DOI QR코드

DOI QR Code

Effects of Dietary Fructose and Glucose on Hepatic Steatosis and NLRP3 Inflammasome in a Rodent Model of Obesity and Type 2 Diabetes

비만 및 제2형 당뇨병 쥐 모델에서 과당과 포도당의 섭취가 지방간과 NLRP3 염증조절결합체에 미치는 영향

  • Lee, Hee Jae (Dept. of Food and Nutrition and Human Ecology Research Institute, Chonnam National University) ;
  • Yang, Soo Jin (Dept. of Food and Nutrition and Human Ecology Research Institute, Chonnam National University)
  • 이희재 (전남대학교 식품영양학과/생활과학연구소) ;
  • 양수진 (전남대학교 식품영양학과/생활과학연구소)
  • Received : 2013.07.02
  • Accepted : 2013.09.05
  • Published : 2013.10.31

Abstract

This study is carried out to assess the relative effects of different doses of dietary glucose or fructose on non-alcoholic fatty liver disease (NAFLD) and hepatic metaflammation in a rodent model of type 2 diabetes. KK/HlJ male mice were fed experimental diets as follows: 1) control (CON), 2) moderate glucose (MG, 30% of total calories as glucose), 3) high glucose (HG, 60% of total calories as glucose), 4) moderate fructose (MF, 30% of total calories as fructose), and 5) high fructose (HF, 60% of total calories as fructose) for three weeks. Food intake was not affected by treatments. Compared with HF, HG not only increased serum fasting glucose and area under the curve during oral glucose tolerance test, but also decreased the levels of serum insulin and adiponectin. It indicated that glucose control was complicated via high glucose intake. High fructose treatment led to increased triglyceride in the serum and liver. In comparison to HG, high fructose diet activated NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome consisting of apoptosis-associated speck-like protein containing a CARD (ASC), NLRP3 and caspase 1, which increases interleukin (IL)-$1{\beta}$ maturation and secretion. The activation of NLRP3 inflammasome was accompanied by increased levels of tumor necrosis factor alpha (TNF-${\alpha}$) and IL-6. However, the expression of NLRP3 inflammasome components and pro-inflammatory cytokines did not differ between CON and HG. These data suggested that dietary fructose triggers hepatic metaflammation accompanied by NLRP3 inflammasome activation and has deleterious effects on NAFLD.

이상의 결과를 종합해 볼 때, 높은 수준의 포도당 섭취는 공복혈당과 공복혈당면적을 높이고 혈중 인슐린 농도와 아티포넥틴의 수준을 낮추어 혈당조절 능력을 억제시켰다. 반면, 높은 수준의 과당 섭취는 인슐린을 요구하지 않는 과당대사의 특이성으로 인해 혈당조절에는 효과적으로 보인다. 그러나 고과당 섭취는 간 조직 및 혈중 중성지방의 농도를 높이고 염증조절복합체 구성단백질의 발현을 조절하여 전염증인자의 발현을 증가시켰다. 이는 간조직에 있어 과당이 포도당보다 높은 수준의 염증반응을 유도하여 NAFLD의 발병과 진행에 보다 유의적인 영향을 준다는 것을 보여준다. 본 연구의 제한점은 일상에서 과당이나 포도당을 단독으로 섭취하는 경우가 드물다는 점과 3주라는 짧은 중재기간에 의한 실험 결과라는 것이다. 앞으로의 연구는 단순당을 장기간 섭취했을 때 혈청과 간 조직을 포함한 다른 대사 관련조직에서 나타나는 변화에 초점을 맞출 필요가 있으며, 염증조절복합체가 염증인자의 발현을 증가시키는 기전을 구체화하는 것이 요구된다.

