DOI QR코드

DOI QR Code

Cryogenic Distillation Simulation for Hydrogen Isotopes Separation

수소 동위원소 분리를 위한 초저온증류공정 모사

  • Noh, Sanggyun (Department of Chemical & Biomolecular Engineering, Dong Yang University) ;
  • Rho, Jaehyun (Department of Chemical Engineering, Kong Ju National University) ;
  • Cho, Jungho (Department of Chemical Engineering, Kong Ju National University)
  • 노상균 (동양대학교 생명화학공학과) ;
  • 노재현 (공주대학교 화학공학부) ;
  • 조정호 (공주대학교 화학공학부)
  • Received : 2013.07.26
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

In this study, we have surveyed the new technologies in the cryogenic distillation of ITER, equilibrium reactors and helium refrigeration cycle contained in the isotope separation system (ISS). We also have collected thermodynamic and transport properties for $H_2$, HD, $D_2$, HT, DT and $T_2$ components of which properties are not built in a general purpose chemical process simulators such as Aspen Plus and PRO/II with PROVISION. Verification works have been performed to compare between literature data and simulation results. For the simulation of ISS involving six hydrogen isotope components, four distillation columns and two equilibrium reactors are used for the separation of $D_2$ and DT from $T_2$.

본 연구에서는 ITER의 수소동위원소 분리 시스템에 포함되어 있는 심냉 증류공정과 평형 반응기 및 헬륨 냉매를 이용한 냉동 사이클에 대해 추적조사를 실시하였다. 또한 Aspen Plus나 PRO/II with PROVISION과 같은 정상 상태 화학공정 모사기에 내장되어 있지 않은 $H_2$, HD, $D_2$, HT, DT와 $T_2$ 성분에 대한 열역학 및 전달물성을 수집하였다. 문헌치로부터 구한 물성 데이터와 전산모사를 통해서 추산한 물성결과 사이의 비교 및 검증작업을 수행하였다. 6개의 수소동위원소 성분을 포함한 동위원소 분리를 위해서 4기의 심냉 증류탑과 2기의 평형 반응기를 사용해서 $T_2$로부터 $D_2$ 및 DT를 분리해 내기 위한 전산모사를 수행하였다.

Keywords

References

  1. ITER IDM Document (ITER_D_2X6K67), Plant Description (PD), Chap. 10 Fuel Cycle and Radiological Monitoring (2009).
  2. D. Babineau, S. Maruyama, R. Pearce, M. Glugla, L. Bo, B. Rogers, S. Willms, G. Piazza, T. Yamanishi, S.H. Yun, L. Worth, and W. Shu,"Review of the ITER Fuel Cycle," IAEA FEC 2010, 2010.
  3. M. Glugla, D. Babineau, L. Bo, S. Maruyama, R. Pearce, G. Piazza, B. Rogers, S. Willms, T. Yamanishi, and S.-H. Yun, "Review of the ITER D-T Fuel Cycle Systems and Recent Progress," Tritium 2010, Nara, Japan, 2010.
  4. S. Maruyama, Y. Yang, R.A. Pitts, M. Sugihara, S. Putvinski, S. Carpentier- Chouchana, B. Li, W. Li, L. Baylor, S.J. Meitner, C. Day, B. laBombard, and M. Reinke, "ITER Fuelling System Design and Challenges-Gas and Pellet Injection and Disruption Mitigation," IAEA FEC 2010, 2010.
  5. S. Konishi, M. Glugla, and T. Hayashi, "Fuel Cycle Design for ITER and Its Extrapolation to DEMO," Fusion Engineering and Design, Vol. 83, 2008, pp. 954-958. DOI: http://dx.doi.org/10.1016/j.fusengdes.2008.06.060
  6. M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I.R. Cristescu, I. Cristescu, C. Day, L. Doerr, J.-P. Girard, and E. Tada, "The ITER Tritium System," Fusion Engineering and Design, Vol. 82, 2007, pp. 472-487. DOI: http://dx.doi.org/10.1016/j.fusengdes.2007.02.025
  7. H. Yoshida, O. Kveton, J. Koonce, D. Holland, and R. Haange, "Status of the ITER Plant Design", Fusion Engineering and Design, Vol. 39-40, 1998, pp. 875-882. DOI: http://dx.doi.org/10.1016/S0920-3796(98)00113-6
  8. Ahn, D. H., Paek, S. W., Kim, K. R., Jeong, H. S., Choi, H. J., Kim, J. K., Kang, H. S., Lee, H. S., Kim, W. S. and Song, K. M., "Design of the Liquid Phase Catalytic Exchange Column for the Wolsong Tritium Removal Facility," Proceedings of the Korean Nuclear Society Spring Meeting, May 27-28 (2001).
  9. D. Y. Peng, and D. B. Robinson, "A New Two-constant Equation of State for Fluids and Fluid Mixtures", Ind. Eng. Chem. Fundam, 15, 8 (1976). DOI: http://dx.doi.org/10.1021/i160057a011
  10. G. Soave, "Equilibrium Constants from a Modified Redlich-Kwong Equation of State," Chem. Eng. Sci., 27(6), 1197-1203 (1972). DOI: http://dx.doi.org/10.1016/0009-2509(72)80096-4