DOI QR코드

DOI QR Code

Gate All Around Metal Oxide Field Transistor: Surface Potential Calculation Method including Doping and Interface Trap Charge and the Effect of Interface Trap Charge on Subthreshold Slope

  • Najam, Faraz (School of Electrical Engineering, Korea University) ;
  • Kim, Sangsig (School of Electrical Engineering, Korea University) ;
  • Yu, Yun Seop (Department of Electrical, Electronic and Control Engineering and IITC, Hankyong National University)
  • Received : 2013.04.15
  • Accepted : 2013.07.10
  • Published : 2013.10.31

Abstract

An explicit surface potential calculation method of gate-all-around MOSFET (GAAMOSFET) devices which takes into account both interface trap charge and varying doping levels is presented. The results of the method are extensively verified by numerical simulation. Results from the model are used to find qualitative and quantitative effect of interface trap charge on subthreshold slope (SS) of GAAMOSFET devices. Further, design constraints of GAAMOSFET devices with emphasis on the effect of interface trap charge on device SS performance are investigated.

Keywords

References

  1. [Online]. Available: http://www.itrs.net/reports.html
  2. C. P. Auth, and J. D. Plummer, "Scaling theory for cylindrical, fully depleted, surrounding-gate MOSFET's, IEEE Electron Device Lett., vol. 18, no. 2, pp. 74-76, Feb. 1997. https://doi.org/10.1109/55.553049
  3. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. NewYork: Wiley-Interscience.
  4. B. Iníguez, D. Jimenez, J. Roig, H. Hamid, L. Marsal, and J.Pallares,"Explicit continuous model for long-channel undoped surrounding gate MOSFETs," IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1868-1873, Aug. 2005. https://doi.org/10.1109/TED.2005.852892
  5. M. Cheralathan, G. Iannaccone, E. Sangiorgi, and B. Iniguez, "Analytical drain current model reproducing advanced transport models in nanoscale cylindrical surrounding-gate (SRG) MOSFETs," J. Appl. Phys., vol. 110, no. 3, pp.034510, 2011. https://doi.org/10.1063/1.3618678
  6. Z. Chen, X. Zhou, G. Zhu, and S. Lin, "Interfacetrap modeling for silicon-nanowire MOSFETs," in IEEE International Reliability Physics Symposium (IRPS), May 2010, pp. 977-980.
  7. Y. S. Yu, N. Cho, S. W. Hwang, and D. Ahn, "Implicit continuous current-voltage model for surrounding-gate metal-oxide-semiconductor Field-Effect Transistors Including Interface Traps," IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2520-2524, Aug. 2011. https://doi.org/10.1109/TED.2011.2156412
  8. B. H. Hong, N. Cho, S. J. Lee, Y. S. Yu, L. Choi, Y. C. Jung, K. H. Cho, K. H. Yeo, D. -W. Kim, G. Y. Jin, K. S. Oh, D. Park, S. -H Son, J.-S. Rieh, S. W. Hwang, "Subthreshold Degradation of Gate-all- Around Silicon Nanowire Field-Effect Transistors: Effect of Interface Trap Charge," IEEE Electron Device Letters, vol.32, no.9, pp.1179-1181, Sept. 2011. https://doi.org/10.1109/LED.2011.2159473
  9. M. Casse, K. Tachi, S. Thiele, and T. Ernst, "Spectroscopic charge pumping in Si nanowire transistors with a high-kappa/metal gate," Appl. Phys. Lett., vol. 96, no. 12, pp. 123506, 2010. https://doi.org/10.1063/1.3368122
  10. P. Magnone, F. Crupi, G. Giusi, C. Pace, E. Simoen, C. Claeys, L. Pantisano, D. Maji, V. Ramgopal Rao, and P. Srinivasan, "Noise in drain and gate current of MOSFETs with high-k gate stacks," IEEE Trans. Device Mater. Rel., vol. 9, no. 2, pp. 180-189, Jun. 2009. https://doi.org/10.1109/TDMR.2009.2020406
  11. G. M. Cohen, E. Cartier, S. Bangsaruntip, A. Majumdar, W. Haensch, L. M. Gignac, S. Mittal, and J. W. Sleight, "Interface state density measurements in gated p-i-n silicon nanowires as a function of the nanowire diameter," in Device Research Conference (DRC), June 2010, pp. 277- 278.
  12. H. Sakamoto, K. Watanabe, H. Arimoto, M. Tanizawa, and S. Kumashiro, "A surface potential model for bulk MOSFET which accurately reflects channel doping profile expelling fitting parameters," in International Conference on Simulation of Semiconductor Processes and Devices(SISPAD) 2008, Sept. 2008, pp.273-276.
