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ON A GENERAL CLASS OF OPTIMAL
FOURTH-ORDER MULTIPLE-ROOT FINDERS

Young Ik Kim*

Abstract. A general class of two-point optimal fourth-order meth-
ods is proposed for locating multiple roots of a nonlinear equation.
We investigate convergence analysis and computational properties
for the family. Special and simple cases are considered for real-life
applications. Numerical experiments strongly verify the conver-
gence behavior and the developed theory.

1. Introduction

In many scientific problems, it is often worth to develop a generic
family of iterative methods for a given nonlinear equation f(x) = 0.
Such root-finding methods can be found in works done by Dong.[2], Li
et al.[4-5], Neta et al.[6-8], Sharma[9], Victory et al.[10] and Zhou et
al.[13]. Special attention is paid to the work of Zhou et al. who have
recently carried out an analysis on developing a class of fourth-order
optimal multiple root-finders shown below by (1.1):

{
yn = xn − γ · f(xn)

f ′(xn) ,

xn+1 = xn −Q( f ′(yn)
f ′(xn)) · f(xn)

f ′(xn) ,
(1.1)

where γ ∈ R and Q(·) ∈ C2(R) with C2(R) as a class of functions whose
derivatives exist up to the second order and are continuous on R.

Definition 1.1. (Error equation, asymptotic error constant, order
of convergence)
Let x0, x1, · · · , xn, · · · be a sequence of numbers converging to α. Let
en = xn −α for n = 0, 1, 2, · · · . If constants p ≥ 1, c 6= 0 exist in such a
way that en+1 = c en

p + O(en)p+1 called the error equation, then p and
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η = |c| are said to be the order of convergence and the asymptotic error
constant, respectively. It is easy to find c = limn→∞

en+1

en
p . Some authors

call c the asymptotic error constant.

It has been shown that (1.1) defines an optimal fourth-order methods
with γ = 2m

m+2 and requirements





Q(u) = m,
Q′(u) = −1

4m3−m(m + 2)m,

Q′′(u) = 1
4m4

(
m

m+2

)−2m
,

(1.2)

where u =
(

m
m+2

)m−1. The treatment, unfortunately, has not investi-
gated the corresponding error equation for (1.1), whose information is
usually very valuable for the complete analysis of convergence order.

In this paper, we concern ourselves with the extension of (1.1) by
developing a more general family of fourth-order methods which are
of optimal order in the sense of Kung-Traub[11]. Assuming that the
multiplicity m of a root α is known for a nonlinear equation f(x) = 0,
we propose a general class of two-point optimal fourth-order methods
for locating multiple roots in the following form:

{
yn = xn − γ · f(xn)

f ′(xn) ,

xn+1 = yn −Kf (hn, vn), hn = f(xn)
f ′(xn) , vn = f ′(yn)

f ′(xn) ,
(1.3)

where γ ∈ R and Kf : C2 → C : is analytic in a region containing
(0, ρ) with ρ ∈ C being a constant satisfying f ′(yn)

f ′(xn) = ρ + O(en), en =
xn − α. When Kf (h, v) = h · Tf (v) is chosen, observe that method
(1.3) indeed reduces to (1.1) by taking Q(v) = γ + Tf (v). By noting
f(xn)
f ′(xn) = O(en), f ′(yn)

f ′(xn) = ρ + O(en), it is useful to develop Kf (h, v)
about (0, ρ) up to fourth-order terms in order to design fourth-order
methods. In the course of development, we will get as much information
about the structure of Kf as possible. We will also derive explicitly the
corresponding error equations for (1.3) in general terms.

Observe that proposed scheme (1.3) requires three new function eval-
uations for f(xn), f ′(xn), f ′(yn) at two points xn, yn per iteration. Con-
sequently, it has an optimal convergence of order four. In the following
section, further analysis with this observation will lead to the successful
development of a new optimal family of fourth-order methods.
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2. Method development and convergence analysis

The following Theorem 2.1 best describes the method development
and convergence analysis regarding proposed scheme (1.3).

Theorem 2.1. Assume that f : C→ C has a multiple root α of mul-
tiplicity m for a given m ∈ N and is analytic in a region containing α.

