DOI QR코드

DOI QR Code

수열합성법에 의한 TiO2/active carbon 복합체의 제조 및 광촉매특성

Synthesis of TiO2/active carbon composites via hydrothermal process and their photocatalytic performance

  • 김동진 (한국해양대학교 재료공학과) ;
  • 이진희 (한국해양대학교 재료공학과) ;
  • 이병우 (한국해양대학교 재료공학과)
  • Kim, Dong Jin (Department of Materials Engineering, Korea Maritime University) ;
  • Lee, Jin Hee (Department of Materials Engineering, Korea Maritime University) ;
  • Lee, Byeong Woo (Department of Materials Engineering, Korea Maritime University)
  • 투고 : 2013.08.30
  • 심사 : 2013.10.02
  • 발행 : 2013.10.31

초록

입상(대나무)활성탄 상에 나노 $TiO_2$ 결정을 담지 즉 분말코팅 하였다. 이와 같이 $TiO_2$ 담지된 활성탄 복합체의 광촉매 활성도는 자외선 조사를 통한 메틸렌블루 수용액의 분해를 통해 측정하였다. 저온 수열합성법(${\leq}200^{\circ}C$, pH 11)을 통해 광학적 촉매활성도가 높은 $TiO_2$를 활성탄 상에 담지 할 수 있었으며, BET 표면적을 측정하여 계산된 $TiO_2$ 분말의 평균입도는 50 nm 정도였다. 수열처리 과정에서 $TiO_2$가 합성되면서 동시에 활성탄의 표면 공극과 기공 상에 코팅이 이루어졌다. 이러한 수열합성법을 통한 합성은 $TiO_2$의 anatase에서 rutile로의 상전이 시작 온도를 $200^{\circ}C$ 부근으로 낮추는 결과를 가져올 수 있어, 합성온도에 따라 저온에서 순수한 anatase 또는 anatase와 rutile이 혼합된 $TiO_2$ 결정상들을 코팅 시킬 수 있었다.

Granular bamboo-derived active carbons (AC) were impregnated (or coated) with $TiO_2$ nano crystalline powders. The photocatalytic activity of the $TiO_2$-impregnated active carbons ($TiO_2$/AC) were determined on the basis of the degradation rate of methylene-blue aqueous solution under UV irradiation. The active compounds of $TiO_2$ were impregnated onto the AC under moderate hydrothermal conditions (${\leq}200^{\circ}C$, pH 11). The mean size of $TiO_2$ particles calculated from BET surface area were found to be as 50 nm. The $TiO_2$ precipitates were coated on the cavities or pores on the surfaces of highly activated carbons. Since the hydrothermal process led to a lowering of the on-set temperature of the anatase-to-rutile transition of $TiO_2$ as low as $200^{\circ}C$, $TiO_2$ crystallites of a pure anatase or a mixed form with rutile were successfully coated on the AC depending on the synthesis temperatures.

키워드

참고문헌

  1. A. Fujishima, T.N. Rao and D.A. Truk, "Titanium dioxide photocatalysis", J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1. https://doi.org/10.1016/S1389-5567(00)00002-2
  2. Q.D. Huang and C.S. Hong, "$TiO_2$ photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant", Chemosphere 41 (2000) 871. https://doi.org/10.1016/S0045-6535(99)00492-0
  3. D. Dong, P. Li, X. Li, C. Xu, D. Gong, Y. Zhanga, Q. Zhao and P. Li, "Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile $TiO_2$ under UV-irradiation", Chem. Engin. J. 158 (2010) 378. https://doi.org/10.1016/j.cej.2009.12.046
  4. A. Garcia and J. Matos, "Photocatalytic activity of $TiO_2$ on activated carbon under visible light in the photodegradation of phenol", Open Mater. Sci. J. 4 (2010) 2. https://doi.org/10.2174/1874088X01004020002
  5. A. Hanel, P. Moren, A. Zaleska and J. Hupka, "Photocatalytic activity of $TiO_2$ immobilized on glass beads", Physicochem. Probl. Miner. Process 45 (2010) 49.
  6. B. Sun and P.G. Smirniotis, "Interaction of anatase and rutile $TiO_2$ particles in aqueous photooxidation", Catal. Today 88 (2003) 49. https://doi.org/10.1016/j.cattod.2003.08.006
  7. S. Mahata and D. Kundu, "Hydrothermal synthesis of aqueous nano-$TiO_2$ sols", Mater. Sci.-Poland 27 (2009) 463.
  8. K.C. Song and S.E Pratsinis, "Synthesis of bimodally porous titania powders by hydrolysis of titanium tetraisopropoxide", J. Mater. Res. 15 (2000) 2322. https://doi.org/10.1557/JMR.2000.0334
  9. Y. Bessekhouad, D. Robert and J.V. Weber, "Preparation of $TiO_2$ nanoparticles by Sol-Gel route", Inter. J. Photoenergy 5 (2003) 153. https://doi.org/10.1155/S1110662X03000278
  10. D.A.H. Hanaor and C.C. Sorrell, "Review of the anatase to rutile phase transformation", J. Mater. Sci. 46 (2011) 855. https://doi.org/10.1007/s10853-010-5113-0
  11. L. Saadoun, J.A. Ayllon, J. Jimenez-Becerril, J. Peral, X. Domenech and R. Rodriguez-Clemente, "Synthesis and photocatalytic activity of mesoporous anatase prepared from tetrabutylammonium-titania composites", Mater. Res. Bull. 35 (2000) 193. https://doi.org/10.1016/S0025-5408(00)00204-X
  12. N. Kannan and M.M. Sundaram, "Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study", Dyes and Pigments 51 (2001) 25. https://doi.org/10.1016/S0143-7208(01)00056-0
  13. N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery and P. Vaziri, "Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles", Int. J. Mol. Sci. 13 (2012) 12242. https://doi.org/10.3390/ijms131012242