References
- Alonso S, Izagirre N, Lopez S, et al (2010). The diversity profile of TP53 is influenced by positive selection on the immediately upstream locus WDR79. Hum Hered, 69, 34-44. https://doi.org/10.1159/000243152
- Aylon Y, Oren M (2007). New plays in the p53 theater. Current Opinion in genetics Development, 21, 86-92.
- Bienz B, Zakut-Houri R, Givol D, Oren M (1984). Analysis of the gene coding for the murine cellular tumor antigen p53. EMBO J, 3, 2179-2183.
- Bienz-Tadmor B, Zakut-Houri R, Libresco S, et al (1985). The 5' region of the p53 gene: evolutionary conservation and evidence for a negative regulatory element. EMBO J, 4, 3209-13.
- Bug M, Dobbelstein M (2011). Anthracyclines induce the accumulation of mutant p53 through E2F1-dependent and -independent mechanisms. Oncogene, 30, 3612-3624. https://doi.org/10.1038/onc.2011.72
- Chatterjee S, Pal JK (2009). Role of 5' and 3' untranslated regions of mRNAs in human diseases. Biol Cell, 101, 251-62. https://doi.org/10.1042/BC20080104
- Chen F, Wang W, El-Deiry WS (2010). Current strategies to target p53 in cancer. Biochem Pharmacol, 80, 724-30. https://doi.org/10.1016/j.bcp.2010.04.031
- Chen J, Kastan MB (2010). 5'-3'-UTR interactions regulate p53 mRNA translation and provide a target for modulating p53 induction after DNA damage. Genes Dev, 24, 2146-56. https://doi.org/10.1101/gad.1968910
- Crocitto LE, Henderson BE, Coetzee GA (1997). Identification of two germline point mutations in the 5'UTR of the androgen receptor gene in men with prostate cancer. J Urol, 158, 1599-601. https://doi.org/10.1016/S0022-5347(01)64287-3
- Crowe ML, Wang XQ, Rothnagel JA (2006). Evidence for conservation and selection of upstream open reading frames suggests probable encoding of bioactive peptides. BMC Genomics, 26, 7-16.
- Editorial (2010). Drug discovery in the p53 field. Seminars Cancer Biology, 20, 1-2. https://doi.org/10.1016/j.semcancer.2010.03.003
- Faghihi MA, Zhang M, Huang J, et al (2010). Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Bio, 11, 56. https://doi.org/10.1186/gb-2010-11-5-r56
- Farnebo M (2009). Wrap53, a novel regulatory of p53. Cell Cycle, 8, 2343-6. https://doi.org/10.4161/cc.8.15.9223
- Farnebo M, Bykov V JN, Wiman K (2010). The p53 tumor suppressor: A master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Communications, 396, 85-9. https://doi.org/10.1016/j.bbrc.2010.02.152
- Gochhait S, Bukhari SIA, Bairwa N, et al (2007). Implication of BRCA2 -26G>A 5' untranslated region polymorphism in susceptibility to sporadic breast cancer and its modulation by p53 codon 72 Arg>Pro polymorphism. Breast Cancer Res, 9, 71. https://doi.org/10.1186/bcr1780
- Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ (2006a). The microRNA sequence database. Methods Molecular Biology, 342, 129-38.
- Griffiths-Jones S, Grocock RJ, van Dongen S, et al (2006b). miRBase: microRNA sequences, targets, and gene nomenclature. Nucleic Acids Res, 34,140-4. https://doi.org/10.1093/nar/gkj430
- Grover R, Sharathchandra A, Ponnuswamy A, et al (2011). Effect of mutations on the p53 IRES RNA structure Implications for de-regulation of the synthesis of p53 isoforms. RNA Biology, 8, 132-42. https://doi.org/10.4161/rna.8.1.14260
- Khan D, Sharathchandra A, Ponnuswamy A, et al (2012). Effect of a natural mutation in the 5' untranslated region on the translational control of p53 mRNA. Oncogene, [Epub ahead of print].
