ljfis

International Journal of Fuzzy Logic and Intelligent Systems Vol. 13, No. 3, September 2013, pp. 224-230 http://dx.doi.org/10.5391/IJFIS.2013.13.3.224

Intuitionistic Fuzzy Theta-Compact Spaces

Yeon Seok Eom and Seok Jong Lee

Department of Mathematics, Chungbuk National University, Cheongju, Korea

Abstract

In this paper, we introduce certain types of continuous functions and intuitionistic fuzzy θ -compactness in intuitionistic fuzzy topological spaces. We show that intuitionistic fuzzy θ -compactness is strictly weaker than intuitionistic fuzzy compactness. Furthermore, we show that if a topological space is intuitionistic fuzzy retopologized, then intuitionistic fuzzy compactness in the new intuitionistic fuzzy topology is equivalent to intuitionistic fuzzy θ -compactness in the original intuitionistic fuzzy topology. This characterization shows that intuitionistic fuzzy θ -compactness can be related to an appropriated notion of intuitionistic fuzzy convergence.

Keywords: Intuitionistic fuzzy topology, Theta-compact

1. Introduction

The concept of an intuitionistic fuzzy set as a generalization of fuzzy sets was introduced by Atanassov [1]. Coker and his colleagues [2–4] introduced an intuitionistic fuzzy topology using intuitionistic fuzzy sets.

Many researchers studied continuity and compactness in fuzzy topological spaces and intuitionistic fuzzy topological spaces [5–8]. Recently, Hanafy et al. [9] introduced an intuitionistic fuzzy θ -closure operator and intuitionistic fuzzy θ -continuity.

In this paper, we introduce certain types of continuous functions and intuitionistic fuzzy θ -compactness in intuitionistic fuzzy topological spaces. We show that intuitionistic fuzzy θ -compactness is strictly weaker than intuitionistic fuzzy compactness. Moreover, we show that the sufficient condition in Theorem 4.5 holds for intuitionistic fuzzy θ -compact spaces; however, in general, it fails for intuitionistic fuzzy retopologized, then intuitionistic fuzzy compactness in the new intuitionistic fuzzy topology is equivalent to the intuitionistic fuzzy θ -compactness in the original intuitionistic fuzzy topology described in Theorem 4.6. This characterization shows that the intuitionistic fuzzy θ -compactness can be related to an appropriated notion of intuitionistic fuzzy convergence.

2. Preliminaries

Let X and I denote a nonempty set and unit interval [0, 1], respectively. An *intuitionistic fuzzy* set A in X is an object of the form

$$A = (\mu_A, \gamma_A),$$

Received: Jul. 19, 2013 Revised : Sep. 10, 2013 Accepted: Sep. 11, 2013

Correspondence to: Seok Jong Lee (sjl@cbnu.ac.kr) ©The Korean Institute of Intelligent Systems

© This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership and the degree of non-membership, respectively, and $\mu_A + \gamma_A \leq 1$. Obviously, every fuzzy set μ_A in X is an intuitionistic fuzzy set of the form $(\mu_A, 1 - \mu_A)$.

Throughout this paper, I(X) denotes the family of all intuitionistic fuzzy sets in X and intuitionistic fuzzy is abbreviated as IF.

Definition 2.1. [1] Let X denote a nonempty set and let intuitionistic fuzzy sets A and B be of the form $A = (\mu_A, \gamma_A)$, $B = (\mu_B, \gamma_B)$. Then,

- (1) $A \leq B$ iff $\mu_A(x) \leq \mu_B(x)$ and $\gamma_A(x) \geq \gamma_B(x)$ for all $x \in X$,
- (2) A = B iff $A \leq B$ and $B \leq A$,
- (3) $A^{c} = (\gamma_{A}, \mu_{A}),$
- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B),$
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B),$
- (6) $\underline{0} = (\tilde{0}, \tilde{1})$ and $\underline{1} = (\tilde{1}, \tilde{0})$.

Definition 2.2. [2] An *intuitionistic fuzzy topology* on X is a family \mathcal{T} of intuitionistic fuzzy sets in X that satisfy the following axioms.

- (1) $\underline{0}, \underline{1} \in \mathcal{T}$,
- (2) $G_1 \cap G_2 \in \mathcal{T}$ for any $G_1, G_2 \in \mathcal{T}$,
- (3) $\bigcup G_i \in \mathcal{T}$ for any $\{G_i : i \in J\} \subseteq \mathcal{T}$.

In this case, the pair (X, \mathcal{T}) is called an *intuitionistic fuzzy* topological space and any intuitionistic fuzzy set in \mathcal{T} is known as an *intuitionistic fuzzy open set* in X.