Let κ =
(

m
m+2

)m
and ∆ = f (m)(α) and θj = f (m+j)(α)

fm(α) for j = 1, 2, 3, · · · .
Let θ1θ2θ3 6= 0 and x0 be an initial guess chosen in a sufficiently small
neighborhood of α. Let Kf : C2 → C be analytic in a region contain-

ing (0, ρ) with ρ =
(

m
m+2

)m−1
. Let Kij = 1

i!j!
∂i+jKf (h,v)

∂hi∂vj

∣∣
(h=0,v=ρ)

for

0 ≤ i, j ≤ 4. If K00 = K01 = K02 = K03 = K20 = K21 = K30 =
0,K10 = m2

2+m ,K11 = −m3

4κ , K12 = m4

8κ2 , then iterative scheme (1.3) de-
fines a family of fourth-order multipoint optimal methods satisfying the
error equations below: for n = 0, 1, 2, · · ·

en+1 = −
(

K40

m4
+

θ1θ2

m(m + 1)2(m + 2)
− mθ3

(m + 1)(m + 2)3(m + 3)

− 4K31θ1κ

m6(m + 1)
+ Ω

)
e4
n + O(e5

n), (2.1)

where Ω = 16K22θ2
1κ2

m8(m+1)2
− θ3

1(12m5−2m6+2m7+2m8+m9+192K13κ3)
3m10(m+1)3

+ 256K04θ4
1κ4

m12(m+1)4
.

Proof. Taylor series expansion of f(xn) about α up to (m+4)th-order
terms yields with f(α) = 0:

f(xn) =
∆em

n

m!
{1 + A1en + A2e

2
n + A3e

3
n + A4e

4
n + O(e5

n)}, (2.2)

where Aj = m!θj

(m+j)! for j = 1, 2, · · · . With Bj = m+j
m Aj for j = 1, 2, · · · ,

we also find:

f ′(xn) =
∆em−1

n

(m− 1)!
{1 + B1en + B2e

2
n + B3e

3
n + B4e

4
n + O(e5

n)}. (2.3)

For simplicity, en will be denoted by e throughout the proof. With the
aid of symbolic computation of Mathematica, we have with hn = f(xn)

f ′(xn) :

yn = xn − γ · hn = α + te + K1(1− t)e2 + K2(1− t)e3

+K3(1− t)e4 + K4(1− t)e5 + O(e6), (2.4)

where t = 1 − γ
m , K1 = B1 − A1, K2 = B2 − A2 − B1K1, K3 =

B3 −A3 −B2K1 −B1K2, K4 = B4 −A4 −B3K1 −B2K2 −B1K3.
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In view of the fact that f(yn) = f(xn)|en→(yn−α), we get:

f(yn) =
∆em

m!
[tm+tm−1(A1t

2+K1m(1−t))e+
1
2
tm−2[K2

1m(m−1)(−1+t)2

−2A1K1(m + 1)(−1 + t)t2 + 2t(A2t
3 + K2m(1− t))]e2

+
1
6
tm−3[−K3

1m(m− 1)(m− 2)(−1 + t)3 + 3A1K
2
1m(m + 1)(−1 + t)2t2

−6K1(−1 + t)t(A2(m + 2)t3 + K2m(−1 + m + t−mt))
+6t2(K3m(1− t) + t(−A1K2(m + 1)(−1 + t) + A3t

3))]e3

+
1
24

tm[12A2(m + 2)(−1 + t)(K2
1 (m + 1)(−1 + t)− 2K2t)

+
1
t4

(K4
1m(m− 1)(m− 2)(m− 3)(−1 + t)4

−12K2
1K2m(m− 1)(m− 2)(−1 + t)3t− 4A1K

3
1m(m2 − 1)(−1 + t)3t2

−24K1(−1 + t)t2(K3m(−1 + m + t−mt) + t(−A1K2m(m + 1)(−1 + t)
+A3(m + 3)t3)) + 12t2(K2

2m(m− 1)(−1 + t)2

+2t(K4m(1− t)+ t(−A1K3(m+1)(−1+ t)+A4t
4))))]e4 +O(e5)]. (2.5)

Similarly, we can obtain f ′(yn) = f ′(xn)|en→(yn−α) in terms of ∆,m, t,
Ai,Ki. It follows that

vn =
f ′(yn)
f ′(xn)

