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Abstract

In this paper, we introduce certain types of continuous functions and intuitionistic fuzzy
θ-compactness in intuitionistic fuzzy topological spaces. We show that intuitionistic fuzzy
θ-compactness is strictly weaker than intuitionistic fuzzy compactness. Furthermore, we
show that if a topological space is intuitionistic fuzzy retopologized, then intuitionistic fuzzy
compactness in the new intuitionistic fuzzy topology is equivalent to intuitionistic fuzzy
θ-compactness in the original intuitionistic fuzzy topology. This characterization shows that
intuitionistic fuzzy θ-compactness can be related to an appropriated notion of intuitionistic
fuzzy convergence.
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1. Introduction

The concept of an intuitionistic fuzzy set as a generalization of fuzzy sets was introduced by
Atanassov [1]. Coker and his colleagues [2–4] introduced an intuitionistic fuzzy topology
using intuitionistic fuzzy sets.

Many researchers studied continuity and compactness in fuzzy topological spaces and
intuitionistic fuzzy topological spaces [5–8]. Recently, Hanafy et al. [9] introduced an
intuitionistic fuzzy θ-closure operator and intuitionistic fuzzy θ-continuity.

In this paper, we introduce certain types of continuous functions and intuitionistic fuzzy
θ-compactness in intuitionistic fuzzy topological spaces. We show that intuitionistic fuzzy
θ-compactness is strictly weaker than intuitionistic fuzzy compactness. Moreover, we show
that the sufficient condition in Theorem 4.5 holds for intuitionistic fuzzy θ-compact spaces;
however, in general, it fails for intuitionistic fuzzy compact spaces. Furthermore, we show that
if a topological space is intuitionistic fuzzy retopologized, then intuitionistic fuzzy compactness
in the new intuitionistic fuzzy topology is equivalent to the intuitionistic fuzzy θ-compactness
in the original intuitionistic fuzzy topology described in Theorem 4.6. This characterization
shows that the intuitionistic fuzzy θ-compactness can be related to an appropriated notion of
intuitionistic fuzzy convergence.

2. Preliminaries

Let X and I denote a nonempty set and unit interval [0, 1], respectively. An intuitionistic fuzzy
set A in X is an object of the form

A = (µA, γA),
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where the functions µA : X → I and γA : X → I denote
the degree of membership and the degree of non-membership,
respectively, and µA + γA ≤ 1. Obviously, every fuzzy set µA
in X is an intuitionistic fuzzy set of the form (µA, 1− µA).

Throughout this paper, I(X) denotes the family of all intu-
itionistic fuzzy sets in X and intuitionistic fuzzy is abbreviated
as IF.

Definition 2.1. [1] Let X denote a nonempty set and let intu-
itionistic fuzzy setsA andB be of the formA = (µA, γA), B =

(µB , γB). Then,

(1) A ≤ B iff µA(x) ≤ µB(x) and γA(x) ≥ γB(x) for
all x ∈ X ,

(2) A = B iff A ≤ B and B ≤ A,

(3) Ac = (γA, µA),

(4) A ∩B = (µA ∧ µB , γA ∨ γB),

(5) A ∪B = (µA ∨ µB , γA ∧ γB),

(6) 0 = (0̃, 1̃) and 1 = (1̃, 0̃).

Definition 2.2. [2] An intuitionistic fuzzy topology on X is
a family T of intuitionistic fuzzy sets in X that satisfy the
following axioms.

(1) 0, 1 ∈ T ,

(2) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(3)
⋃
Gi ∈ T for any {Gi : i ∈ J} ⊆ T .

In this case, the pair (X, T ) is called an intuitionistic fuzzy
topological space and any intuitionistic fuzzy set in T is known
as an intuitionistic fuzzy open set in X .

Definition 2.3. [2] Let (X, T ) and A denote an intuitionistic
fuzzy topological space and intuitionistic fuzzy set in X , re-
spectively. Then, the intuitionistic fuzzy interior of A and the
intuitionistic fuzzy closure of A are defined by

cl(A) =
⋂
{K | A ≤ K,Kc ∈ T }

and
int(A) =

⋃
{G | G ≤ A,G ∈ T }.

Theorem 2.4. [2] For any IF set A in an IF topological space
(X, T ), we have

cl(Ac) = (int(A))c and int(Ac) = (cl(A))c.