Definition 2.3. [2] Let (X, \mathcal{T}) and A denote an intuitionistic fuzzy topological space and intuitionistic fuzzy set in X, respectively. Then, the *intuitionistic fuzzy interior* of A and the *intuitionistic fuzzy closure* of A are defined by

$$cl(A) = \bigcap \{ K \mid A \le K, K^c \in \mathcal{T} \}$$

and

$$\operatorname{int}(A) = \bigcup \{ G \mid G \le A, G \in \mathcal{T} \}.$$

Theorem 2.4. [2] For any IF set A in an IF topological space (X, \mathcal{T}) , we have

$$\operatorname{cl}(A^c) = (\operatorname{int}(A))^c$$
 and $\operatorname{int}(A^c) = (\operatorname{cl}(A))^c$.

Definition 2.5. [3,4] Let $\alpha, \beta \in [0,1]$ and $\alpha + \beta \leq 1$. An *intuitionistic fuzzy point* $x_{(\alpha,\beta)}$ of X is an intuitionistic fuzzy set in X defined by

$$x_{(\alpha,\beta)}(y) = \begin{cases} (\alpha,\beta) & \text{if } y = x, \\ (0,1) & \text{if } y \neq x. \end{cases}$$

In this case, x, α , and β are called the *support*, *value*, and *nonvalue* of $x_{(\alpha,\beta)}$, respectively. An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to *belong* to an intuitionistic fuzzy set $A = (\mu_A, \gamma_A)$ in X, denoted by $x_{(\alpha,\beta)} \in A$, if $\alpha \leq \mu_A(x)$ and $\beta \geq \gamma_A(x)$.

Remark 2.6. If we consider an IF point $x_{(\alpha,\beta)}$ as an IF set, then we have the relation $x_{(\alpha,\beta)} \in A$ if and only if $x_{(\alpha,\beta)} \leq A$.

Definition 2.7. [4,10] Let (X, \mathcal{T}) denote an intuitionistic fuzzy topological space.

- An intuitionistic fuzzy point x_(α,β) is said to be *quasi-coincident* with the intuitionistic fuzzy set U = (μ_U, γ_U), denoted by x_(α,β)qU, if α > γ_U(x) or β < μ_U(x).
- (2) Let $U = (\mu_U, \gamma_U)$ and $V = (\mu_V, \gamma_V)$ denote two intuitionistic fuzzy sets in X. Then, U and V are said to be *quasi-coincident*, denoted by UqV, if there exists an element $x \in X$ such that $\mu_U(x) > \gamma_V(x)$ or $\gamma_U(x) < \mu_V(x)$.

The word 'not quasi-coincident' will be abbreviated as \tilde{q} herein.

Proposition 2.8. [4] Let U, V, and $x_{(\alpha,\beta)}$ denote IF sets and an IF point in X, respectively. Then,

- (1) $U\tilde{q}V^c \iff U \le V$,
- (2) $UqV \iff U \not\leq V^c$,
- (3) $x_{(\alpha,\beta)} \leq U \iff x_{(\alpha,\beta)} \tilde{q} U^c$,
- (4) $x_{(\alpha,\beta)}qU \iff x_{(\alpha,\beta)} \not\leq U^c$.

Definition 2.9. [4] Let (X, \mathcal{T}) denote an intuitionistic fuzzy topological space and let $x_{(\alpha,\beta)}$ denote an intuitionistic fuzzy point in X. An intuitionistic fuzzy set A is said to be an *intuitionistic fuzzy* ϵ -neighborhood (q-neighborhood) of $x_{(\alpha,\beta)}$ if there exists an intuitionistic fuzzy open set U in X such that $x_{(\alpha,\beta)} \in U \leq A$ ($x_{(\alpha,\beta)}qU \leq A$, respectively).

Theorem 2.10. [10] Let $x_{(\alpha,\beta)}$ and $U = (\mu_U, \gamma_U)$ denote an IF point in X and an IF set in X, respectively. Then, $x_{(\alpha,\beta)} \in cl(U)$ if and only if UqN, for any IF q-neighborhood N of $x_{(\alpha,\beta)}$.

Definition 2.11. [9] An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to be an *intuitionistic fuzzy* θ -cluster point of an intuitionistic fuzzy set A if for each intuitionistic fuzzy q-neighborhood U of $x_{(\alpha,\beta)}$, Aqcl(U). The set of all intuitionistic fuzzy θ cluster points of A is called *intuitionistic fuzzy* θ -closure of A and is denoted by $cl_{\theta}(A)$. An intuitionistic fuzzy set A is called an *intuitionistic fuzzy* θ -closed set if $A = cl_{\theta}(A)$. The complement of an intuitionistic fuzzy θ -closed set is said to be an *intuitionistic fuzzy* θ -open set.