= tm−1 + (−1 + t)tm−2(K1(1−m) + B1t)e

+
1
2
(−1 + t)tm−3[K2

1 (m− 1)(m− 2)(−1 + t)

+2B1K1t(−1 + m−mt) + 2t(K2(1−m)
+t(−B2

1 +B2(1+ t)))]e2 +Ψ3e
3 +Ψ4e

4 +O(e5), (2.6)
where Ψ3 = 1

6(−1 + t)tm−4[−K3
1 (m − 1)(m − 2)(m − 3)(−1 + t)2 +

3B1K
2
1 (m − 1)(2 + m(−1 + t))(−1 + t)t + K3(1 −m) + B3

1t + B3t(1 +
t + t2) − B1(K2(1 + m(−1 + t)) + B2t(2 + t))) + 6K1t(K2(m − 1)(m −
2)(−1 + t) + t(B2

1(1 + m(−1 + t)) + B2(m− 1− (m + 1)t2)))],
Ψ4 = 1

24 tm−5[K4
1 (m− 1)(m− 2)(m− 3)(m− 4)(−1 + t)3 − 4B1K

3
1 (m−

1)(m−2)(3+m(−1+ t))(−1+ t)2t+24K1t
2(K3(m−1)(m−2)(−1+ t)+

B3
1t(−1+m−mt)+B3t(m−1− (m+2)t3)+B1(K2(m−1)(2+m(−1+

t))(−1+t)+B2t(2+t2+m(−2+t+t2))))+12t2(K2
2 (m−1)(m−2)(−1+

t)+2K2t(B2
1(1+m(−1+ t))+B2(m− 1− (m+1)t2))+2t(K4(1−m)−

B4
1t + B2

1B2t(3 + t) + t(1 + t)(−B2
2 + B4(1 + t2))−B1(K3(1 + m(−1 +

t))+B3t(2+ t+ t2))))+12K2
1 (−1+ t)t(−K2(m−1)(m−2)(m−3)(−1+

t)+ t(−B2
1(m− 1)(2+m(−1+ t))+B2(−2+m(3−m+(1+m)t2))))].



On a general class of optimal fourth-order multiple-root finders 661

By use of the fact that O(tm−1) = O(h) = O(e), Taylor expansion of
Kf (h, v) about (0, tm−1) up to the fourth-order terms in both variables
yields: after removing terms of degree higher than 4 in e by setting
K`j = 0 for all `, j satisfying ` + j ≥ 5

Kf (h, v) = K00 + K01(v − tm−1) + K02(v − tm−1)2 + K03(v − tm−1)3

+K04(v − tm−1)4 + [K10 + K11(v − tm−1) + K12(v − tm−1)2

+K13(v−tm−1)3]h+[K20+K21(v−tm−1)+K22(v−tm−1)2]h2

+[K30 + K31(v − tm−1)]h3 + K40h
4 + O(e5).

By use of (2.2), (2.3) and (2.6) with Kf (hn, vn), we obtain xn+1 in (1.3)
as follows:

xn+1 = α−K00 +
[− K10

m
+ t−K01(−1 + t)tm−2(K1(1−m) + B1t)

]
e

+φ2e
2 + φ3e

3 + φ4e
4 + O(e5), (2.7)

where φi is a multivariate function in t,m,Aj , Bj , Kj ,Kjk denoted by
φi(t,m, Aj , Bj ,Kj ,Kjk) with 2 ≤ j, k ≤ 4 for 2 ≤ i ≤ 4. Identifying
en+1 = xn+1−α in (2.7), we first set K00 = 0 and −K10

m + t−K01(−1+
t)tm−2(K1(1 − m) + B1t) = 0, together with φ2 = φ3 = 0 to obtain
fourth-order convergence. As a result, we find that

K10 = mt− K01(−1 + t)tm−2(m(−1 + t) + 1 + t)
m + 1

θ1. (2.8)

Substituting A1, A2, B1, B2,K1,K2 and (2.8) with K00 = 0 into φ2 = 0
yields after simplifications:

−K20

m2
+

m + K11(1− t)tm−2(m(−1 + t) + 1 + t)
m2(m + 1)

θ1

+
K01t

m−2(2− 2m + 3mt− (2 + m)t3)
m(m + 1)(m + 2)(m(t− 1) + 1 + t)

θ2+ψ ·(t−1)tm−3 ·θ2
1 = 0, (2.9)

with ψ = K01(2+m(m−3−5(m−1)t+4(1+m)t2))−2K02(−1+t)tm−1(m(−1+t)+1+t)2

2m2(m+1)2
.