Definition 2.5. [3, 4] Let α, β ∈ [0, 1] and α + β ≤ 1. An
intuitionistic fuzzy point x(α,β) of X is an intuitionistic fuzzy
set in X defined by

x(α,β)(y) =

{
(α, β) if y = x,

(0, 1) if y 6= x.

In this case, x, α, and β are called the support, value, and nonva-
lue of x(α,β), respectively. An intuitionistic fuzzy point x(α,β)
is said to belong to an intuitionistic fuzzy set A = (µA, γA) in
X , denoted by x(α,β) ∈ A, if α ≤ µA(x) and β ≥ γA(x).

Remark 2.6. If we consider an IF point x(α,β) as an IF set,
then we have the relation x(α,β) ∈ A if and only if x(α,β) ≤ A.

Definition 2.7. [4,10] Let (X, T ) denote an intuitionistic fuzzy
topological space.

(1) An intuitionistic fuzzy point x(α,β) is said to be quasi-
coincident with the intuitionistic fuzzy setU = (µU , γU ),
denoted by x(α,β)qU , if α > γU (x) or β < µU (x).

(2) Let U = (µU , γU ) and V = (µV , γV ) denote two in-
tuitionistic fuzzy sets in X . Then, U and V are said
to be quasi-coincident, denoted by UqV , if there ex-
ists an element x ∈ X such that µU (x) > γV (x) or
γU (x) < µV (x).

The word ‘not quasi-coincident’ will be abbreviated as q̃ herein.

Proposition 2.8. [4] Let U, V , and x(α,β) denote IF sets and
an IF point in X , respectively. Then,

(1) Uq̃V c ⇐⇒ U ≤ V ,

(2) UqV ⇐⇒ U 6≤ V c,

(3) x(α,β) ≤ U ⇐⇒ x(α,β)q̃U
c,

(4) x(α,β)qU ⇐⇒ x(α,β) 6≤ U c.

Definition 2.9. [4] Let (X, T ) denote an intuitionistic fuzzy
topological space and let x(α,β) denote an intuitionistic fuzzy
point in X . An intuitionistic fuzzy set A is said to be an intu-
itionistic fuzzy ε-neighborhood (q-neighborhood) of x(α,β) if
there exists an intuitionistic fuzzy open set U in X such that
x(α,β) ∈ U ≤ A (x(α,β)qU ≤ A, respectively).

Theorem 2.10. [10] Let x(α,β) and U = (µU , γU ) denote an
IF point in X and an IF set in X , respectively. Then, x(α,β) ∈
cl(U) if and only if UqN , for any IF q-neighborhood N of
x(α,β).
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Definition 2.11. [9] An intuitionistic fuzzy point x(α,β) is said
to be an intuitionistic fuzzy θ-cluster point of an intuitionistic
fuzzy set A if for each intuitionistic fuzzy q-neighborhood
U of x(α,β), Aqcl(U). The set of all intuitionistic fuzzy θ-
cluster points of A is called intuitionistic fuzzy θ-closure of
A and is denoted by clθ(A). An intuitionistic fuzzy set A is
called an intuitionistic fuzzy θ-closed set if A = clθ(A). The
complement of an intuitionistic fuzzy θ-closed set is said to be
an intuitionistic fuzzy θ-open set.

Definition 2.12. [11] Let (X, T ) andU denote an intuitionistic
fuzzy topological space and an intuitionistic fuzzy set in X ,
respectively. The intuitionistic fuzzy θ-interior of U is denoted
and defined by

intθ(U) = (clθ(U c))c.

Definition 2.13. [2] Let (X, T ) and (Y,U) denote two intu-
itionistic fuzzy topological spaces and let f : X → Y denote a
function. Then, f is said to be intuitionistic fuzzy continuous if
the inverse image of an intuitionistic fuzzy open set in Y is an
intuitionistic fuzzy open set in X .

Definition 2.14. [2] An intuitionistic fuzzy topological space
(X, T ) is said to be intuitionistic fuzzy compact if every open
cover of X has a finite subcover.

Definition 2.15. [9] A function f : X → Y is said to
be intuitionistic fuzzy θ-continuous if for each intuitionistic
fuzzy point x(a,b) in X and each intuitionistic fuzzy open q-
neighborhood V of f(x(a,b)), there exists an intuitionistic fuzzy
open q-neighborhood U of x(a,b) such that f(cl(U)) ≤ cl(V ).

