References
- Balkwill F, Mantovani A (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539-45. https://doi.org/10.1016/S0140-6736(00)04046-0
- Bolla M, Verry C, Long JA (2013). High-risk prostate cancer: combination of high-dose, high-precision radiotherapy and androgen deprivation therapy. Curr Opin Urol, 23, 349-54. https://doi.org/10.1097/MOU.0b013e328361ebfd
- Brown AP, Neeley ES, Werner T, et al (2010). A population-based study of subsequent primary malignancies after endometrial cancer: genetic, environmental, and treatment-related associations. Int J Radiat Oncol Biol Phys, 78, 127-35. https://doi.org/10.1016/j.ijrobp.2009.07.1692
- Chang ML, Hou JK (2011). Cancer risk related to gastrointestinal diagnostic radiation exposure. Curr Gastroenterol Rep, 13, 449-57. https://doi.org/10.1007/s11894-011-0214-8
- Choi KH, Ha M, Lee WJ, et al (2013). Cancer risk in diagnostic radiation workers in Korea from 1996-2002. Int J Environ Res Public Health, 10, 314-27. https://doi.org/10.3390/ijerph10010314
- Kinzler KW, Vogelstein B (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159-70. https://doi.org/10.1016/S0092-8674(00)81333-1
- Kohno H, Suzuki R, Sugie S, et al (2005). Beta-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate. Cancer Sci, 96, 69-76. https://doi.org/10.1111/j.1349-7006.2005.00020.x
- Luongo C, Dove WF (1996). Somatic genetic events linked to the Apc locus in intestinal adenomas of the Min mouse. Genes Chromosomes Cancer, 17, 194-8. https://doi.org/10.1002/1098-2264(199611)17:3<194::AID-GCC2870170302>3.0.CO;2-E
- Moser AR, Pitot HC, Dove WF (1990). A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science, 247, 322-4. https://doi.org/10.1126/science.2296722
- Munkholm P (2003). Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther, 18, 1-5.
- Nottage K, McFarlane J, Krasin MJ, et al (2012). Secondary colorectal carcinoma after childhood cancer. J Clin Oncol, 30, 2552-8. https://doi.org/10.1200/JCO.2011.37.8760
- Ohshima H, Tatemichi M, Sawa T (2003). Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys, 417, 3-11. https://doi.org/10.1016/S0003-9861(03)00283-2
- Okamoto M, Yonekawa H (2005). Intestinal tumorigenesis in Min mice is enhanced by X-irradiation in an age-dependent manner. J Radiat Res, 46, 83-91. https://doi.org/10.1269/jrr.46.83
- Okayasu I, Hatakeyama S, Yamada M, et al (1990). A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 98, 694-702.
- Ozasa K, Shimizu Y, Suyama A, et al (2012). Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases. Radiat Res, 177, 229-43. https://doi.org/10.1667/RR2629.1
- Paulsen JE, Steffensen IL, Namork E, et al (2003). Age-dependent susceptibility to azoxymethane-induced and spontaneous tumorigenesis in the Min/+ mouse. Anticancer Res, 23, 259-65.
- Powell SM, Petersen GM, Krush AJ, et al (1993). Molecular diagnosis of familial adenomatous polyposis. N Engl J Med, 329, 1982-7. https://doi.org/10.1056/NEJM199312303292702
- Rydberg B (1996) Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection. Radiat Res, 145, 200-9. https://doi.org/10.2307/3579175
- Samartzis D, Nishi N, Cologne J, et al (2013). Ionizing radiation exposure and the development of soft-tissue sarcomas in atomic-bomb survivors. J Bone Joint Surg Am, 95, 222-9. https://doi.org/10.2106/JBJS.L.00546
- Shoemaker AR, Moser AR, Dove WF (1995) N-ethyl-N-nitrosourea treatment of multiple intestinal neoplasia (Min) mice: age-related effects on the formation of intestinal adenomas, cystic crypts, and epidermoid cysts. Cancer Res, 55, 4479-85.
- Steffensen IL, Paulsen JE, Eide TJ, et al (1997). 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine increases the numbers of tumors, cystic crypts and aberrant crypt foci in multiple intestinal neoplasia mice. Carcinogenesis, 18, 1049-54. https://doi.org/10.1093/carcin/18.5.1049
- Su LK, Kinzler KW, Vogelstein B, et al (1992). Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science, 256, 668-70. https://doi.org/10.1126/science.1350108
- Tamai O, Nozato E, Miyazato H, et al (1999). Radiation-associated rectal cancer: report of four cases. Dig Surg, 16, 238-43. https://doi.org/10.1159/000018715
- Tanaka T, Kohno H, Suzuki R, et al (2006). Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc(Min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer, 118, 25-34. https://doi.org/10.1002/ijc.21282
- Tanaka T, Kohno H, Suzuki R, et al (2003). A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci, 94, 965-73. https://doi.org/10.1111/j.1349-7006.2003.tb01386.x
- Tanaka T, Suzuki R, Kohno H, et al (2005). Colonic adenocarcinomas rapidly induced by the combined treatment with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and dextran sodium sulfate in male ICR mice possess beta-catenin gene mutations and increases immunoreactivity for beta-catenin, cyclooxygenase-2 and inducible nitric oxide synthase. Carcinogenesis, 26, 229-38.
Cited by
- Reactive Oxygen Species Deficiency Due to Ncf1-Mutation Leads to Development of Adenocarcinoma and Metabolomic and Lipidomic Remodeling in a New Mouse Model of Dextran Sulfate Sodium-Induced Colitis vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00701