For Eqn.(2.9) to hold independently of θ1, θ2, we must have:

K11 =
mt2−m

(t− 1)(1 + m(t− 1) + t)
,

K20 = K01 = K02 = 0,K10 = mt. (2.10)
Similarly by substituting A1, A2, B1, B2, K1, K2, (2.8) and (2.10) with
K00 = 0 into φ3 = 0, we find after simplifications:

−K30

m3
− K21(−1 + t)tm−2(m(−1 + t) + 1 + t)

m3(m + 1)
θ1
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+
t(m− (2 + m)t)
m(m + 1)(m + 2)

θ2 + ψ1 · θ2
1 + ψ2 · θ3

1 = 0, (2.11)

with ψ1 = 2K12(t−1)2t2m−3(m(t−1)+1+t)3+m(3m−2−m2+(m−1)(3m+2)t−2(m+1)2t2)
2tm3(m+1)2(m(t−1)+t+1)

,

ψ2 = K03(t−1)3t3m−7(m(t−1)+t+1)3

m3(m+1)3
.

For Eqn.(2.11) to be independently of θ1, θ2, we get with κ = ( m
m+2)m:

t =
m

m + 2
,K03 = 0,K21 = 0,K30 = 0, K12 =

m4

8κ2
. (2.12)

Finally by substituting A1, A2, A3, B1, B2, B3,K1, K2, K3, (2.8), (2.10)
and(2.12) with K00 = 0 into φ4, we find after simplifications:

φ4 = −K40

m4
− θ1θ2

m(1 + m)2(2 + m)
+

mθ3

(m + 1)(m + 2)3(m + 3)
+

4K31θ1κ

m6(m + 1)

− 16K22θ
2
1κ

2

m8(m + 1)2
− 256K04θ

4
1κ

4

m12(m + 1)4

+
θ3
1(12m5 − 2m6 + 2m7 + 2m8 + m9 + 192K13κ

3)
3m10(m + 1)3

. (2.13)

Consequently, (2.7) now implies en+1 = φ4e
4
n + O(e5

n), yielding the de-
sired equation (2.1). Since the proposed methods require one-function
and two-derivative evaluation per iteration, they are optimal in the sense
of Kung-Traub. This completes the proof.

3. Special cases of fourth-order methods

In this section, some special cases of fourth-order methods are pre-
sented from Kf (h, v) of proposed methods (1.3). They include the ex-
isting optimal methods that have been developed by many researchers.
As requirements for the fourth-order convergence of Kf (h, v) described
in Theorem 2.1, the relations

K00 = K01 = K02 = K03 = K20 = K21 = K30 = 0,

K10 =
m2

m + 2
,K11 = −m3

4κ
,K12 =

m4

8κ2
(3.1)

easily determine the exact form of each special case with γ = 2m
m+2 , κ =(

m
m+2

)m.

Case 1:

Kf (h, v) = Tf (v) · h with Tf (v) =
a1v

2 + a2v + a3

b1v2 + b2v + b3
. (3.2)
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Parameters:



a3 = κ−a2m(2+m)2(4+2m+m2)−(−16b1m2+a1(2+m)(48+40m+20m2+6m3+m4)κ
m3(2+m)2

,

b2 = −2a2m(2+m)−2(2a1(2+m)(3+m)+b1m2(−2+2m+m2)κ
m4 ,

b3 = κ2a2m(2+m)2+(b1m2(−8+8m+6m2+m3)+4a1(16+18m+7m2+m3))κ
m4(2+m)

.

Three coefficients can be determined in terms of remaining three co-
efficients.

Asymptotic error Constants:

η = φ4 = λθ3
1 −

1
m(m + 1)2(m + 2)

θ1θ2 +
m

(m + 1)(m + 2)3(m + 3)
θ3,

where λ = a2m(2+m)2(−2+2m+2m2+m3)+2(−2b1m2(−2+5m+2m2+m3)+a1ν)κ
3m4(1+m)3(a2m(2+m)2+2(−2b1m2+a1(12+14m+6m2+m3))κ)

with ν = (−48− 16m + 40m2 + 50m3 + 28m4 + 8m5 + m6).

