초록
본 논문에서는 불확실성을 확률변수로 가정하고 구조물의 파손기준을 한계상태식(Limit State Equation)으로 정의하였다. 한계상태식을 Fleishman의 3차 다항식으로 근사하고 이론적인 확률 모멘트(Moments)를 계산하였다. Fleishman은 표준정규 분포 확률변수에 대해서만 3차 다항식을 제시하였으나, 본 논문에서는 이를 확장하여 베타, 감마, 균일 분포 등 다양한 확률 변수에 적용하였다. 확률 모멘트를 계산하기 위해서 누률(Cumulants)과 정규화된 한계상태식을 활용하였으며, 피어슨 시스템(Pearson System)을 통해 한계상태식의 확률분포를 근사하였다.
In this paper, uncertainties and failure criteria of structure are mathematically expressed by random variables and a limit state equation. A limit state equation is approximated by Fleishman's 3rd order polynomials and the theoretical moments of an approximated limit state equation are calculated. Fleishman introduced a 3rd order polynomial in terms of only standard normal distiribution random variables. But, in this paper, Fleishman's polynomial is extended to various random variables including beta, gamma, uniform distributions. Cumulants and a normalized limit state equation are used to calculate a theoretical moments of a limit state equation. A cumulative distribution function of a normalized limit state equation is approximated by a Pearson system.