References
- Statistics Korea. 2011. Available from: https://www.index.go.kr/egams/stts/jsp/potal/stts/PO_STTS_IdxMain.jsp?idx_cd=1438&bbs=INDX_001.
- Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49: 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
- Laroux FS. 2004. Mechanisms of inflammation: the good, the bad and the ugly. Front Biosci 9: 3156-3162. https://doi.org/10.2741/1468
-
Blackwell TS, Christman JW. 1997. The role of nuclear factor-
${\kappa}B$ in cytokine gene regulation. Am J Respir Cell Mol Biol 17: 3-9. https://doi.org/10.1165/ajrcmb.17.1.f132 -
Barnes PJ, Karin M. 1997. Nuclear factor-
${\kappa}B$ : a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066-1071. https://doi.org/10.1056/NEJM199704103361506 -
Ben-Neriah Y, Karin M. 2011. Inflammation meets cancer, with NF-
${\kappa}B$ as the matchmaker. Nat Immunol 12: 715-723. https://doi.org/10.1038/ni.2060 - Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G. 1999. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 353: 1649-1652. https://doi.org/10.1016/S0140-6736(99)01046-6
- Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F. 2003. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107: 499-511. https://doi.org/10.1161/01.CIR.0000052939.59093.45
- Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A. 2002. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76: 560-568. https://doi.org/10.1093/ajcn/76.3.560
- Arts ICW, Hollman PCH. 2005. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81: 317S-325S. https://doi.org/10.1093/ajcn/81.1.317S
- Ellis CL, Edirisinghe I, Kappagoda T, Burton-Freeman B. 2011. Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. A randomized placebo-controlled trial. J Atheroscler Thromb 18: 318-327. https://doi.org/10.5551/jat.6114
- Terra X, Montagut G, Bustos M, Llopiz N, Ardevol A, Blade C, Fernandez-Larrea J, Pujadas G, Salvado J, Arola L, Blay M. 2009. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 20: 210-218. https://doi.org/10.1016/j.jnutbio.2008.02.005
- Seymour EM, Lewis SK, Urcuyo-Llanes DE, Tanone II, Kirakosyan A, Kaufman PB, Bolling SF. 2009. Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. J Med Food 12: 935-942. https://doi.org/10.1089/jmf.2008.0270
- Santangelo C, Vari R, Scazzocchio B, Di Benedetto R, Filesi C, Masella R. 2007. Polyphenols, intracellular signalling and inflammation. Ann 1st Super Sanita 43: 394-405.
- Ra J, Lee HY, Choi MK, Park HG, Kang KS. 2004. Effect of decreasing body weight with plant extracts containing Rubi fructus. J Toxicol Pub Health 20: 167-172.
- Yang HM, Oh SM, Lim SS, Shin HK, Oh YS, Kim JK. 2008. Antiinflammatory activities of Rubus coreanus depend on the degree of fruit ripening. Phytother Res 22: 102-107. https://doi.org/10.1002/ptr.2274
- Yang HM, Lim SS, Lee YS, Shin HK, Oh YS, Kim JK. 2007. Comparison of the anti-inflammatory effects of the extracts from Rubus coreanus and Rubus occidentalis. Korean J Food Sci Tech 39: 342-347.
- Kim YH, Choi JH, Rim HK, Kang HJ, Chang SG, Park JH, Park HJ, Choi JW, Kim SD, Lee KT. 2011. 23-Hydroxytormentic acid and niga-ichgoside f1 isolated from Rubus coreanus attenuate cisplatin-induced cytotoxicity by reducing oxidative stress in renal epithelial LLC-PK1 cells. Biol Pharm Bull 34: 906-911. https://doi.org/10.1248/bpb.34.906
- Sohn SI, Rim HK, Kim YH, Choi JH, Park JH, Park HJ, Choi JW, Kim SD, Jeong SY, Lee KT. 2011. The ameliorative effect of 23-hydroxytormentic acid isolated from Rubus coreanus on cisplatin-induced nephrotoxicity in rats. Biol Pharm Bull 34: 1508-1513. https://doi.org/10.1248/bpb.34.1508
-
Choi J, Lee KT, Ha J, Yun SY, Ko CD, Jung HJ, Park HJ. 2003. Antinociceptive and antiinflammatory effects of nigaichigoside
$F_{1}$ and 23-hydroxytormentic acid obtained from Rubus coreanus. Biol Pharm Bull 26: 1436-1441. https://doi.org/10.1248/bpb.26.1436 - Lee J, Dossett M, Finn CE. 2012. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem 130: 785-796. https://doi.org/10.1016/j.foodchem.2011.08.022
- Pang KC, Kim MS, Lee MW. 1996. Hydrolyzable tannins from the fruits of Rubus coreanum. Kor J Pharmacogn 27: 366-370.
