DOI QR코드

DOI QR Code

Smoke color analysis of the standard color models for fire video surveillance

화재 영상감시를 위한 표준 색상모델의 연기색상 분석

  • Lee, Yong-Hun (Division of Electrical, Electronic and Control Engineering, Kongju National University) ;
  • Kim, Won-Ho (Division of Electrical, Electronic and Control Engineering, Kongju National University)
  • 이용훈 (공주대학교 전기전자제어공학부) ;
  • 김원호 (공주대학교 전기전자제어공학부)
  • Received : 2013.08.16
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

This paper describes the color features of smoke in each standard color model in order to present the most suitable color model for somke detection in video surveillance system. Histogram intersection technique is used to analyze the difference characteristics between color of smoke and color of non smoke. The considered standard color models are RGB, YCbCr, CIE-Lab, HSV, and if the calculated histogram intersection value is large for the considered color model, then the smoke spilt characteristics are not good in that color model. If the calculated histogram intersection value is small, then the smoke spilt characteristics are good in that color model. The analyzed result shows that the RGB and HSV color models are the most suitable for color model based smoke detection by performing respectively 0.14 and 0.156 for histogram intersection value.

본 논문은 기존 논문들에서 사용되었던 다양한 색상모델의 연기색상을 비교분석하여, 화재 영상감시 시스템의 연기 검출에 최적인 컬러모델을 제시하기 위한 컬러영상의 연기색상 분석에 대하여 기술한다. 각 표준 색상 모델에서의 연기색상과 비연기 색상간의 분리도 특성을 비교하기 위하여 히스토그램 교차 분석 기법을 사용하였다. 표준색상모델로는 RGB, YCbCr, CIE-Lab, HSV 컬러모델을 사용하였으며, 계산된 히스토그램 교차(Histogram Intersection)값이 작으면 연기와 비연기 영역분할 특성이 우수한 컬러모델이며 큰 값을 가지는 컬러모델에서는 연기분할 특성이 좋지 않다. 4개의 표준 컬러모델을 분석한 결과, RGB 색상모델과 HSV 색상모델이 각각 평균 히스토그램 교차 값이 0.14, 0.156 으로서 연기와 비연기 색상 분리도가 매우 우수하여 컬러영상의 색상기반 연기검출에 가장 최적이며 실용적인 컬러모델로 확인되었다.

Keywords

References

  1. Junguo Zhang, Wenbin Li, Zhongxing Yin, Shengbo Liu, Xiaolin Guo, "Forest fire detection system based on wireless sensor network", 2009 IEEE Industrial Electronics and Applications, ICIEA, May 25-27, 2009, Xi'an, China DOI: http://dx.doi.org/10.1109/ICIEA.2009.5138260
  2. Shin-Juh Chen, David C. Hovde, Kristen A Peterson, Andre W. Marshall, "Fire detection using smoke and gas sensors", 2007 Fire safety Journal, Volume 42, Issue 8, 507-515, November, 2007 DOI: http://dx.doi.org/10.1016/j.firesaf.2007.01.006
  3. Begona C. Arrue, Anibal Ollero and J. Ramiro Martinez de Dios, "An intelligent system for false alarm reduction in infrared forest-fire detection", 2000 IEEE Intelligent Systems and their Applications, May, 2000, Spain DOI: http://dx.doi.org/10.1109/5254.846287
  4. Turgay Celik, Huseyin Ozkaramanli and Hasan Demirel, "Fire and smoke detection without sensors: image processing based approach", 2007 15th European Signal Processing Conference, EUSIPCO, September 3-7, 2007, Poznan, Poland
  5. Juan Chen, Yaping He, Jian Wang "Multi-feature fusion based fast video flame detection", Building and Environment vol.45, 1113-1122, 2010 DOI: http://dx.doi.org/10.1016/j.buildenv.2009.10.017
  6. Paolo Piccinini, Simone Calderara, Rita Cucchiara, "Reliable smloke detection system in the domains of image energy and color", ICIP 2008 15th IEEE International Conference, Oct 12-15, 2008, San Diego DOI: http://dx.doi.org/10.1109/ICIP.2008.4712020
  7. Yu Chunyu, Fang Jun, Wang Jinjun, Zhang Yongming, "Video fire smoke detection using motion and color features", Fire Technology, Volume 46, Issue 3, 651-663, July, 2010 DOI: http://dx.doi.org/10.1007/s10694-009-0110-z
  8. S.M. Lee, J. H. Xin, S. Westland. "Evaluating of image similarity by histogram intersection", Color Research&Application, Vol. 30, No.4, 265-274, 2005 DOI: http://dx.doi.org/10.1002/col.20122
  9. Yihong Lu, Jia Hu, Decai Huang, "Study on a image matching algorithm based on sphere similarity of color histogram intersection", Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21 - 23, 2006, Dalian, China DOI: http://dx.doi.org/10.1109/WCICA.2006.1713941
  10. Michael J. Swain, Dana H. Ballard, "Color indexing", 1991 International Journal of Computer Vision, November, 1991, Netherlands, Volume 7, Issue 1, 11-32 DOI: http://dx.doi.org/10.1007/BF00130487