Definition 2.12. [11] Let (X, \mathcal{T}) and U denote an intuitionistic fuzzy topological space and an intuitionistic fuzzy set in X, respectively. The *intuitionistic fuzzy* θ -*interior* of U is denoted and defined by

$$\operatorname{int}_{\theta}(U) = (\operatorname{cl}_{\theta}(U^c))^c$$

Definition 2.13. [2] Let (X, \mathcal{T}) and (Y, \mathcal{U}) denote two intuitionistic fuzzy topological spaces and let $f : X \to Y$ denote a function. Then, f is said to be *intuitionistic fuzzy continuous* if the inverse image of an intuitionistic fuzzy open set in Y is an intuitionistic fuzzy open set in X.

Definition 2.14. [2] An intuitionistic fuzzy topological space (X, \mathcal{T}) is said to be *intuitionistic fuzzy compact* if every open cover of X has a finite subcover.

Definition 2.15. [9] A function $f : X \to Y$ is said to be *intuitionistic fuzzy* θ -*continuous* if for each intuitionistic fuzzy point $x_{(a,b)}$ in X and each intuitionistic fuzzy open qneighborhood V of $f(x_{(a,b)})$, there exists an intuitionistic fuzzy open q-neighborhood U of $x_{(a,b)}$ such that $f(cl(U)) \leq cl(V)$.

Proposition 2.16. [12] Let $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ and $x_{(\alpha,\beta)}$ denote a function and an IF point in X, respectively.

- (1) If $f(x_{(\alpha,\beta)})qV$, then $x_{(\alpha,\beta)}qf^{-1}(V)$ for any IF set V in Y.
- (2) If $x_{(\alpha,\beta)}qU$, then $f(x_{(\alpha,\beta)})qf(U)$ for any IF set U in X.

Remark 2.17. Intuitionistic fuzzy sets have some different properties compared to fuzzy sets, and these properties are shown in the subsequent examples.

1.
$$x_{(\alpha,\beta)} \in A \cup B \not\Rightarrow x_{(\alpha,\beta)} \in A \text{ or } x_{(\alpha,\beta)} \in B.$$

2. $x_{(\alpha,\beta)}qA$ and $x_{(\alpha,\beta)}qB \neq x_{(\alpha,\beta)}q(A \cap B)$.

Thus, we have considerably different results in generalizing concepts of fuzzy topological spaces to the intuitionistic fuzzy topological space. **Example 2.18.** Let A, B denote IF sets on the unit interval [0, 1] defined by

$$\mu_A = \frac{1}{3}\chi_{[0,\frac{1}{2}]}, \quad \gamma_A = \frac{2}{3}\chi_{[0,1]},$$
$$\mu_B = \frac{1}{3}\chi_{[\frac{1}{2},1]}, \quad \gamma_B = \frac{1}{3}\chi_{[0,1]}.$$

In addition, let $x = \frac{1}{4}$, $(\alpha, \beta) = (\frac{1}{4}, \frac{1}{2})$. Then, $x_{(\alpha,\beta)} \in A \cup B$. However, $x_{(\alpha,\beta)} \notin A$ and $x_{(\alpha,\beta)} \notin B$.

Example 2.19. Let A, B denote IF sets on the unit interval [0, 1] defined by

$$\mu_A = \frac{1}{3}\chi_{[0,\frac{1}{2}]}, \quad \gamma_A = \frac{2}{3}\chi_{[0,1]},$$
$$\mu_B = \frac{1}{3}\chi_{[\frac{1}{2},1]}, \quad \gamma_B = \frac{1}{3}\chi_{[0,1]}.$$

In addition, let $x = \frac{1}{4}$, $(\alpha, \beta) = (\frac{1}{2}, \frac{1}{4})$. Then, $x_{(\alpha,\beta)}qA$ and $x_{(\alpha,\beta)}qB$; however, $x_{(\alpha,\beta)}\tilde{q}(A \cap B)$.

For the notions that are not mentioned in this section, refer to [11].

3. Intuitionistic Fuzzy *θ*-Irresolute and Weakly *θ*-Continuity

Definition 3.1. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be IF topological spaces. A mapping $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ is said to be *intuitionistic fuzzy* θ -*irresolute* if the inverse image of each IF θ -open set in Y is IF θ -open in X.