We also find the weighting function Q(v) = γ + Tf (v) with γ = 2m
m+2

in the second step of (1.1). Among many subcases of Case 1, we consider
some useful subcases with each subcase number abbreviated by S.C. In
Table 1, a summary of eight subcases of Case 1 is well displayed with
specific forms of Tf (v) = a1v2+a2v+a3

b1v2+b2v+b3
and Q(v) = γ + Tf (v) as well as

asymptotic error constants η = λ1θ
3
1 + λ2θ1θ2 + λ3θ3. The results of

the first five subcases are in agreement with those of five cases studied
by Zhou et al.[13]. Especially Subcase 3 implies the optimal fourth-
order iterative methods developed by Sharma et al.[9]. Both Subcase
4 and Subcase 6 imply also the optimal fourth-order iterative methods
developed by Li et al.[4-5].

Case 2:

Kf (h, v) =
(

a2 + a3v
3

a1 + v2

)
h (3.3)

Parameters:

a1 = −(m3 + 4m2 + 4m− 8)κ2

m2(m + 4)
, a2 =

(m4 + 6m3 + 22m2 + 48m + 64)κ2

3(m + 2)(m + 4)
,

a3 = − m3(m2 + 2m− 2)
3(m + 2)2(m + 4)κ

.
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Asymptotic error Constants:

η = λ1θ
3
1 −

1
m(m + 1)2(m + 2)

θ1θ2 +
m

(m + 1)(m + 2)3(m + 3)
θ3,

with λ1 = m8+10m7+44m6+106m5+140m4+64m3−72m2−32m+128
3m5(m+1)3(m+2)2(m2+4m+6)

.

4. Algorithm, numerical results, and discussions

By use of Mathematica[12] program, we have performed numerical
experiments with 500 precision digits, being large enough to minimize
round-off errors. For accurate computation of asymptotic error con-
stants and asymptotic order of convergence, the zero α, however, was
given with 550 significant digits, whenever its exact value is not known;
the error bound ε = 1

2 × 10−200 was used. All numerical experiments
have been carried out on a personal computer equipped with an AMD
3.1 Ghz dual-core processor and Windows 32-bit XP operating system.

Iterative methods associated with current numerical experiments are
identified as follows:

Method NET: xn+1 = xn − f(xn)
a1f ′(xn)+a2f ′(yn)+a3f ′(ηn) ,

yn = xn − a f(xn)
f ′(xn) , ηn = xn − b f(xn)

f ′(xn) − c f(xn)
f ′(yn) ,

with a, b, c, a1, a2, a3 as constant real parameters.
Method SHA: xn+1 = yn− Tf (vn)hn, with yn = xn− γhn and Tf (v)

chosen as Subcase 3 of Case 1.
Method ZCS: xn+1 = yn − Tf (vn)hn, with yn = xn − γhn and Tf (v)

chosen as Subcase 4 of Case 1.
Method YK1: xn+1 = yn−Tf (vn)hn, with yn = xn− γhn and Tf (v)

chosen as Subcase 8 of Case 1.
Method YK2: xn+1 = yn − Kf (hn, vn), with yn = xn − γhn and

Kf (h, v) chosen as Case 2.

Note that Method NET is not optimal requiring one-function and three-
derivative evaluation per iteration. It employs the following parameters
in the current experiments:

a =
m

2
, b =

{ −2m−1c + 2m for m 6= 3;
12
5 − 4c for m = 3.