Keywords

References

  1. Duffey KJ, Popkin BM. 2007. Shifts in patterns and consumption of beverages between 1965 and 2002. Obesity (Silver Spring) 15: 2739-2747. https://doi.org/10.1038/oby.2007.326
  2. Bray GA. 2013. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv Nutr 4: 220-225. https://doi.org/10.3945/an.112.002816
  3. Marriott BP, Olsho L, Hadden L, Connor P. 2010. Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003-2006. Crit Rev Food Sci Nutr 50: 228-258. https://doi.org/10.1080/10408391003626223
  4. KNS. 2010. Dietary reference intakes for Koreans. The Korean Nutrition Society, Korea. p 65.
  5. Aller EEJG, Abete I, Astrup A, Martinez JA, van Baak MA. 2011. Starches, sugars and obesity. Nutrients 3: 341-369. https://doi.org/10.3390/nu3030341
  6. Malik VS, Popkin BM, Bray GA, Despres JP, Willett WC, Hu FB. 2010. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabe tes care 33: 2477-2483. https://doi.org/10.2337/dc10-1079
  7. Basaranoglu M, Basaranoglu G, Sabuncu T, Senturk H. 2013. Fructose as a key player in the development of fatty liver disease. World J Gastroenterol 19: 1166-1172. https://doi.org/10.3748/wjg.v19.i8.1166
  8. Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, D'Agostino RB, Gaziano JM, Vasan RS. 2007. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 116: 480-488. https://doi.org/10.1161/CIRCULATIONAHA.107.689935
  9. Yoshida M, McKeown NM, Rogers G, Meigs JB, Saltzman E, D'Agostino R, Jacques PF. 2007. Surrogate markers of insulin resistance are associated with consumption of sugar-sweetened drinks and fruit juice in middle and older-aged adults. J Nutr 137: 2121-2127. https://doi.org/10.1093/jn/137.9.2121
  10. Ludwig DS, Peterson KE, Gortmaker SL. 2001. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet 357: 505-508. https://doi.org/10.1016/S0140-6736(00)04041-1
  11. Bray GA. 2010. Soft drink consumption and obesity: it is all about fructose. Curr Opin Lipidol 21: 51-57. https://doi.org/10.1097/MOL.0b013e3283346ca2
  12. Nseir W, Nassar F, Assy N. 2010. Soft drinks consumption and nonalcoholic fatty liver disease. World J Gastroentero 16: 2579-2588. https://doi.org/10.3748/wjg.v16.i21.2579
  13. Abid A, Taha O, Nseir W, Farah R, Grosovski M, Assy N. 2009. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J Hepatol 51: 918-924. https://doi.org/10.1016/j.jhep.2009.05.033
  14. Ouyang X, Cirillo P, Sautin Y, McCall S, Bruchette JL, Diehl AM, Johnson RJ, Abdelmalek MF. 2008. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 48: 993-999. https://doi.org/10.1016/j.jhep.2008.02.011
  15. Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, Johnson RJ, Diehl AM. 2010. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51: 1961-1971. https://doi.org/10.1002/hep.23535
  16. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ. 2009. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119: 1322-1334. https://doi.org/10.1172/JCI37385
  17. Vos MB, Lavine JE. 2013. Dietary fructose in nonalcoholic fatty liver disease. Hepatology 57: 2525-2531. https://doi.org/10.1002/hep.26299
  18. Almeda-Valdes P, Cuevas-Ramos D, Aguilar-Salinas CA. 2009. Metabolic syndrome and non-alcoholic fatty liver disease. Ann Hepatol 8: S18-S24.
  19. Day CP, James OF. 1998. Steatohepatitis: a tale of two "hits"? Gastroenterology 114: 842-845. https://doi.org/10.1016/S0016-5085(98)70599-2
  20. Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LM. 2011. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol 50: 1035-1043. https://doi.org/10.1016/j.yjmcc.2011.03.002
  21. Browning JD, Baker JA, Rogers T, Davis J, Satapati S, Burgess SC. 2011. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr 93: 1048-1052. https://doi.org/10.3945/ajcn.110.007674
  22. Sievenpiper JL, de Souza RJ, Mirrahimi A, Yu ME, Carleton AJ, Beyene J, Chiavaroli L, Di Buono M, Jenkins AL, Leiter LA, Wolever TM, Kendall CW, Jenkins DJ. 2012. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann Intern Med 156: 291-304. https://doi.org/10.7326/0003-4819-156-4-201202210-00007