Theorem 3.2. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be IF topological spaces. Let \mathcal{T}_{θ} be an IF topology on X generated using the subbase of all the IF θ -open sets in X, and let \mathcal{U}_{θ} be an IF topology on Y generated using the subbase of all the IF θ -open sets in Y. Then a function $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ is IF θ -irresolute if and only if $f : (X, \mathcal{T}_{\theta}) \to (Y, \mathcal{U}_{\theta})$ is IF continuous.

Proof. Trivial.

Recall that a fuzzy set A is said to be a *fuzzy* θ -neighborhood of a fuzzy point x_{α} if there exists a fuzzy closed q-neighborhood U of x_{α} , such that $U\tilde{q}A$ [13].

Definition 3.3. An intuitionistic fuzzy set A is said to be an *intuitionistic fuzzy* θ -*neighborhood* of intuitionistic fuzzy point $x_{(\alpha,\beta)}$ if there exists an intuitionistic fuzzy open q-neighborhood U of $x_{(\alpha,\beta)}$ such that $cl(U) \leq A$.

Recall that a function $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is said to be a *fuzzy weakly* θ -continuous function if for each fuzzy point x_{α} in X and each fuzzy open q-neighborhood V of $f(x_{\alpha})$, there exists a fuzzy open q-neighborhood U of x_{α} such that $f(U) \leq \operatorname{cl}(V)$ [13].

Definition 3.4. A function $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is said to be *intuitionistic fuzzy weakly* θ -*continuous* if for each intuitionistic fuzzy open $x_{(\alpha,\beta)}$ in X and each intuitionistic fuzzy open q-neighborhood V of $f(x_{(\alpha,\beta)})$, there exists an intuitionistic fuzzy open q-neighborhood U of $x_{(\alpha,\beta)}$ such that $f(U) \leq \operatorname{cl}(V)$.

Theorem 3.5. A function $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is IF weakly θ -continuous if and only if for each IF point $x_{(\alpha,\beta)}$ in X and each IF open θ -neighborhood N of $f(x_{(\alpha,\beta)})$ in Y, $f^{-1}(N)$ is an IF q-neighborhood of $x_{(\alpha,\beta)}$.

Proof. Let f be an IF weakly θ -continuous function, and let $x_{(\alpha,\beta)}$ be an IF point in X. Let N be an IF θ -neighborhood of $f(x_{(\alpha,\beta)})$ in Y. Then there exists an IF open q-neighborhood V of $f(x_{(\alpha,\beta)})$ such that $\operatorname{cl}(V) \leq N$. Since f is IF weakly θ -continuous, there exists an IF q-neighborhood U of $x_{(\alpha,\beta)}$ such that $f(U) \leq \operatorname{cl}(V) \leq N$. Thus $U \leq f^{-1}(N)$. Therefore, there exists an IF q-neighborhood U of $x_{(\alpha,\beta)}$ such that $U \leq f^{-1}(N)$. Hence $f^{-1}(N)$ is an IF q-neighborhood of $x_{(\alpha,\beta)}$.

Conversely, let $x_{(\alpha,\beta)}$ be an IF point in X, and let V be an IF open q-neighborhood of $f(x_{(\alpha,\beta)})$. Then cl(V) is an IF θ -neighborhood of $f(x_{(\alpha,\beta)})$. By the hypothesis, $f^{-1}(cl(V))$ is an an IF q-neighborhood of $x_{(\alpha,\beta)}$. Then there exists an IF open set U such that $x_{(\alpha,\beta)}qU \leq f^{-1}(cl(V))$. Thus $f(U) \leq cl(V)$. Therefore there exists an IF open q-neighborhood U of $x_{(\alpha,\beta)}$ such that $f(U) \leq cl(V)$. Hence f is an IF weakly θ -continuous function.

Theorem 3.6. If a function $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is IF weakly θ -continuous, then

- (1) $f(cl(A)) \leq cl_{\theta}(f(A))$ for each IF set A in X,
- (2) $f(cl(int(cl(f^{-1}(B))))) \leq cl_{\theta}(B)$ for each IF set B in Y.