(4.1)
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Table 1. Forms of Tf (v), Q(v) of each subcase for Case 1

S.C. Tf (v) = a1v2+a2v+a3
b1v2+b2v+b3

Q(v) = γ + Tf (v)

a1v2 + a2v + a3 Av2 + Bv + C

1 a1 = m4

8κ2 b1 = 0 A = a1

a2 = −m3(m+3)
4κ

b2 = 0 B = a2

a3 =
m2(m3+8m2+20m+24)

8(m+2)
b3 = 1 C =

m(m3+6m2+8m+8)
8

a1v + a2 + a3
v

A + B
v

+ C

2 a1 = m4

8κ
b1 = 0 A = a1

a2 = −m3(m2+5m+8)
4(m+2)

b2 = 1 B = a3

a3 = 1
8
m(m + 2)3κ b3 = 0 C = − (m3+3m2+2m−4)

4

a1 + a2
v

+ a3
v2 A + B

v
+ C

v2

3 a1 =
m3(m2+2m−4)

8(m+2)
b1 = 1 A =

m(m3−4m+8)
8

a2 = − (m+2)2m(m−1)κ
4

b2 = 0 B = a2

a3 = 1
8
m(m + 2)3κ2 b3 = 0 C = a3

a1v2+a2v+a3
b1v2+b2v

A
v

+ 1
B+Cv

4 a1 = − 2m2β
(m+2)κ

b1 = m2β
κ

A =
(m−2)m(m+2)3κ

2(m3−4m+8)

a2 = −m2(m+4)(m2−8)β
2(m+2)

b2 = − (m3−4m+8)β
m

B = b2

a3 =
(m−2)(m+2)3βκ

2
b3 = 0 C = b1

a2v+a3
b2v+1

B+Cv
1+Av

5 a1 = 0 b1 = 0 A = − 1
κ

a2 = − m3

2(m+2)κ
b2 = − 1

κ
B = −m2

2

a3 = −m(m2+2m+4)
2(m+2)

b3 = 1 C =
m(m−2)

2κ

v+a3
b2v+b3

= 1
b2

(
1 +

a3−b3/b2
v+b3/b2

)
A + 1

B+Cv

6 a1 = 0 b1 = 0 A = −m(m−2
2

a2 = 1 b2 = − 2(m+2)

m3 B = − 1
m

a3 = − (m2+2m+4)κ

m2 b3 =
2(m+2)κ

m3 C = 1
mκ

a2v+a3
v2+b3

2m
m+2

+ Bv+C
v2+A

7 a1 = 0 b1 = 1 A = b3

a2 = −m(m2+2m−4)κ
m+2

b2 = 0 B = a2

a3 =
m(m3+6m2+14m+16)κ2

(m+2)2
b3 = − (m2+2m−4)κ2

m(m+2)
C = a3

a1v2+a3
v2+b3

= a1 + a3−a1b3
v2+b3

A + C
v2+B

8 a1 = −m2(m2+2m−2)
2(m+2)(m+3

b1 = 1 A = −m(m2−6)
2(m+3)

a2 = 0 b2 = 0 B = b3

a3 =
(m+2)(m2+2m+6)κ2

2(m+3)
b3 = − (m−1)(m+2)2κ2

m2(m+3)
C =

2(m+2)3κ2

(m+3)2





a1 = −2mc(m−1)(m−2)+6m(4m2−3m−2)

24m2(m2−2m−2)
, a2 = 2m−4[2mc(m−1)(m−2)−32m(m+1)]

3m2(m2−2m−2)
,

a3 = − (−1)−m(m−2)

12m(m2−2m−2)
for m 6= 3

a1 = − 1
24
− 25c

27
, a2 = 4(12+25c)

27
, a3 = − 125

72
for m = 3.

(4.2)
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



c = − 21−mm(9m2−12m+7±
√

33m4−168m3+318m2+72m−239)

(m−1)(m−2)(m−3)
for m > 3,

c = free real constant for m = 3,
c = 264

19
for m = 2,

c = 18 for m = 1.

(4.3)

Remark 4.1. Observe that the values of c, a1, a2, a3 can be more
generally determined in terms of m by selecting a special form of b and
exhibit better selections than those values suggested by Neta[6].

Definition 4.2. (Asymptotic Convergence Order)
Assume that the asymptotic error constant η = limn→∞

|en|
|en−1|p is known

as described in Definition 1.1. Then we can define the asymptotic con-
vergence order pa = limn→∞

log |en/η|
log |en−1| , being abbreviated by A.C.O.

