DOI QR코드

DOI QR Code

Effects of Graded Levels of Montmorillonite on Performance, Hematological Parameters and Bone Mineralization in Weaned Pigs

  • Duan, Q.W. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University) ;
  • Li, J.T. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University) ;
  • Gong, L.M. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University) ;
  • Wu, H. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University) ;
  • Zhang, L.Y. (State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University)
  • Received : 2012.12.17
  • Accepted : 2013.04.03
  • Published : 2013.11.01

Abstract

The aim of this study was to investigate the effects of graded levels of montmorillonite, a constituent of clay, on performance, hematological parameters and bone mineralization in weaned pigs. One hundred and twenty, 35-d-old crossbred pigs (Duroc${\times}$Large White${\times}$Landrace, $10.50{\pm}1.20$ kg) were used in a 28-d experiment and fed either an unsupplemented corn-soybean meal basal diet or similar diets supplemented with 0.5, 1.0, 2.5 or 5.0% montmorillonite added at the expense of wheat bran. Each treatment was replicated six times with four pigs (two barrows and two gilts) per replicate. Feed intake declined (linear and quadratic effect, p<0.01) with increasing level of montmorillonite while feed conversion was improved (linear and quadratic effect, p<0.01). Daily gain was unaffected by dietary treatment. Plasma myeloperoxidase declined linearly (p = 0.03) with increasing dietary level of montmorillonite. Plasma malondialdehyde and nitric oxide levels were quadratically affected (p<0.01) by montmorillonite with increases observed for pigs fed the 0.5 and 1.0% levels which then declined for pigs fed the 2.5 and 5.0% treatments. In bone, the content of potassium, sodium, copper, iron, manganese and magnesium were decreased (linear and quadratic effect, p<0.01) in response to an increase of dietary montmorillonite. These results suggest that dietary inclusion of montmorillonite at levels as high as 5.0% does not result in overt toxicity but could induce potential oxidative damage and reduce bone mineralization in pigs.