Proof. (1) Let $x_{(\alpha,\beta)} \in cl(A)$, and let V be an IF open qneighborhood of $f(x_{(\alpha,\beta)})$. Since f is IF weakly θ -continuous, there exists an IF open q-neighborhood U of $x_{(\alpha,\beta)}$ such that $f(U) \leq cl(V)$. Since $x_{(\alpha,\beta)} \in cl(A)$, UqA. Thus f(U)qf(A). Since $f(U) \leq cl(V)$, we have cl(V)qf(A). Thus for each IF open q-neighborhood V of $f(x_{(\alpha,\beta)})$, cl(V)qf(A). Hence $f(x_{(\alpha,\beta)}) \in cl_{\theta}(f(A))$. (2) Let B be an IF set in Y and $x_{(\alpha,\beta)} \in cl(int(cl(f^{-1}(B))))$. Let V be an IF open q-neighborhood of $f(x_{(\alpha,\beta)})$. Since f is IF weakly θ -continuous, there exists an IF open q-neighborhood U of $x_{(\alpha,\beta)}$ such that $f(U) \leq cl(V)$. Since $int(cl(f^{-1}(B))) \leq cl(f^{-1}(B))$,

$$\operatorname{cl}(\operatorname{int}(\operatorname{cl}(f^{-1}(B)))) \le \operatorname{cl}(\operatorname{cl}(f^{-1}(B))) = \operatorname{cl}(f^{-1}(B)).$$

Since $x_{(\alpha,\beta)} \in cl(int(cl(f^{-1}(B)))), x_{(\alpha,\beta)} \in cl(f^{-1}(B))$. Thus $f^{-1}(B)qU$, or Bqf(U). Since $f(U) \leq cl(V)$, we have cl(V)qB. Therefore $f(x_{(\alpha,\beta)}) \in cl_{\theta}(B)$. Hence we obtain $f(cl(int(cl(f^{-1}(B))))) \leq cl_{\theta}(B)$, for each IF set B in Y.

Theorem 3.7. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a function. Then the following statements are equivalent:

- (1) f is an IF weakly θ -continuous function.
- (2) For each IF open set U with $x_{(\alpha,\beta)}qf^{-1}(U)$, $x_{(\alpha,\beta)}q$ int $(f^{-1}(cl(U)))$.

Proof. (1) \Rightarrow (2). Let f be an IF weakly θ -continuous function, and let U be an IF open set with $x_{(\alpha,\beta)}qf^{-1}(U)$. Then $f(x_{(\alpha,\beta)})qU$. By the definition of IF weakly θ -continuous, there exists an IF open q-neighborhood V of $x_{(\alpha,\beta)}$ such that $f(V) \leq \operatorname{cl}(U)$. Thus $V \leq f^{-1}(\operatorname{cl}(U))$, i.e. $V\widetilde{q}(f^{-1}(\operatorname{cl}(U)))^c$. Therefore, $x_{(\alpha,\beta)} \notin \operatorname{cl}((f^{-1}(\operatorname{cl}(U)))^c) = (\operatorname{int}(f^{-1}(\operatorname{cl}(U))))^c$. Hence we have $x_{(\alpha,\beta)}q(\operatorname{int}(f^{-1}(\operatorname{cl}(U))))$.

(2) \Rightarrow (1). Let the condition hold, and let $x_{(\alpha,\beta)}$ be any IF point in X and V an IF open q-neighborhood of $f(x_{(\alpha,\beta)})$. Then $x_{(\alpha,\beta)}qf^{-1}(V)$. By the hypothesis,

$$x_{(\alpha,\beta)}q$$
int $(f^{-1}(cl(V)))$.

Put $U = \operatorname{int}(f^{-1}(\operatorname{cl}(V)))$. Then U is an IF open q-neighborhood of $x_{(\alpha,\beta)}$. Since $\operatorname{int}(f^{-1}(\operatorname{cl}(V))) \leq f^{-1}(\operatorname{cl}(V))$,

$$f(\operatorname{int}(f^{-1}(\operatorname{cl}(V)))) \le f(f^{-1}(\operatorname{cl}(V))) \le \operatorname{cl}(V).$$

Thus $f(U) \leq cl(V)$. Therefore there exists an IF open q-neighborhood U of $x_{(\alpha,\beta)}$ such that $f(U) \leq cl(V)$. Hence f is an IF weakly θ -continuous function.

4. Intuitionistic Fuzzy θ -Compactness

Definition 4.1. A collection $\{G_i \mid i \in I\}$ of intuitionistic fuzzy θ -open sets in an intuitionistic fuzzy topological space (X, \mathcal{T})

is said to be an *intuitionistic fuzzy* θ -open cover of a set A if $A \leq \bigvee \{G_i \mid i \in I\}.$

Definition 4.2. An intuitionistic fuzzy topological space (X, \mathcal{T}) is said to be *intuitionistic fuzzy* θ -compact if every intuitionistic fuzzy θ -open cover of X has a finite subcover.