Proposition 2.16. [12] Let f : (X, T ) → (Y, T ′) and x(α,β)
denote a function and an IF point in X , respectively.

(1) If f(x(α,β))qV , then x(α,β)qf−1(V ) for any IF set V in
Y .

(2) If x(α,β)qU , then f(x(α,β))qf(U) for any IF set U in X .

Remark 2.17. Intuitionistic fuzzy sets have some different
properties compared to fuzzy sets, and these properties are
shown in the subsequent examples.

1. x(α,β) ∈ A ∪B 6⇒ x(α,β) ∈ A or x(α,β) ∈ B.

2. x(α,β)qA and x(α,β)qB 6⇒ x(α,β)q(A ∩B).

Thus, we have considerably different results in generalizing
concepts of fuzzy topological spaces to the intuitionistic fuzzy
topological space.

Example 2.18. Let A,B denote IF sets on the unit interval
[0, 1] defined by

µA =
1

3
χ[0, 12 ]

, γA =
2

3
χ[0,1],

µB =
1

3
χ[ 12 ,1]

, γB =
1

3
χ[0,1].

In addition, let x = 1
4 , (α, β) = ( 14 ,

1
2 ). Then, x(α,β) ∈

A ∪B. However, x(α,β) /∈ A and x(α,β) /∈ B.

Example 2.19. Let A,B denote IF sets on the unit interval
[0, 1] defined by

µA =
1

3
χ[0, 12 ]

, γA =
2

3
χ[0,1],

µB =
1

3
χ[ 12 ,1]

, γB =
1

3
χ[0,1].

In addition, let x = 1
4 , (α, β) = ( 12 ,

1
4 ). Then, x(α,β)qA and

x(α,β)qB; however, x(α,β)q̃(A ∩B).

For the notions that are not mentioned in this section, refer
to [11].

3. Intuitionistic Fuzzy θ-Irresolute and Weakly
θ-Continuity

Definition 3.1. Let (X, T ) and (Y,U) be IF topological spaces.
A mapping f : (X, T ) → (Y,U) is said to be intuitionistic
fuzzy θ-irresolute if the inverse image of each IF θ-open set in
Y is IF θ-open in X .

Theorem 3.2. Let (X, T ) and (Y,U) be IF topological spaces.
Let Tθ be an IF topology on X generated using the subbase of
all the IF θ-open sets in X , and let Uθ be an IF topology on Y
generated using the subbase of all the IF θ-open sets in Y . Then
a function f : (X, T )→ (Y,U) is IF θ-irresolute if and only if
f : (X, Tθ)→ (Y,Uθ) is IF continuous.

Proof. Trivial.

Recall that a fuzzy set A is said to be a fuzzy θ-neighborhood
of a fuzzy point xα if there exists a fuzzy closed q-neighborhood
U of xα, such that Uq̃A [13].

Definition 3.3. An intuitionistic fuzzy set A is said to be an
intuitionistic fuzzy θ-neighborhood of intuitionistic fuzzy point
x(α,β) if there exists an intuitionistic fuzzy open q-neighborhood
U of x(α,β) such that cl(U) ≤ A.
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Recall that a function f : (X, T ) → (Y, T ′) is said to be
a fuzzy weakly θ-continuous function if for each fuzzy point
xα in X and each fuzzy open q-neighborhood V of f(xα),
there exists a fuzzy open q-neighborhood U of xα such that
f(U) ≤ cl(V ) [13].

Definition 3.4. A function f : (X, T )→ (Y, T ′) is said to be
intuitionistic fuzzy weakly θ-continuous if for each intuitionistic
fuzzy point x(α,β) in X and each intuitionistic fuzzy open
q-neighborhood V of f(x(α,β)), there exists an intuitionistic
fuzzy open q-neighborhood U of x(α,β) such that f(U) ≤
cl(V ).

Theorem 3.5. A function f : (X, T )→ (Y, T ′) is IF weakly
θ-continuous if and only if for each IF point x(α,β) in X and
each IF open θ-neighborhood N of f(x(α,β)) in Y , f−1(N) is
an IF q-neighborhood of x(α,β).