-
Kim HS, Park SJ, Hyun SH, Yang SO, Lee J, Auh JH, Kim JH, Cho SM, Marriott PJ, Choi HK. 2011. Biochemical monitoring of black raspberry (Rubus coreanus Miquel) fruits according to maturation stage by
$^{1}H-NMR$ using multiple solvent systems. Food Res Int 44: 1977-1987. https://doi.org/10.1016/j.foodres.2011.01.023 - Nam JH, Jung HJ, Choi J, Lee KT, Park HJ. 2006. The anti-gastropathic and anti-rheumatic effect of niga-ichigoside F1 and 23-hydroxytormentic acid isolated from the unripe fruits of Rubus coreanus in a rat model. Biol Pharm Bull 29: 967-970. https://doi.org/10.1248/bpb.29.967
- Jung KA, Han D, Kwon EK, Lee CH, Kim YE. 2007. Antifatigue effect of Rubus coreanus Miquel extract in mice. J Med Food 10: 689-693. https://doi.org/10.1089/jmf.2006.006
- Do SH, Lee JW, Jeong WI, Chung JY, Park SJ, Hong IH, Jeon SK, Lee IS, Jeong KS. 2008. Bone-protecting effect of Rubus coreanus by dual regulation of osteoblasts and osteoclasts. Menopause 15: 676-683. https://doi.org/10.1097/gme.0b013e31815bb687
- Park JH, Oh SM, Lim SS, Lee YS, Shin HK, Oh YS, Choe NH, Park JH, Kim JK. 2006. Induction of heme oxygenase-1 mediates the anti-inflammatory effects of the ethanol extract of Rubus coreanus in murine macrophages. Biochem Biophys Res Commun 351: 146-152. https://doi.org/10.1016/j.bbrc.2006.10.008
- Biesalski HK. 2007. Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care 10: 724-728. https://doi.org/10.1097/MCO.0b013e3282f0cef2
- Rahman I, Biswas SK, Kirkham PA. 2006. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72: 1439-1452. https://doi.org/10.1016/j.bcp.2006.07.004
- Wu X, Rahal O, Kang J, Till SR, Prior RL, Simmen RC. 2009. In utero and lactational exposure to blueberry via maternal diet promotes mammary epithelial differentiation in prepubescent female rats. Nutr Res 29: 802-811. https://doi.org/10.1016/j.nutres.2009.10.015
- Adams LS, Kanaya N, Phung S, Liu Z, Chen S. 2011. Whole blueberry powder modulates the growth and metastasis of MDA-MB-231 triple negative breast tumors in nude mice. J Nutr 141: 1805-1812. https://doi.org/10.3945/jn.111.140178
-
Xie C, Kang J, Ferguson ME, Nagarajan S, Badger TM, Wu X. 2011. Blueberries reduce pro-inflammatory cytokine TNF-
${\alpha}$ and IL-6 production in mouse macrophages by inhibiting NF-${\kappa}B$ activation and the MAPK pathway. Mol Nutr Food Res 55: 1587-1591. https://doi.org/10.1002/mnfr.201100344 - Park Y, Kim SH, Choi SH, Han J, Chung HG. 2008. Changes of antioxidant capacity, total phenolics, and vitamin C contents during Rubus coreanus fruit ripening. Food Sci Biotechnol 17: 251-256.
- de Gaetano G, Donati MB, Cerletti C. 2003. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol Sci 24: 245-252. https://doi.org/10.1016/S0165-6147(03)00077-4
- Hoque A, Lippman SM, Wu TT, Xu Y, Liang ZD, Swisher S, Zhang H, Cao L, Ajani JA, Xu XC. 2005. Increased 5-lipoxygenase expression and induction of apoptosis by its inhibitors in esophageal cancer: a potential target for prevention. Carcinogenesis 26: 785-791. https://doi.org/10.1093/carcin/bgi026
- Melstrom LG, Bentrem DJ, Salabat MR, Kennedy TJ, Ding XZ, Strouch M, Rao SM, Witt RC, Ternent CA, Talamonti MS, Bell RH, Adrian TA. 2008. Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin Cancer Res 14: 6525-6530. https://doi.org/10.1158/1078-0432.CCR-07-4631
- Ding XZ, Iversen P, Cluck MW, Knezetic JA, Adrian TE. 1999. Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells. Biochem Biophys Res Commun 261: 218-223. https://doi.org/10.1006/bbrc.1999.1012
- Manev H, Manev R. 2007. 5-lipoxygenase as a possible biological link between depressive symptoms and atherosclerosis. Arch Gen Psychiatry 64: 1333. https://doi.org/10.1001/archpsyc.64.11.1333
- Korhonen R, Lahti A, Kankaanranta H, Moilanen E. 2005. Nitric oxide production and signaling in inflammation. Curr Drug Targets 4: 471-479. https://doi.org/10.2174/1568010054526359
- Nussler AK, Billiar TR. 1993. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54: 171-178. https://doi.org/10.1002/jlb.54.2.171
- MacMicking J, Xie QW, Nathan C. 1997. Nitric oxide and macrophage function. Annu Rev Immunol 15: 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
- Giurgea N, Constantinescu MI, Stanciu R, Suciu S, Muresan A. 2005. Ceruloplasmin-acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. Med Sci Monit 11: RA48-51.
