker Inc., New-York, NY, USA. p 1-38.
  39. Food and Nutrition Board. 2000. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academy of Sciences Press, Washington, DC, USA. p 186-283.
  40. Yamaki T, Nagamine I, Fukumoto K, Yano T, Miyahara M, Sakurai H. 2005. High oleic peanut oil modulates promotion stage in lung tumorigenesis of mice treated with methyl nitrosourea. Food Sci Technol Res 11: 231-235. https://doi.org/10.3136/fstr.11.231
  41. Isleib TG, Pattee HE, Sanders TH, Hendrix KW, Dean LO. 2006. Compositional and sensory comparisons between normal-and high-oleic peanuts. J Agric Food Chem 54: 1759- 1763. https://doi.org/10.1021/jf052353t
  42. Kamal-Eldin A. 2006. Effect of fatty acids and tocopherol on the oxidative stability of vegetable oils. Eur J Lipid Sci Technol 58: 1051-1061.