Definition 4.3. A subset A of an intuitionistic fuzzy topological space (X, \mathcal{T}) is said to be *intuitionistic fuzzy* θ -compact if for every collection $\{G_i \mid i \in I\}$ of intuitionistic fuzzy θ -open sets of X such that $A \leq \bigvee \{G_i \mid i \in I\}$, there is a finite subset I_0 of I such that $A \leq \bigvee \{G_i \mid i \in I\}$.

Remark 4.4. Since every IF θ -open set is IF open, it follows that every IF compact space is IF θ -compact.

Theorem 4.5. An IF topological space (X, \mathcal{T}) is IF θ -compact if and only if every family of IF θ -closed subsets of X with the finite intersection property has a nonempty intersection.

Proof. Let X be IF θ -compact and let $\mathcal{F} = \{F_i \mid i \in I\}$ denote any family of IF θ -closed subsets of X with the finite intersection property. Suppose that $\bigwedge \{F_i \mid i \in I\} = \underline{0}$. Then, $\bigvee \{F_i^c \mid i \in I\} = \underline{1}$, i.e., $\{F_i^c \mid i \in I\}$ is an IF θ -open cover of X. Since X is IF θ -compact, there is a finite subset I_0 of I such that $\bigvee \{F_i^c \mid i \in I_0\} = \underline{1}$. This implies that $\bigwedge \{F_i \mid i \in I_0\} = \underline{0}$, which contradicts the assumption that \mathcal{F} has a finite intersection property. Hence, $\bigwedge \{F_i \mid i \in I\} \neq \underline{0}$.

Let $\mathcal{G} = \{G_i \mid i \in I\}$ denote an IF θ -open cover of Xand consider the family $\mathcal{G}' = \{G_i^c \mid i \in I\}$ of an IF θ -closed set. Since \mathcal{G} is a cover of X, $\bigwedge \{G_i^c \mid i \in I_0\} = \underline{0}$. Hence, \mathcal{G}' does not have the finite intersection property, i.e., there are finite numbers of IF θ -open sets $\{G_1, G_2, \dots, G_n\}$ in \mathcal{G} such that $\bigwedge \{G_i^c \mid i = 1, 2, \dots, n\} = \underline{0}$. This implies that $\{G_1, G_2, \dots, G_n\}$ is a finite subcover of X in \mathcal{G} . Hence, X is IF θ -compact.

Theorem 4.6. Let (X, \mathcal{T}) denote an IF topological space and \mathcal{T}_{θ} denote the IF topology on X generated using the subbase of all IF θ -open sets in X. Then, (X, \mathcal{T}) is IF θ -compact if and only if $(X, \mathcal{T}_{\theta})$ is IF compact.

Proof. Let $(X, \mathcal{T}_{\theta})$ be IF compact and let $\mathcal{G} = \{G_i \mid i \in I\}$ denote an IF θ -open cover of X in \mathcal{T} . Since for each $i \in I, G_i \in \mathcal{T}_{\theta}, \mathcal{G}$ is an IF open cover of X in \mathcal{T}_{θ} . Since $(X, \mathcal{T}_{\theta})$ is IF compact, \mathcal{G} has a finite subcover of X. Hence, (X, \mathcal{T}) is IF θ -compact.

Let (X, \mathcal{T}) be IF θ -compact and let $\mathcal{G} = \{G_i \mid G_i \in \mathcal{T}_{\theta}, i \in I\}$ denote an IF open cover of X in \mathcal{T}_{θ} . Since for each $i \in I\}$

 $I, G_i \in \mathcal{T}_{\theta}, G_i$ is an IF θ -open set in (X, \mathcal{T}) . Therefore, \mathcal{G} is an IF θ -open cover of X in \mathcal{T} . Since (X, \mathcal{T}) is IF θ -compact, \mathcal{G} has a finite subcover of X. Hence, $(X, \mathcal{T}_{\theta})$ is IF compact.

Theorem 4.7. Let A be an IF θ -closed subset of an IF θ -compact space X. Then, A is also IF θ -compact.

Proof. Let A denote an IF θ -closed subset of X and let $\mathcal{G} = \{G_i \mid i \in I\}$ denote an IF θ -open cover of A. Since A^c is an IF θ -open subset of X, $\mathcal{G} = \{G_i \mid i \in I\} \cup A^c$ is an IF θ -open cover of X. Since X is IF θ -compact, there is a finite subset I_0 of I such that $\bigvee \{G_i \mid i \in I_0\} \cup A^c = \underline{1}$. Hence, A is IF θ -compact relative to X.