Proof. Let f be an IF weakly θ-continuous function, and let
x(α,β) be an IF point in X . Let N be an IF θ-neighborhood of
f(x(α,β)) in Y . Then there exists an IF open q-neighborhood
V of f(x(α,β)) such that cl(V ) ≤ N . Since f is IF weakly
θ-continuous, there exists an IF q-neighborhood U of x(α,β)
such that f(U) ≤ cl(V ) ≤ N . Thus U ≤ f−1(N). Therefore,
there exists an IF q-neighborhood U of x(α,β) such that U ≤
f−1(N). Hence f−1(N) is an IF q-neighborhood of x(α,β).

Conversely, let x(α,β) be an IF point in X , and let V be an
IF open q-neighborhood of f(x(α,β)). Then cl(V ) is an IF θ-
neighborhood of f(x(α,β)). By the hypothesis, f−1(cl(V )) is
an an IF q-neighborhood of x(α,β). Then there exists an IF open
set U such that x(α,β)qU ≤ f−1(cl(V )). Thus f(U) ≤ cl(V ).
Therefore there exists an IF open q-neighborhood U of x(α,β)
such that f(U) ≤ cl(V ). Hence f is an IF weakly θ-continuous
function.

Theorem 3.6. If a function f : (X, T )→ (Y, T ′) is IF weakly
θ-continuous, then

(1) f(cl(A)) ≤ clθ(f(A)) for each IF set A in X ,

(2) f(cl(int(cl(f−1(B))))) ≤ clθ(B) for each IF set B in
Y .

Proof. (1) Let x(α,β) ∈ cl(A), and let V be an IF open q-
neighborhood of f(x(α,β)). Since f is IF weakly θ-continuous,
there exists an IF open q-neighborhood U of x(α,β) such that
f(U) ≤ cl(V ). Since x(α,β) ∈ cl(A), UqA. Thus f(U)qf(A).
Since f(U) ≤ cl(V ), we have cl(V )qf(A). Thus for each
IF open q-neighborhood V of f(x(α,β)), cl(V )qf(A). Hence
f(x(α,β)) ∈ clθ(f(A)).

(2) LetB be an IF set in Y and x(α,β) ∈ cl(int(cl(f−1(B)))).
Let V be an IF open q-neighborhood of f(x(α,β)). Since f is IF
weakly θ-continuous, there exists an IF open q-neighborhood
U of x(α,β) such that f(U) ≤ cl(V ). Since int(cl(f−1(B))) ≤
cl(f−1(B)),

cl(int(cl(f−1(B)))) ≤ cl(cl(f−1(B))) = cl(f−1(B)).

Since x(α,β) ∈ cl(int(cl(f−1(B)))), x(α,β) ∈ cl(f−1(B)).
Thus f−1(B)qU , or Bqf(U). Since f(U) ≤ cl(V ), we have
cl(V )qB. Therefore f(x(α,β)) ∈ clθ(B). Hence we obtain
f(cl(int(cl(f−1(B))))) ≤ clθ(B), for each IF set B in Y .

Theorem 3.7. Let f : (X, T )→ (Y, T ′) be a function. Then
the following statements are equivalent:

(1) f is an IF weakly θ-continuous function.

(2) For each IF open set U with x(α,β)qf
−1(U), x(α,β)q

int(f−1(cl(U))).

Proof. (1) ⇒ (2). Let f be an IF weakly θ-continuous func-
tion, and let U be an IF open set with x(α,β)qf−1(U). Then
f(x(α,β))qU . By the definition of IF weakly θ-continuous,
there exists an IF open q-neighborhood V of x(α,β) such that
f(V ) ≤ cl(U). Thus V ≤ f−1(cl(U)), i.e. V q̃(f−1(cl(U)))c.
Therefore, x(α,β) 6∈ cl((f−1(cl(U)))c) = (int(f−1(cl(U))))c.
Hence we have x(α,β)q(int(f−1(cl(U)))).
(2) ⇒ (1). Let the condition hold, and let x(α,β) be any

IF point in X and V an IF open q-neighborhood of f(x(α,β)).
Then x(α,β)qf−1(V ). By the hypothesis,

x(α,β)qint(f−1(cl(V ))).

PutU = int(f−1(cl(V ))). ThenU is an IF open q-neighborhood
of x(α,β). Since int(f−1(cl(V ))) ≤ f−1(cl(V )),

f(int(f−1(cl(V )))) ≤ f(f−1(cl(V ))) ≤ cl(V ).

