DOI QR코드

DOI QR Code

DARK MATTER CONTENT IN GLOBULAR CLUSTER NGC 6397

  • Shin, Jihye (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Kim, Sungsoo S. (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Lee, Young-Wook (School of Space Research, Kyung Hee University)
  • 투고 : 2013.06.20
  • 심사 : 2013.07.29
  • 발행 : 2013.08.31

초록

We trace the dynamical evolution of dark matter (DM) content in NGC 6397, one of the native Galactic globular clusters (GCs). The relatively strong tidal field (Galactocentric radius of ~ 6 kpc) and short relaxation timescale (~0.3 Gyr) of the cluster can cause a significant amount of DM particles to evaporate from the cluster in the Hubble time. Thus, the cluster can initially contain a non-negligible amount of DM. Using the most advanced Fokker-Planck (FP) method, we calculate the dynamical evolution of GCs for numerous initial conditions to determine the maximum initial DM content in NGC 6397 that matches the present-day brightness and velocity dispersion profiles of the cluster. We find that the maximum allowed initial DM mass is slightly less than the initial stellar mass in the cluster. Our findings imply that NGC 6397 did not initially contain a significant amount of DM, and is similar to that of NGC 2419, the remotest and the most massive Galactic GC.

키워드

참고문헌

  1. Ashman, K. M., & Zepf, S. E. 1992, The Formation of Globular Clusters in Merging and Interacting Galaxies, ApJ, 384, 50 https://doi.org/10.1086/170850
  2. Baumgardt, H., & Mieske, S. 2008, High Mass-to-Light Ratios of Ultra-Compact Dwarf Galaxies - Evidence for Dark Matter?, MNRAS, 391, 942 https://doi.org/10.1111/j.1365-2966.2008.13949.x
  3. Baumgardt, H., Cote, P., Hilker, M., Rejkuba, M., Mieske, S., Djorgovski, S. G., & Stetson, P. 2009, The Velocity Dispersion and Mass-to-Light Ratio of the Remote Halo Globular Cluster NGC 2419, MNRAS, 396, 2051 https://doi.org/10.1111/j.1365-2966.2009.14932.x
  4. Beasly,M. A., Kawata, D., Pearce, F. R., Forbes, D. A., & Gibson, B. K. 2003, The Metallicity of Pregalactic Globular Clusters: The Observational Consequences of the First Stars, ApJ, 596, L187 https://doi.org/10.1086/379531
  5. Bekki, K., Yahagi, H., Nagashima, M., & Forbes, D. A. 2007, Formation of the Galactic Globular Clusters with He-Rich Stars in Low-Mass Haloes Virialized at High Redshift, MNRAS, 382, L87 https://doi.org/10.1111/j.1745-3933.2007.00394.x
  6. Boley, A. C., Lake, G., Read, J., & Teyssier, R. 2009, Globular Cluster Formation Within a Cosmological Context, ApJ, 706, L192 https://doi.org/10.1088/0004-637X/706/1/L192
  7. Bromm, V., & Clarke, C. J. 2002, The Formation of the First Globular Clusters in Dwarf Galaxies before the Epoch of Reionization, ApJ, 566, L1 https://doi.org/10.1086/339440
  8. Cen, R. 2001, Synchronized Formation of Subgalactic Systems at Cosmological Reionization: Origin of Halo Globular Clusters, ApJ, 560, 592 https://doi.org/10.1086/323071
  9. Cohen, J. G., & Kirby, E. N. 2012, The Bizarre Chemical Inventory of NGC 2419, An Extreme Outer Halo Globular Cluster, ApJ, 760, 86 https://doi.org/10.1088/0004-637X/760/1/86
  10. Conroy, C., Loeb, A., & Spergel, D. N. 2011, Evidence against Dark Matter Halos Surrounding the Globular Clusters MGC1 and NGC 2419, ApJ, 741, 72 https://doi.org/10.1088/0004-637X/741/2/72
  11. Demarque, P., Woo, J. H., Kim, Y. C., & Yi, S. K. 2004, $Y^2$ Isochrones with an Improved Core Overshoot Treatment, ApJS, 155, 667
  12. Dinescu, D. I., Girard, T. M., & van Altena, W. F. 1999, Space Velocities of Globular Clusters. III. Cluster Orbits and Halo Substructure, AJ, 117, 1792 https://doi.org/10.1086/300807
  13. Fall, S. M., & Rees, M. J. 1985, A Theory for the Origin of Globular Clusters, ApJ, 298, 18 https://doi.org/10.1086/163585
  14. Genzel, R., Pichon, C., Eckart, A., Gerhard, O. E., & Ott, T. 2000, Stellar Dynamics in the Galactic Centre: Proper Motions and Anisotropy, MNRAS, 317, 348 https://doi.org/10.1046/j.1365-8711.2000.03582.x
  15. Griffen, B. F., Drinkwater, M. J., Thomas, P. A., & Helly, J. C. 2010, Globular Cluster Formation within the Aquarius Simulation, MNRAS, 405, 375
  16. Gunn, J. E. 1980, in Globular Clusters, ed. D. Hanes & B. Madore, 301 (Cambridge: Cambridge University Press)
  17. Hansen, B. M. S., Anderson, J., Brewer, J., Dotter, A., Fahlman, G. G., Hurley, J., Kalirai, J., King, I., Reitzel, D., Richer, H. B., Rich, R. M., Shara, M. M., & Stetson, P. B. 2007, The White Dwarf Cooling Sequence of NGC 6397, ApJ, 671, 380 https://doi.org/10.1086/522567