Theorem 4.8. An IF topological space (X, \mathcal{T}) is IF θ -compact if and only if every family of IF closed subsets of X in \mathcal{T}_{θ} with the finite intersection property has a nonempty intersection.

Proof. Trivial by Theorem 4.5.

Theorem 4.9. Let (X, \mathcal{T}) and (Y, \mathcal{U}) denote IF topological spaces. Let \mathcal{T}_{θ} denote an IF topology on X generated by the subbase of all IF θ -open sets in X and let \mathcal{U}_{θ} denote an IF topology on Y generated by the subbase of all IF θ -open sets in Y. Then, a function $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ is IF θ -irresolute if and only if $f : (X, \mathcal{T}_{\theta}) \to (Y, \mathcal{U}_{\theta})$ is IF continuous.

Proof. Trivial.

Recall that a function $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is said to be *intuitionistic fuzzy strongly* θ *-continuous* if for each IF point $x_{(\alpha,\beta)}$ in X and for each IF open q-neighborhood V of $f(x_{(\alpha,\beta)})$, there exists an IF open q-neighborhood U of $x_{(\alpha,\beta)}$ such that $f(cl(U)) \leq V$ ([9]).

Theorem 4.10. (1) An IF strongly θ -continuous image of an IF θ -compact set is IF compact.

 (2) Let (X, T) and (Y, U) denote IF topological spaces and let f : (X, T) → (Y, U) be IF θ-irresolute. If a subset A of X is IF θ-compact, then image f(A) is IF θ-compact.

Proof. (1) Let $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ denote an IF strongly θ -continuous mapping from an IF θ -compact space X onto an IF topological space Y. Let $\mathcal{G} = \{G_i \mid i \in I\}$ be an IF open cover of Y. Since f is an IF strongly θ -continuous function, $f : (X, \mathcal{T}_{\theta}) \to (Y, \mathcal{U})$ is an IF continuous function (Theorem 4.2 of [11]). Therefore, $\{f^{-1}(G_i) \mid i \in I\}$ is an IF θ -open cover of X. Since X is IF θ -compact, there is a finite subset

$$\begin{split} I_0 & \text{of } I \text{ such that } \bigvee \{ f^{-1}(G_i) \mid i \in I_0 \} = \underline{1}. \text{ Since } f \text{ is onto,} \\ \{G_i \mid i \in I_0\} \text{ is a finite subcover of } Y. \text{ Hence, } Y \text{ is IF compact.} \\ (2) \text{ Let } \mathcal{G} = \{G_i \mid i \in I\} \text{ be an IF } \theta \text{-open cover of } f(A) \text{ in } Y. \text{ Since } f \text{ is an IF } \theta \text{-irresolute, for each } G_i, f^{-1}(G_i) \text{ is an IF } \theta \text{-open set. Moreover, } \{f^{-1}(G_i) \mid i \in I\} \text{ is an IF } \theta \text{-open cover of } A. \text{ Since } A \text{ is IF } \theta \text{-compact relative to } X, \text{ there exists a finite subset } I_0 \text{ of } I \text{ such that } A \leq \bigvee \{f^{-1}(G_i) \mid i \in I_0\}. \text{ Therefore, } f(A) \leq \bigvee \{G_i \mid i \in I_0\}. \text{ Hence, } f(A) \text{ is IF } \theta \text{-compact relative to } Y. \end{split}$$

Theorem 4.11. Let *A* and *B* be subsets of an IF topological space (X, \mathcal{T}) . If *A* is IF θ -compact and *B* is IF θ -closed in *X*, then $A \wedge B$ is IF θ -compact.

Proof. Let $\mathcal{G} = \{G_i \mid i \in I\}$ be an IF θ -open cover of $A \land B$ in X. Since B^c is IF θ -open in X, $(\bigvee \{G_i \mid i \in I\}) \lor B^c$ is an IF θ -open cover of A. Since A is IF θ -compact, there is a finite subset I_0 of I such that $A \leq (\bigvee \{G_i \mid i \in I_0\}) \lor B^c$. Therefore, $A \land B \leq (\bigvee \{G_i \mid i \in I_0\})$. Hence, $A \land B$ is IF θ -compact.