- Denko CW. 1979. Protective role of ceruloplasmin in inflammation. Agents Actions 9: 333-336. https://doi.org/10.1007/BF01970657
- Fox PL, Mazumder B, Ehrenwald E, Mukhopadhyay CK. 2000. Ceruloplasmin and cardiovascular disease. Free Radic Biol Med 28: 1735-1744. https://doi.org/10.1016/S0891-5849(00)00231-8
- Goldstein I, Kaplan HB, Edelson HS, Weissmann G. 1979. A new function for ceruloplasmin as an acute-phase reactant in inflammation: a scavenger of superoxide anion radicals. Trans Assoc Am Physicians 92: 360-369.
- Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. 2005. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201: 1089-1099. https://doi.org/10.1084/jem.20041896
- George ML, Tutton MG, Janssen F, Arnaoutz A, Abulafi AM, Eccles SA, Swift RI. 2001. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia 3: 420-427. https://doi.org/10.1038/sj.neo.7900186
- Carmeliet P. 2005. VEGF as a key mediator of angiogenesis in cancer. Oncology 69: 4-10. https://doi.org/10.1159/000088478
- Mirshahi M, Soria J, Soria C, Faivre R, Lu H, Courtney M, Roitsch C, Tripier D, Caen JP. 1989. Evaluation of the inhibition by heparin and hirudin of coagulation activation during r-tPA-induced thrombolysis. Blood 74: 1025-1030.
- Demchuk AM, Tanne D, Hill MD, Kasner SE, Hanson S, Grond M, Levine SR. 2001. Predictors of good outcome after intravenous tPA for acute ischemic stroke. Neurology 57: 474-480. https://doi.org/10.1212/WNL.57.3.474
- Saver JL, Yafeh B. 2007. Confirmation of tPA treatment effect by baseline severity-adjusted end point reanalysis of the NINDS-tPA stroke trials. Stroke 38: 414-416. https://doi.org/10.1161/01.STR.0000254580.39297.3c
- Tanne D, Gorman MJ, Bates VE, Kasner SE, Scott P, Verro P, Binder JR, Dayno JM, Schultz LR, Levine SR. 2000. Intravenous tissue plasminogen activator for acute ischemic stroke in patients aged 80 years and older: the tPA stroke survey experience. Stroke 31: 370-375. https://doi.org/10.1161/01.STR.31.2.370
- DiPietro LA, Polverini PJ. 1993. Angiogenic macrophages produce the angiogenic inhibitor thrombospondin 1. Am J Pathol 143: 678-684.
- Lawler J. 2000. The functions of thrombospondin-1 and -2. Curr Opin Cell Biol 12: 634-640. https://doi.org/10.1016/S0955-0674(00)00143-5
- Salvesen HB, Akslen LA. 1999. Significance of tumourassociated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 84: 538-543. https://doi.org/10.1002/(SICI)1097-0215(19991022)84:5<538::AID-IJC17>3.0.CO;2-B
- Majack RA, Goodman LV, Dixit VM. 1998. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol 106: 415-422.
- Yamauchi M, Imajoh-Ohmi S, Shibuya M. 2007. Novel antiangiogenic pathway of thrombospondin-1 mediated by suppression of the cell cycle. Cancer Sci 98: 1491-1497. https://doi.org/10.1111/j.1349-7006.2007.00534.x
- Dang CV, Kim JW, Gao P, Yustein J. 2008. The interplay between MYC and HIF in cancer. Nat Rev Cancer 8: 51-56. https://doi.org/10.1038/nrc2274
-
Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW. 1999. Overexpression of hypoxia-inducible factor
$1{\alpha}$ in common human cancers and their metastases. Cancer Res 59: 5830-5835. - Yeo EJ, Chun YS, Park JW. 2004. New anticancer strategies targeting HIF-1. Biochem Pharmacol 68: 1061-1069. https://doi.org/10.1016/j.bcp.2004.02.040
-
Islam SA, Chang DS, Colvin RA, Byrne MH, McCully ML, Moser B, Lira SA, Charo IF, Luster AD. 2011. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting
$IL-5^{+}\;T(_{H})2$ cells. Nat Immunol 12: 167-177. https://doi.org/10.1038/ni.1984 - Tanegashima K, Okamoto S, Nakayama Y, Taya C, Shitara H, Ishii R, Yonekawa H, Minokoshi Y, Hara T. 2010. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment. PLoS One 5: e10321. https://doi.org/10.1371/journal.pone.0010321
- Magrioti V, Kokotos G. 2013. Phospholipase A2 inhibitors for the treatment of inflammatory diseases: a patent review (2010-present). Expert Opin Ther Pat 23: 333-344. https://doi.org/10.1517/13543776.2013.754425
Cited by
- Food Composition of Raw, Boiled, and Roasted Sweet Potatoes vol.28, pp.1, 2017, https://doi.org/10.7856/kjcls.2017.28.1.59
- Review on Anti-Cancer and Anti-Imflammatory Activity from Rubus coreanus Miquel vol.21, pp.5, 2015, https://doi.org/10.20878/cshr.2015.21.5.015