In order to verify the fourth-order convergence of (1.3) to be seen in
Table 2, four test functions F1(x)− F2(x) are presented below:{

F1(x) = [cos πx
2

+ 2x− π]5; α ≈ 2.06795083703446, m = 5

F2(x) = [cos x2 − x log (1 + x2 − π) + 1]
2
(x2 − π); α =

√
π, m = 3

(4.4)

where log z (z ∈ C) represents a principal analytic branch such that
−π ≤ Im(log z) < π. Tables 2 lists iteration indexes n, approximate
zeros xn, residual errors |f(xn)|, errors |en| = |xn − α| and computa-
tional asymptotic error constants ηn = | en

en−1
4 | as well as the theoretical

asymptotic error constant η and computational asymptotic convergence
order pn = log |en/η|

log |en−1| . Initial guesses x0 were selected close to α not only
to guarantee the convergence of (1.3) and but also to clearly observe the
convergence of the computed asymptotic error constants requiring small-
number divisions. Computational asymptotic error constants agree up
to 10 significant digits with theoretical ones.

Additional test functions are given below:



f1(x) = (sin2 x− x2 + 1)2; α ≈ 1.40449164821534, m = 2
f2(x) = (x− π + sin x log x2 + 1)2; α = π, m = 2
f3(x) = (2x + e−x + sin x2 − 3)6; α ≈ 0.924463112118051, m = 6

f4(x) = (x10 −√3x3 cos πx
6

+ 1
x2+1

)(x− 1)4; α = 1, m = 5

f5(x) = cos (x2 − 2x + 52
49

)− log (x2 − 2x + 101
49

)− 1; α = 1 + i
√

3
7

, i =
√−1, m = 1,

where log z (z ∈ C) represents a principal analytic branch such that
−π ≤ Im(log z) < π.

The values of |xn − α| for additional test functions are listed in Ta-
ble 3 for fourth-order methods NET, SHA, ZCS and YK1, YK2.
As Table 3 suggests, proposed methods show favorable performance as
compared with NET. Under the same order of convergence, one should
note that the speed of local convergence of |xn − α| is dependent on cj ,
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Table 2. Convergence for sample test functions F1(x)−
F2(x) with methods YK1−YK2

(MT
Fi

)
n xn |f(xn)| |en|

∣∣ en
en−1

4

∣∣ η pn

0 1.98 0.000194797 0.0879508(YK1
F1

)
1 2.06799668257943 9.68×10−21 4.58×10−5 0.7661913267 0.5782727709 3.88425

2 2.06795083703446 5.19×10−87 2.55×10−18 0.5781901293 4.00001
3 2.06795083703446 4.32×10−352 2.46×10−71 0.5782727709 4.00000
4 2.06795083703446 2.05×10−1412 2.12×10−283

0 1.8 0.00265039 0.0275461(YK2
F2

)
1 1.77245143577374 1.97×10−15 2.41×10−6 4.194664758 3.532062747 3.95213

2 1.77245385090552 2.42×10−64 1.20×10−22 3.532011206 4.00000
3 1.77245385090552 5.59×10−260 7.36×10−88 3.532062747 4.00000
4 1.77245385090552 1.57×10−1042 1.03×10−348

MT:Method; pn =
log |en/η|
log |en−1| , en = xn − α.

Table 3. Comparison of |xn−α| for f1(x)−f6(x) among
fourth-order methods

f x0 |xn − α| NET SHA ZCS YK1 YK2

f1 1.45 |x1 − α| 2.99e-6∗ 3.43e-6 2.99e-6 3.10e-6 2.94e-6
|x2 − α| 6.49e-23 1.29e-22 6.49e-23 7.80e-23 5.99e-23
|x3 − α| 1.44e-89 2.63e-88 1.44e-89 3.11e-89 1.02e-89
|x4 − α| 3.53e-356 4.33e-351 3.53e-356 7.93e-355 8.84e-357

f2 3.00 |x1 − α| 3.02e-4 3.19e-4 3.02e-4 3.06e-4 3.00e-4
|x2 − α| 3.15e-15 4.15e-15 3.15e-15 3.38e-15 3.05e-15
|x3 − α| 3.75e-59 1.18e-58 3.75e-59 5.00e-59 3.27e-59
|x4 − α| 7.53e-235 7.62e-233 7.53e-235 2.40e-234 4.33e-235