  18. Harris, W. E. 1996, A Catalog of Parameters for Globular Clusters in the Milky Way, AJ, 112, 1487 https://doi.org/10.1086/118116
  19. Johnson, K. V., Spergel, D. N., & Hernquist, L. 1995, The Disruption of the Sagittarius Dwarf Galaxy, ApJ, 451, 598 https://doi.org/10.1086/176247
  20. King, I. R. 1966, The Structure of Star Clusters. III. Some Simple Dynamical Models, AJ, 71, 64 https://doi.org/10.1086/109857
  21. Kroupa, P. 2001, On the Variation of the Initial Mass Function, MNRAS, 322, 231 https://doi.org/10.1046/j.1365-8711.2001.04022.x
  22. Lee, H. M., & Ostriker, J. 1987, The Evolution and Final Disintegration of Spherical Stellar Systems in a Steady Galactic Tidal Field, ApJ, 322, 123 https://doi.org/10.1086/165709
  23. Mashchenko, S., & Sills, A. 2005, Globular Clusters with Dark Matter Halos. I. Initial Relaxation, ApJ, 619, 243 https://doi.org/10.1086/426132
  24. Mackey, A. D., & van den Bergh, S. 2005, The Properties of Galactic Globular Cluster Subsystems, MNRAS, 360, 631 https://doi.org/10.1111/j.1365-2966.2005.09080.x
  25. Mandushev, G., Staneva, A., & Spasova, N. 1991, Dynamical Masses for Galactic Globular Clusters, A&A, 252, 94
  26. Meylan, G., & Mayor, M. 1991, Studies of Dynamical Properties of Globular Clusters. VI - The High-Concentration Cluster NGC 6397, A&A, 250, 113
  27. Mieske, S., Hilker, M., Jordan, A., Infante, L, Kissler-Patig, M., Rejkuba, M., Richtler, T., Cote, P., Baumgardt, H., West, M. J., Ferrarese, L., & Peng, E. W. 2008, The Nature of UCDs: Internal Dynamics from an Expanded Sample and Homogeneous Database, A&A, 487, 921 https://doi.org/10.1051/0004-6361:200810077
  28. Moore, B. 1996, Constraints on the Global Mass-to-Light Ratios and on the Extent of Dark Matter Halos in Globular Clusters and Dwarf Spheroidals, ApJ, 461, L13
  29. Peebles, P. J. E. 1984, Dark Matter and the Origin of Galaxies and Globular Star Clusters, ApJ, 277, 470 https://doi.org/10.1086/161714
  30. Peebles, P. J. E., & Dicke, R. H. 1968, Origin of the Globular Star Clusters, ApJ, 154, 891 https://doi.org/10.1086/149811
  31. Saitoh, T. R., Koda, J., Okamoto, T., Wada, K., & Habe, A. 2006, Tidal Disruption of Dark Matter Halos around Proto-Globular Clusters, ApJ, 640, 22 https://doi.org/10.1086/500104
  32. Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, New Grids of Stellar Models from 0.8 to 120 Solar Masses at Z = 0.020 and Z = 0.001, A&AS, 96, 269
  33. Shin, J., & Kim, S. S. 2007, Alternating Direction Implicit Method for Two-Dimensional Fokker-Planck Equation of Dense Spherical Stellar Systemsm, JKAS, 40, 91
  34. Shin, J., Kim, S. S., & Takahashi, K. 2008, Dynamical Evolution of the Mass Function and Radial Profile of the Galactic Globular Cluster System, MNRAS, 386, L67 https://doi.org/10.1111/j.1745-3933.2008.00462.x
  35. Shin, J., Kim, S. S., Yoon, S. J., & Kim, J. 2013, Initial Size Distribution of the Galactic Globular Cluster System, ApJ, 762, 135 https://doi.org/10.1088/0004-637X/762/2/135
  36. Simon, J. D., & Geha, M. 2007, The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem, ApJ, 670, 313 https://doi.org/10.1086/521816
  37. Spitzer, L. Jr. 1987, Dynamical Evolution of Globular Clusters (Princeton: Princeton University Press)
  38. Takahashi, K., & Lee, H. M. 2000, Evolution of Multi-mass Globular Clusters in the Galactic Tidal Field with the Effects of Velocity Anisotropy, MNRAS, 316, 671 https://doi.org/10.1046/j.1365-8711.2000.03594.x
  39. Takahashi, K., & Portegies Zwart, S. 1998, The Disruption of Globular Star Clusters in the Galaxy: A Comparative Analysis between Fokker-Planck and N-Body Models, ApJ, 503, L49 https://doi.org/10.1086/311529
  40. Takahashi, K., Sensui, T., Funato, Y., & Makino, J. 2002, Collisional Evolution of Galaxy Clusters and the Growth of Common Halos, PASJ, 54, 5 https://doi.org/10.1093/pasj/54.1.5
  41. Takahashi, K. 1997, Fokker-Planck Models of Star Clusters with Anisotropic Velocity Distributions III. Multi-Mass Clusters, PASJ, 49, 547 https://doi.org/10.1093/pasj/49.5.547
  42. Trager, S. C., King, I. R., & Djorgovski, S. 1995, Catalogue of Galactic Globular-Cluster Surface-Brightness Profiles, AJ, 109, 218 https://doi.org/10.1086/117268
  43. Zinn, R. 1993, The Galactic Halo Cluster Systems: Evidence for Accretion, ASPC, 48, 39

피인용 문헌

  1. Indirect probes of dark matter and globular cluster properties from dark matter annihilation within the coolest white dwarfs vol.91, pp.10, 2015, https://doi.org/10.1103/PhysRevD.91.103514