Thus f(U) ≤ cl(V ). Therefore there exists an IF open q-
neighborhood U of x(α,β) such that f(U) ≤ cl(V ). Hence f is
an IF weakly θ-continuous function.

4. Intuitionistic Fuzzy θ-Compactness

Definition 4.1. A collection {Gi | i ∈ I} of intuitionistic fuzzy
θ-open sets in an intuitionistic fuzzy topological space (X, T )
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is said to be an intuitionistic fuzzy θ-open cover of a set A if
A ≤

∨
{Gi | i ∈ I}.

Definition 4.2. An intuitionistic fuzzy topological space (X, T )
is said to be intuitionistic fuzzy θ-compact if every intuitionistic
fuzzy θ-open cover of X has a finite subcover.

Definition 4.3. A subsetA of an intuitionistic fuzzy topological
space (X, T ) is said to be intuitionistic fuzzy θ-compact if for
every collection {Gi | i ∈ I} of intuitionistic fuzzy θ-open sets
of X such that A ≤

∨
{Gi | i ∈ I}, there is a finite subset I0

of I such that A ≤
∨
{Gi | i ∈ I0}.

Remark 4.4. Since every IF θ-open set is IF open, it follows
that every IF compact space is IF θ-compact.

Theorem 4.5. An IF topological space (X, T ) is IF θ-compact
if and only if every family of IF θ-closed subsets of X with the
finite intersection property has a nonempty intersection.

Proof. Let X be IF θ-compact and let F = {Fi | i ∈ I}
denote any family of IF θ-closed subsets of X with the finite
intersection property. Suppose that

∧
{Fi | i ∈ I} = 0. Then,∨

{F ci | i ∈ I} = 1, i.e., {F ci | i ∈ I} is an IF θ-open
cover of X . Since X is IF θ-compact, there is a finite subset
I0 of I such that

∨
{F ci | i ∈ I0} = 1. This implies that∧

{Fi | i ∈ I0} = 0, which contradicts the assumption that F
has a finite intersection property. Hence,

∧
{Fi | i ∈ I} 6= 0.

Let G = {Gi | i ∈ I} denote an IF θ-open cover of X
and consider the family G′ = {Gci | i ∈ I} of an IF θ-closed
set. Since G is a cover of X ,

∧
{Gci | i ∈ I0} = 0. Hence,

G′ does not have the finite intersection property, i.e., there
are finite numbers of IF θ-open sets {G1, G2, · · · , Gn} in G
such that

∧
{Gci | i = 1, 2, . . . n} = 0. This implies that

{G1, G2, · · · , Gn} is a finite subcover of X in G. Hence, X is
IF θ-compact.

Theorem 4.6. Let (X, T ) denote an IF topological space and
Tθ denote the IF topology on X generated using the subbase of
all IF θ-open sets in X . Then, (X, T ) is IF θ-compact if and
only if (X, Tθ) is IF compact.

Proof. Let (X, Tθ) be IF compact and let G = {Gi | i ∈ I}
denote an IF θ-open cover of X in T . Since for each i ∈
I,Gi ∈ Tθ, G is an IF open cover of X in Tθ. Since (X, Tθ) is
IF compact, G has a finite subcover of X . Hence, (X, T ) is IF
θ-compact.

Let (X, T ) be IF θ-compact and let G = {Gi | Gi ∈ Tθ, i ∈
I} denote an IF open cover of X in Tθ. Since for each i ∈

I,Gi ∈ Tθ, Gi is an IF θ-open set in (X, T ). Therefore, G is
an IF θ-open cover of X in T . Since (X, T ) is IF θ-compact,
G has a finite subcover of X . Hence, (X, Tθ) is IF compact.

Theorem 4.7. Let A be an IF θ-closed subset of an IF θ-
compact space X . Then, A is also IF θ-compact.

Proof. Let A denote an IF θ-closed subset of X and let G =

{Gi | i ∈ I} denote an IF θ-open cover of A. Since Ac is an
IF θ-open subset of X , G = {Gi | i ∈ I} ∪Ac is an IF θ-open
cover of X . Since X is IF θ-compact, there is a finite subset
I0 of I such that

∨
{Gi | i ∈ I0} ∪ Ac = 1. Hence, A is IF

θ-compact relative to X .