f3 0.875 |x1 − α| 5.11e-6 2.34e-6 2.34e-6 2.34e-6 2.34e-6
|x2 − α| 2.13e-21 1.83e-23 1.83e-23 1.83e-23 1.83e-23
|x3 − α| 6.48e-83 6.91e-92 6.89e-92 6.89e-92 6.88e-92
|x4 − α| 5.50e-329 1.39e-365 1.38e-365 1.37e-365 1.37e-365

f4 1.08 |x1 − α| 2.76e-3 2.59e-4 2.55e-4 2.53e-4 2.52e-4
|x2 − α| 1.98e-8 7.07e-14 6.48e-14 6.30e-14 6.15e-14
|x3 − α| 5.01e-29 3.90e-52 2.71e-52 2.40e-52 2.18e-52
|x4 − α| 2.05e-111 3.61e-205 8.32e-206 5.14-206 3.45e-206
|x5 − α| 5.80e-441

f5 0.97+ |x1 − α| 2.91e-5 4.10e-5 1.20e-4 4.10e-5 3.68e-5
0.22i |x2 − α| 6.32e-18 3.36e-17 6.28e-15 3.36e-17 1.97e-17

|x3 − α| 1.38e-68 1.51e-65 4.70e-56 1.51e-65 1.63e-66
|x4 − α| 3.17e-271 6.27e-259 1.48e-220 6.27e-259 7.66e-263

∗ 2.99e-6 denotes 2.99 ×10−6

namely f(x) and α. Tables 3 and 4 well exhibit fourth-order conver-
gence of proposed scheme (1.3). As can be seen in Table 5, the CPU
times(measured in seconds) of NET are mostly increased by an approx-
imate factor of between 3 and 6, as compared with proposed methods
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Table 4. Comparison of computational asymptotic con-
vergence order pn = log |en/η|

log |en−1|

f x0 pn NET SHA ZCS YK1 YK2

f1 p1 4.04837 4.04850 4.04837 4.04831 4.04823
1.45 p2 4.00000 4.00000 4.00000 4.00000 4.00000

p3 4.00000 4.00000 4.00000 4.00000 4.00000

f2 p1 3.64910 3.64397 3.64910 3.64791 3.64989
3.00 p2 4.00017 4.00018 4.00017 4.00017 4.00017

p3 4.00000 4.00000 4.00000 4.00000 4.00000

f3 p1 4.43038 4.14855 4.14848 4.14846 4.14844
0.875 p2 3.99999 4.00000 4.00000 4.00000 4.00000

p3 4.00000 4.00000 4.00000 4.00000 4.00000

f4 p1 4.62467 4.35547 4.35699 4.35755 4.35801
1.08 p2 3.99308 4.00043 4.00042 4.00042 4.00042

p3 4.00000 4.00000 4.00000 4.00000 4.00000
p4 4.00000

f5 0.97+ p1 3.93551 3.92454 3.88212 3.92454 3.92753
0.22i p2 3.99998 3.99997 3.99985 3.99997 3.99997

p3 4.00000 4.00000 4.00000 4.00000 4.00000

Table 5. Comparison of CPU times among derivative-
free eighth-order methods

f x0 NET SHA ZCS YK1 YK2

f1 1.45 0.032 0.031 0.062 0.031 0.031
f2 3.00 0.047 0.094 0.141 0.094 0.078
f3 0.875 0.203 0.078 0.109 0.062 0.062
f4 1.00 0.984 0.125 0.234 0.156 0.110
f5 0.97 + 0.22i 0.172 0.047 0.125 0.078 0.078

YK1-YK2. The least errors or CPU times are highlighted in boldface
or italicized numbers in Tables 3 and 5.

Although being limited to the current test functions, YK2 has shown
best accuracy. Since computational accuracy generally depends on the
iterative methods, the sought zeros and the test functions as well as close
initial approximations, one should be aware that no iterative method
always shows best accuracy for all the test functions. The efficiency
indices for the proposed family of methods (1.3) are found to be 41/3,
being optimal in the sense of Kung-Traub and better than 41/4 for non-
optimal scheme NET. The explicit form of error equation (2.1) ensures
the convergence order of method (1.3). Efficient computing time ensures
a better implementation of (1.3), from a practical point of view, as
compared to existing methods NET, SHA, ZCS. The current analysis
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can be extended to a development of higher-order multiple-root finders
for nonlinear equations.
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