  23. Rippe JM, Angelopoulos TJ. 2013. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: what do we really know? Adv Nutr 4: 236-245. https://doi.org/10.3945/an.112.002824
  24. Page KA, Chan O, Arora J, Belfort-Deaguiar R, Dzuira J, Roehmholdt B, Cline GW, Naik S, Sinha R, Constable RT, Sherwin RS. 2013. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA 309: 63-70. https://doi.org/10.1001/jama.2012.116975
  25. Sclafani A, Ackroff K. 2012. Flavor preferences conditioned by intragastric glucose but not fructose or galactose in C57BL/6J mice. Physiol Behav 106: 457-461. https://doi.org/10.1016/j.physbeh.2012.03.008
  26. Foster-Powell K, Miller JB. 1995. International tables of glycemic index. Am J Clin Nutr 62: 871S-890S. https://doi.org/10.1093/ajcn/62.4.871S
  27. Tappy L, Le KA. 2010. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90: 23-46. https://doi.org/10.1152/physrev.00019.2009
  28. Cusi K. 2009. Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 16: 141-149. https://doi.org/10.1097/MED.0b013e3283293015
  29. Thorburn AW, Crapo PA, Griver K, Wallace P, Henry RR. 1990. Long-term effects of dietary fructose on carbohydrate metabolism in non-insulin-dependent diabetes mellitus. Metabolism 39: 58-63. https://doi.org/10.1016/0026-0495(90)90148-6
  30. Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA. 2005. Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 45: 1012-1018. https://doi.org/10.1161/01.HYP.0000164570.20420.67
  31. Bantle JP, Raatz SK, Thomas W, Georgopoulos A. 2000. Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr 72: 1128-1134. https://doi.org/10.1093/ajcn/72.5.1128
  32. Maersk M, Belza A, Stodkilde-Jorgensen H, Ringgaard S, Chabanova E, Thomsen H, Pedersen SB, Astrup A, Richelsen B. 2012. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr 95: 283-289. https://doi.org/10.3945/ajcn.111.022533
  33. Teff KL, Grudziak J, Townsend RR, Dunn TN, Grant RW, Adams SH, Keim NL, Cummings BP, Stanhope KL, Havel PJ. 2009. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J Clin Endocrinol Metab 94: 1562-1569. https://doi.org/10.1210/jc.2008-2192
  34. Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Tomita S, Sekiya M, Hasty A, Nakagawa Y, Sone H, Toyoshima H, Ishibashi S, Osuga J, Yamada N. 2004. Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes 53: 560-569. https://doi.org/10.2337/diabetes.53.3.560
  35. Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. 2009. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50: 1094-1104. https://doi.org/10.1002/hep.23122
  36. Haub S, Kanuri G, Volynets V, Brune T, Bischoff SC, Bergheim I. 2010. Serotonin reuptake transporter (SERT) plays a critical role in the onset of fructose-induced hepatic steatosis in mice. Am J Physiol Gastrointest Liver Physiol 298: G335-344. https://doi.org/10.1152/ajpgi.00088.2009
  37. Tilg H. 2010. The role of cytokines in non-alcoholic fatty liver disease. Dig Dis 28: 179-185. https://doi.org/10.1159/000282083
  38. Crespo J, Cayon A, Fernandez-Gil P, Hernandez-Guerra M, Mayorga M, Dominguez-Diez A, Fernandez-Escalante JC, Pons-Romero F. 2001. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 34: 1158-1163. https://doi.org/10.1053/jhep.2001.29628
  39. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. 1997. Protection from obesity-induced insulin resistance in mice lacking TNF-${\alpha}$ function. Nature 389: 610-614. https://doi.org/10.1038/39335
  40. Tilg H, Moschen AR. 2008. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14: 222-231.
  41. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. 2009. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9: 327-338. https://doi.org/10.1016/j.cmet.2009.02.006
  42. Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D. 2008. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8: 333-341. https://doi.org/10.1016/j.cmet.2008.08.014
  43. Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. 2008. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A 105: 9793-9798. https://doi.org/10.1073/pnas.0802917105