Theorem 4.8. An IF topological space (X, T ) is IF θ-compact
if and only if every family of IF closed subsets of X in Tθ with
the finite intersection property has a nonempty intersection.

Proof. Trivial by Theorem 4.5.

Theorem 4.9. Let (X, T ) and (Y,U) denote IF topological
spaces. Let Tθ denote an IF topology on X generated by the
subbase of all IF θ-open sets in X and let Uθ denote an IF
topology on Y generated by the subbase of all IF θ-open sets in
Y . Then, a function f : (X, T ) → (Y,U) is IF θ-irresolute if
and only if f : (X, Tθ)→ (Y,Uθ) is IF continuous.

Proof. Trivial.

Recall that a function f : (X, T )→ (Y, T ′) is said to be intu-
itionistic fuzzy strongly θ-continuous if for each IF point x(α,β)
in X and for each IF open q-neighborhood V of f(x(α,β)),
there exists an IF open q-neighborhood U of x(α,β) such that
f(cl(U)) ≤ V ( [9]).

Theorem 4.10. (1) An IF strongly θ-continuous image of
an IF θ-compact set is IF compact.

(2) Let (X, T ) and (Y,U) denote IF topological spaces and
let f : (X, T )→ (Y,U) be IF θ-irresolute. If a subset A
of X is IF θ-compact, then image f(A) is IF θ-compact.

Proof. (1) Let f : (X, T ) → (Y,U) denote an IF strongly
θ-continuous mapping from an IF θ-compact space X onto an
IF topological space Y . Let G = {Gi | i ∈ I} be an IF open
cover of Y . Since f is an IF strongly θ-continuous function,
f : (X, Tθ) → (Y,U) is an IF continuous function (Theorem
4.2 of [11]). Therefore, {f−1(Gi) | i ∈ I} is an IF θ-open
cover of X . Since X is IF θ-compact, there is a finite subset
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I0 of I such that
∨
{f−1(Gi) | i ∈ I0} = 1. Since f is onto,

{Gi | i ∈ I0} is a finite subcover of Y . Hence, Y is IF compact.
(2) Let G = {Gi | i ∈ I} be an IF θ-open cover of f(A) in

Y . Since f is an IF θ-irresolute, for each Gi, f−1(Gi) is an IF
θ-open set. Moreover, {f−1(Gi) | i ∈ I} is an IF θ-open cover
of A. Since A is IF θ-compact relative to X , there exists a finite
subset I0 of I such that A ≤

∨
{f−1(Gi) | i ∈ I0}. Therefore,

f(A) ≤
∨
{Gi | i ∈ I0}. Hence, f(A) is IF θ-compact relative

to Y .

Theorem 4.11. Let A and B be subsets of an IF topological
space (X, T ). If A is IF θ-compact and B is IF θ-closed in X ,
then A ∧B is IF θ-compact.

Proof. Let G = {Gi | i ∈ I} be an IF θ-open cover of A
∧
B

in X . Since Bc is IF θ-open in X , (
∨
{Gi | i ∈ I}) ∨Bc is an

IF θ-open cover of A. Since A is IF θ-compact, there is a finite
subset I0 of I such that A ≤ (

∨
{Gi | i ∈ I0}) ∨ Bc. There-

fore,A∧B ≤ (
∨
{Gi | i ∈ I0}). Hence,A∧B is IF θ-compact.

5. Conclusion

We introduced IF θ-irresolute and weakly θ-continuous func-
tions, and intuitionistic fuzzy θ-compactness in intuitionistic
fuzzy topological spaces. We showed that intuitionistic fuzzy
θ-compactness is strictly weaker than intuitionistic fuzzy com-
pactness. Moreover, we showed that if a topological space is
intuitionistic fuzzy retopologized, then intuitionistic fuzzy com-
pactness in the new intuitionistic fuzzy topology is equivalent to
intuitionistic fuzzy θ-compactness in the original intuitionistic
fuzzy topology.
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[2] D. Çoker, “An introduction to intuitionistic fuzzy topolog-
ical spaces,” Fuzzy Sets and Systems, vol. 88, no. 1, pp. 81-
89, May 1997. http://dx.doi.org/10.1016/S0165-0114(96)
00076-0
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