  13. F. Najam, Y. S. Yu, K. H. Cho, K. H. Yeo, D.-W. Kim, G. Y. Jin, K. S. Oh, D. Park, S. Kim, and S. W. Hwang, "Interface trap density of elliptical gate-all-around silicon nanowire field-effect transistors with TiN gate: extraction and compact model," published to IEEE Trans. Electron Device, 2013.
  14. G. M. Cohen, M. J. Rooks, J. O. Chu, S. E. Laux, P. M. Solomon, "Nanowire metal-oxidesemiconductor field effect transistor with doped epitaxial contacts for source and drain," Appl. Phys. Lett., vol. 90, no. 23, pp. 233110-233110-3, June 2007. https://doi.org/10.1063/1.2746946
  15. Bangzhi Liu, Yanfeng Wang, Tsung-ta Ho, Kok- Keong Lew, Sarah M. Eichfeld, "Oxidation of silicon nanowires for top-gated field effect transistors," J. Vac. Sci. Technol. A., vol. 26, no. 3, pp. 370-374, May/June 2008. https://doi.org/10.1116/1.2899333
  16. Sarah M Eichfeld, Tsung-Ta Ho, ChadMEichfeld, Alexana Cranmer, Suzanne E Mohney1, Theresa SMayer, and Joan M Redwin, "Resistivity measurements of intentionally and unintentionally template-grown doped silicon nanowire arrays," Nanotechnology, vol. 18, no. 31, pp. 315201, 2007. https://doi.org/10.1088/0957-4484/18/31/315201
  17. J. He, F. Liu, W. Bian, J. Feng, J. Zhang, and X. Zhang, "An approximate carrier-based compact model for fully depleted surrounding-gate MOSFETs with a finite doping body," Semicond. Sci. Techno., vol. 22, no. 6, pp. 671-677, June 2007. https://doi.org/10.1088/0268-1242/22/6/015
  18. N. Cho, Y. S. Yu, and S. W. Hwang, "A compact model of fully-depleted surrounding-gate (SG) MOSFETs with a doping body," in IEEE 2008 Silicon nanoelectronics Workshop(SNW), June 2008, pp. 2-7.
  19. J. G. Simmons and G. W. Taylor, "Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps," Phys. Rev. B, vol. 4, no. 2, pp. 502-511, 1971. https://doi.org/10.1103/PhysRevB.4.502
  20. H. Jung, "The analysis of breakdown voltage for the double-gate MOSFET using the Gaussian doping distribution," J. Inf. Commun. Converg. Eng., vol. 10, pp. 200-204, 2012.
  21. H.-J. Park, P. K. Ko, and C. Hu, "A Charge Sheet Capacitance Model of Short Channel MOSFET's for SPICE," IEEE Trans. Computer Aided Design, vol. 10, no.3, pp. 376-389, 1991. https://doi.org/10.1109/43.67791
  22. BSIM-CMG, Technical Manual, 2012.
  23. ATLAS ver. 5.10.2.R Manual, Silvaco Int., Santa Clara, CA, 2005.
  24. S. Yao, T. H. Morshed, D. D. Lu, S. Venugopalan, W. Xiong, C. R. Cleavelin, A. M. Niknejad, and C. Hu, "Global parameter extraction for a multi-gate MOSFETs compact model," in 2010 IEEE International Conference on Microelectronic Test Structures (ICMTS), March 2010, pp. 194-197.
  25. J. Yang, J. He, F. Liu, L. Zhang, F. Liu, X. Zhang, and M. Chan, "A compact model of silicon-based nanowire MOSFETs for circuit simulation and design," IEEE Trans. Electron Device, vol. 55, no. 11, pp. 2898-29060, Nov. 2008. https://doi.org/10.1109/TED.2008.2005184
  26. Y. S. Yu, N. Cho, S. W. Hwang, and D. Ahn, "Analytical Threshold Voltage Model Including Effective Conducting Path Effect (ECPE) for Surrounding-Gate MOSFETs (SGMOSFETs) with Localized Charges," IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 3176-3180, Nov. 2010. https://doi.org/10.1109/TED.2010.2066278

Cited by

  1. Charge-Based Modeling of Double-Gate and Nanowire Junctionless FETs Including Interface-Trapped Charges vol.63, pp.3, 2016, https://doi.org/10.1109/TED.2016.2521359
  2. Design and Analysis of Sub-10 nm Junctionless Fin-Shaped Field-Effect Transistors vol.14, pp.5, 2014, https://doi.org/10.5573/JSTS.2014.14.5.508
  3. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs vol.31, pp.10, 2016, https://doi.org/10.1088/0268-1242/31/10/105013
  4. Low-voltage high-speed programming gate-all-around floating gate memory cell with tunnel barrier engineering vol.57, pp.6S3, 2018, https://doi.org/10.7567/JJAP.57.06KC02