Keywords

References

  1. Alexopoulos, C., D. S. Papaioannou, P. Fortomaris, C. S. Kyriakis, G. A. Tserveni, A. Yannakopoulos, and S. C. Kyriakis. 2007. Experimental study on the effect of in-feed administration of a clinoptilolite-rich tuff on certain biochemical and hematological parameters of growing and fattening pigs. Livest. Sci. 111:230-241. https://doi.org/10.1016/j.livsci.2007.01.152
  2. Angulo, E., J. Brufau, and G. E. Esteve. 1995. Effect of sepiolite on pellet durability in feeds differing in fat and fibre content. Anim. Feed Sci. Technol. 53:233-241. https://doi.org/10.1016/0377-8401(94)00749-Y
  3. Anonymous. 2010. Statement on the establishment of guidelines for the assessment of additives from the functional group 'substances for reduction of the contamination of feed by mycotoxins. EFSA J. 8:1693.
  4. AOAC. 2000. Official methods of analysis. 17th edn. Association of Official Analytical Chemists, Gaithersburg, MD.
  5. Bailey, C. A., G. W. Latimer, A. C. Barr, W. L. Wigle, A. U. Haq, J. E. Balthrop, and L. F. Kubena. 2006. Efficacy of montmorillonite clay (NovaSil PLUS) for protecting full-term broilers from aflatoxicosis. J. Appl. Poult. Res. 15:198-206. https://doi.org/10.1093/japr/15.2.198
  6. Baker, D. H., D. E. Becker, A. H. Jensen, and B. G. Harmon. 1968. Effect of dietary dilution on performance of finishing swine. J. Anim. Sci. 27:1332-1335.
  7. Cheung, C., G. J. Zheng, B. J. Richardson, and P. K. S. Lam. 2001. Relationship between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels. Aquat. Toxicol. 52:189-203. https://doi.org/10.1016/S0166-445X(00)00145-4
  8. Crenshaw, T. D., E. R. Peo, A. J. Lewis, and B. D. Moser. 1981. Bone strength as a trait for assessing mineralization in swine: A critical review of techniques involved. J. Anim. Sci. 53:827-835.
  9. Dwyer, M. R., L. F. Kubena, R. B. Harvey, K. Mayura, A. B. Sarr, S. Buckley, R. H. Bailey, and T. D. Phillips. 1997. Effect of inorganic adsorbents and cyclopiazonic acid in broiler chicken. Poult. Sci. 76:1141-1149. https://doi.org/10.1093/ps/76.8.1141
  10. Eklou, K. E., E. Zerath, C. Colin, C. Lacroix, X. Holy, I. Denis, and A. Pointillart. 1999. Calcium-regulating hormones, bone mineral content, breaking load and trabecular remodeling are altered in growing pigs fed calcium-deficient diets. J. Nutr. 129:188-193.
  11. Fiske, C. H. and Y. S. Subbarow. 1925. The colorimetric determination of phosphorus. J. Biol. Chem. 66:375-400.
  12. Hu, C. H., M. S. Xia, Z. R. Xu, and L. Xiong. 2004. Effects of copper-bearing montmorillonite on growth performance and digestive function of growing pigs. Asian-Aust. J. Anim. Sci. 17:1575-1581. https://doi.org/10.5713/ajas.2004.1575
  13. Kaneko, J. J., J. W. Harvey, and M. L. Bruss. 1997. Appendixes. In: Clinical Biochemistry of Domestic Animals, 5th Ed. (Ed. J. J. Kaneko, J. W. Harvey, and M. L. Bruss). Academic Press, San Diego. pp. 885-905.
  14. Katsoulos, P. D., N. Roubies, N. Panousis, G. Arsenos, E. Christaki, and H. Karatzias. 2005. Effects of long-term dietary supplementation with clinoptilolite on incidence of parturient paresis and serum concentration of total calcium, phosphate, magnesium, potassium and sodium in dairy cows. Am. J. Vet. Res. 66:2081-2085. https://doi.org/10.2460/ajvr.2005.66.2081
  15. Kourie, J. I. 1998. Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. Cell Physiol. 275:C1-C24.
  16. Miles, R. D. and P. R. Henry. 2007. Safety of improved Milbond-$TX^{(R)}$ when fed in broiler diets at greater than recommended levels. Anim. Feed Sci. Technol. 138:309-317. https://doi.org/10.1016/j.anifeedsci.2007.04.008
  17. National Research Council. 1998. Nutrient requirements of swine. 10th Ed. National Academy Press, Washington, DC, USA.
  18. Papaioannou, D. S., C. S. Kyriakis, A. Papasteriadis, N. Roumbies, A. Yannakopoulos, and C. Alexopoulos. 2002. Effect of in-feed inclusion of a natural zeolite (clinoptilolite) on certain vitamin, macro and trace element concentrations in the blood, liver and kidney tissues of sows. Res. Vet. Sci. 72:61-68. https://doi.org/10.1053/rvsc.2001.0524
  19. Papaioannou, D. S., C. S. Kyriakis, C. Alexopoulos, E. D. Tzika, Z. S. Polizopoulou, and S. C. Kyriakis. 2004. A field study on the effect of the dietary use of a clinoptilolite-rich tuff, alone or in combination with certain antimicrobials, on the health status and performance of weaned, growing and finishing pigs. Res. Vet. Sci. 76:19-29. https://doi.org/10.1016/j.rvsc.2003.08.006
  20. Parisini, P., G. Martelli, L. Sardi, and F. Escribano. 1999. Protein and energy retention in pigs fed diets containing sepiolite. Anim. Feed Sci. Technol. 79:155-162. https://doi.org/10.1016/S0377-8401(99)00008-5
  21. Phillips, T. D., B. A. Clement, and D. L. Park. 1993. Approaches to reduction of aflatoxin in foods and feeds. In: The toxicology of aflatoxins: Human health, veterinary, and agricultural significance (Ed. D. L. Eaton and J. D. Groopman). Academic Press, London. pp. 383- 406.
  22. Phillips, T. D., C. A. Marroquin, Y. Deng, J. F. Taylor, C. T. Hallmark, and N. M. Johnson. 2009. In vitro and in vivo characterization of mycotoxin-binding additives used for animal feeds in Mexico. Food Addit. Contam. A. 26:733-743. https://doi.org/10.1080/02652030802641872
  23. Pond, W. G., J. T. Yen, and J. T. Crouse. 1989. Tissue mineral element content in swine fed clinoptilolite. Bull. Environ. Contam. Toxicol. 42:735-742. https://doi.org/10.1007/BF01700396
  24. Pond, W. G., J. T. Yen, and V. H. Varel. 1988. Response of growing swine to dietary copper and clinoptilolite supplementation. Nutr. Rep. Int. 37:797-803.
  25. Pond, W. G., S. M. Laurent, and H. D. Orloff. 1984. Effect of dietary clinoptilolite or zeolite Na-A on body weight gain and feed utilization of growing lambs fed urea or intact protein as a nitrogen supplement. Zeolites 4:127-132. https://doi.org/10.1016/0144-2449(84)90050-2
  26. Prvulovic, D., S. Kosarcic, M. Popovic, D. Dimitrijevic, and L. G. Grubor. 2012. The influence of hydrated aluminosilicate on biochemical and haematological blood parameters, growth performance and carcass traits of pigs. J. Anim. Vet. Adv. 11:134-140. https://doi.org/10.3923/javaa.2012.134.140
  27. Ramos, A. J. and E. Hernandez. 1996. In vitro aflatoxin adsorption by means of a montmorillonited silicate: A study of adsorption isotherms. Anim. Feed Sci. Technol. 62:263-269. https://doi.org/10.1016/S0377-8401(96)00968-6
  28. SAS Institute Inc. 1996. SAS user's guide: Statistics. Version 8 Ed. SAS Institute Inc., Cary, North Carolina.
  29. Shurson, G. C., P. K. Ku, E. R. Miller, and M. T. Yokohama. 1984. Effects of zeolite A or clinoptilolite in diets of growing swine. J. Anim. Sci. 59:1536-1545.
  30. Sibbald, I. R., S. J. Slinger, and G. C. Ashton. 1960. The weight gain and feed intake of chicks fed a ration diluted with cellulose or kaolin. J. Nutr. 72:441-446.
  31. Tauqir, N. A. and H. Nawaz. 2001. Performance and economics of broiler chicks fed on rations supplemented with different levels of sodium bentonite. Int. J. Agric. Biol. 3:149-150.
  32. Thiex, N. J., H. Manson, S. Anderson, and J. A. Persson. 2002. Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with copper catalyst and steam distillation into boric acid: Collaborative study. J. AOAC. Int. 85:309-317.
  33. Venglovsky, J., Z. Pacajova, N. Sasakova, and M. Vucemilo. 1999. Adsorption properties of natural zeolite and bentonite in pig slurry from the microbiological point of view. Vet. Med. 44:339-344.
  34. Vrzgula, L. and P. Bartko. 1984. Effects of clinoptilolite on weight gain and some physiological parameters of swine. In: Zeo-agriculture. Use of natural zeolites in agriculture and aquaculture (Ed. W. G. Pond and F. A. Mumpton). Westview Press, Boulder Colorado. pp. 161-166.
  35. Ward, T. L., K. L. Watkins, L. L. Southern, P. G. Hoyt, and D. D. French. 1991. Interactive effects of sodium zeolite-A and copper in growing swine: Growth, and bone and tissue mineral concentrations. J. Anim. Sci. 69:726-733.
  36. Wiles, M. C., H. J. Huebner, G. E. Afriyie, R. J. Taylor, G. R. Bratton, and T. D. Phillips. 2004. Toxicological evaluation and metal bioavailability in pregnant rats following exposure to clay minerals in the diet. J. Toxicol. Environ. Health Part A. 67:863-874. https://doi.org/10.1080/15287390490425777
  37. Wink, D. A., I. Hanbauer, F. Laval, J. A. Cook, M. C. Krishna, and J. B. Mitchell. 1994. Nitric oxide protects against the cytotoxic effects of reactive oxygen species. Ann. NY Acad. Sci. 738:265-278.
  38. Xia, M. S., C. H. Hu, and Z. R. Xu. 2005. Effects of copper bearing montmorillonite on the growth performance, intestinal microflora and morphology of weanling pigs. Anim. Feed Sci. Technol. 118:307-317. https://doi.org/10.1016/j.anifeedsci.2004.11.008
  39. Yannakopoulos, A., G. A. Terveni, F. A. Kassoli, A. Tsirambides, K. Michailidis, A. Filippidis, and U. Lutat. 2000. Effects of dietary clinoptilolite-rich tuff on the performance of growing-finishing pigs. In: Natural zeolites for the third millennium (Ed. C. Coela and F. A. Mumpton). De Frede Editore, Napoli. pp. 471-481.