- Le MT, Teh C, Shyh-Chang N, et al (2009). MicroRNA 125b is a novel negative regulator of p53. Genes Dev, 23, 862-76. https://doi.org/10.1101/gad.1767609
- Levine AJ, Oren M (2009). The first 30 years of p53: growing ever more complex. Nature Reviews Cancer, 9, 749-58 https://doi.org/10.1038/nrc2723
- Mahmoudi S, Henriksson S, Corcoran M, et al (2009). Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Molecular Cell, 33, 462-71. https://doi.org/10.1016/j.molcel.2009.01.028
- Olivier M, Petitjean A, Marcel V, et al (2009). Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Therapy, 16, 1-12. https://doi.org/10.1038/cgt.2008.69
- Persson H, Kvist A, Rego N, et al (2011). Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res, 71, 78-86. https://doi.org/10.1158/0008-5472.CAN-10-1869
- Signori E, Bagni C, Papa S, et al (2001). A somatic mutation in the 5'UTR of the BRCA1 gene in sporadic breast cancer causes down-modulation of translation efficiency. Oncogene, 20, 4596-600. https://doi.org/10.1038/sj.onc.1204620
- Takagi M, Absalon MJ, McLure KG, Kastan MB (2005). Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell, 123, 49-63. https://doi.org/10.1016/j.cell.2005.07.034
- Vilborg A, Wilhelm A, Wiman K (2010). Regulation of tumor suppressor p53 at the RNA level. J MOL MED, 88, 645-52. https://doi.org/10.1007/s00109-010-0609-2
- Yuan JM, Li XD, Liu ZY, et al (2011). Cisplatin induces apoptosis via upregulating Wrap53 in U-2OS osteosarcoma cells. Asian Pac J Cancer Prev, 12, 3465-9.
- Zhang H, Wang D, Mahmoudi S, et al (2012). WRAP53 is an independent prognostic factor in rectal cancer - a study of Swedish clinical trial of preoperative radiotherapy in rectal cancer patients. BMC Cancer, 12, 294. https://doi.org/10.1186/1471-2407-12-294
- Zhang Y, Gao JS, Tang X, et al (2009). MicroRNA 125a and its regulation of the p53 tumor suppressor gene. FEBS Lett, 583, 3725-30 https://doi.org/10.1016/j.febslet.2009.10.002
Cited by
- Lack of Association of Intron 3 16 bp Polymorphism of TP53 with Breast Cancer among Iranian-Azeri Patients vol.15, pp.6, 2014, https://doi.org/10.7314/APJCP.2014.15.6.2631
- Association of TP53 PIN3 polymorphism with breast cancer in Moroccan population vol.35, pp.12, 2014, https://doi.org/10.1007/s13277-014-2556-y
- Studies on microRNAs that are correlated with the cancer stem cells in chronic myeloid leukemia vol.390, pp.1-2, 2014, https://doi.org/10.1007/s11010-013-1958-2
- The TP53 intron 6 G13964C Polymorphism and Risk of Thyroid and Breast Cancer Development in the Iranian Azeri Population vol.16, pp.7, 2015, https://doi.org/10.7314/APJCP.2015.16.7.3073
- Identification of microRNAs in Nipple Discharge as Potential Diagnostic Biomarkers for Breast Cancer vol.22, pp.S3, 2015, https://doi.org/10.1245/s10434-015-4586-0
- Possible tumor suppressive role of the miR-144/451 cluster in esophageal carcinoma as determined by principal component regression analysis vol.14, pp.4, 2016, https://doi.org/10.3892/mmr.2016.5691
- miR-101 sensitizes K562 cell line to imatinib through Jak2 downregulation and inhibition of NF-κB target genes vol.37, pp.10, 2016, https://doi.org/10.1007/s13277-016-5205-9
- Bioinformatics analysis of dysregulated microRNAs in the nipple discharge of patients with breast cancer vol.13, pp.5, 2017, https://doi.org/10.3892/ol.2017.5801
- Changes in the Expression of Circulating microRNAs in Systemic Lupus Erythematosus Patient Blood Plasma After Passing Through a Plasma Adsorption Membrane vol.22, pp.3, 2018, https://doi.org/10.1111/1744-9987.12695