5. Conclusion

We introduced IF θ -irresolute and weakly θ -continuous functions, and intuitionistic fuzzy θ -compactness in intuitionistic fuzzy topological spaces. We showed that intuitionistic fuzzy θ -compactness is strictly weaker than intuitionistic fuzzy compactness. Moreover, we showed that if a topological space is intuitionistic fuzzy retopologized, then intuitionistic fuzzy compactness in the new intuitionistic fuzzy topology is equivalent to intuitionistic fuzzy θ -compactness in the original intuitionistic fuzzy topology.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

- K. T. Atanassov, "Intuitionistic fuzzy sets," *Fuzzy Sets and Systems*, vol. 20, no. 1, pp. 87-96, Aug. 1986. http://dx.doi.org/10.1016/S0165-0114(86)80034-3
- [2] D. Çoker, "An introduction to intuitionistic fuzzy topological spaces," *Fuzzy Sets and Systems*, vol. 88, no. 1, pp. 81-89, May 1997. http://dx.doi.org/10.1016/S0165-0114(96) 00076-0

- [3] D. Çoker, "An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces," *The Journal of Fuzzy Mathematics*, vol. 4, no. 4, pp. 749-764, Dec. 1996.
- [4] D. Çoker and M. Demirci, "On intuitionistic fuzzy points," *Notes on Intuitionistic Fuzzy Sets*, vol. 1, no. 2, pp. 79-84, 1995.
- [5] W. K. Min and Y. K. Kim, "A note on fuzzy r-m precontinuity and fuzzy r-minimal compactness on fuzzy r-minimal spaces," *Journal of The Korean Institute of Intelligent Systems*, vol. 21, no. 1, pp. 128-131, 2011. http://dx.doi.org/10.5391/JKIIS.2011.21.1.128
- [6] P. K. Lim, S. R. Kim, and K. Hur, "Intuitionistic smooth topological spaces," *Journal of The Korean Institute of Intelligent Systems*, vol. 20, no. 6, pp. 875-883, 2010. http://dx.doi.org/10.5391/JKIIS.2011.20.6.875
- [7] J. I. Kim, W. K. Min, and Y. H. Yoo, "Fuzzy γ-compactness on fuzzy γ-minimal spaces," *International Journal of Fuzzy Logic and Intelligent Systems*, vol. 9, no. 4, pp. 281-284, Dec. 2009. http://dx.doi.org/10.5391/ IJFIS.2009.9.4.281
- [8] Kandil, O. Tantawy, M.Yakout, and S. Saleh, "C*compactness in l-fuzzy topological spaces," *International Journal of Fuzzy Logic and Intelligent Systems*, vol. 9, no. 4, pp. 261-268, Dec. 2009. http://dx.doi.org/10.5391/ IJFIS.2009.9.4.261
- [9] I. M. Hanafy, A. M. Abd El-Aziz, and T. M. Salman, "Intuitionistic fuzzy θ-closure operator," *Boletn de la Asociacion Matematica Venezolana*, vol. 13, no. 1, pp. 27-39, 2006.
- [10] I. M. Hanafy, "Intuitionistic fuzzy functions," *International Journal of Fuzzy Logic and Intelligent Systems*, vol. 3, no. 2, pp. 200-205, Dec. 2003. http://dx.doi.org/10. 5391/IJFIS.2003.3.2.200
- [11] S. J. Lee and Y. S. Eoum, "Intuitionistic fuzzy θ-closure and θ-interior," *Communications of the Korean Mathematical Society*, vol. 25, no. 2, pp. 273-282, 2010. http://dx.doi.org/10.4134/CKMS.2010.25.2.273
- [12] I. M. Hanafy, "On fuzzy γ-open sets and fuzzy γcontinuity in intuitionistic fuzzy topological spaces," *The Journal of Fuzzy Mathematics*, vol. 10, no. 1, pp. 9-19, Mar. 2002.

M. N. Mukherjee and S. P. Sinha, "On some near-fuzzy continuous functions between fuzzy topological spaces," *Fuzzy Sets and Systems*, vol. 34, no. 2, pp. 245-254, Jan. 1990. http://dx.doi.org/10.1016/0165-0114(90)90163-Z

Yeon Seok Eom received the Ph. D. degree from Chungbuk National University in 2012. She is a lecturer in Chungbuk National University. Her research interests include general topology and fuzzy topology. She is a member of KIIS and KMS.

E-mail: math1518@naver.com

Seok Jong Lee received the M. S. and Ph. D. degrees from Yonsei University in 1986 and 1990, respectively. He is a professor at the Department of Mathematics, Chungbuk National University since 1989. He was a visiting scholar in Carleton University from 1995 to 1996, and Wayne State University

from 2003 to 2004. His research interests include general topology and fuzzy topology. He is a member of KIIS, KMS, and CMS. He served as a general chair of the 12th International Symposium on Advanced Intelligent Systems(ISIS 2011). E-mail: sjl@cbnu.ac.kr