Cited by

  1. Clays as dietary supplements for swine: A review vol.6, pp.1, 2015, https://doi.org/10.1186/s40104-015-0037-9
  2. Bile sequestration potential of an edible mineral (clinoptilolite) under simulated digestion of a high-fat meal: an in vitro investigation vol.6, pp.12, 2015, https://doi.org/10.1039/C5FO00116A
  3. Dietary maifanite supplementation did not affect the apparent total tract digestibility of calcium and phosphorus in growing pigs vol.31, pp.2, 2018, https://doi.org/10.5713/ajas.17.0080
  4. Effects of activated charcoal-herb extractum complex on the growth performance, immunological indices, intestinal morphology and microflora in weaning piglets vol.9, pp.11, 2019, https://doi.org/10.1039/C8RA10283J
  5. Meat Quality and Physicochemical Trait Assessments of Berkshire and Commercial 3-way Crossbred Pigs vol.36, pp.5, 2016, https://doi.org/10.5851/kosfa.2016.36.5.641
  6. Effects of silicate derived from quartz porphyry supplementation in the health of weaning to growing pigs after lipopolysaccharide challenge vol.48, pp.1, 2013, https://doi.org/10.1080/09712119.2020.1817748
  7. Dietary Montmorillonite Improves the Intestinal Mucosal Barrier and Optimizes the Intestinal Microbial Community of Weaned Piglets vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.593056
  8. Effects of dietary silicate levels on growth performance, nutrient digestibility, fecal microflora, odorous gas emissions, blood characteristics, and foot and mouth disease antibodies in weaning to fi vol.100, pp.4, 2020, https://doi.org/10.1139/cjas-2019-0200