ON A GENERAL CLASS OF OPTIMAL FOURTH-ORDER MULTIPLE-ROOT FINDERS

Young IK Kim*

Abstract

A general class of two-point optimal fourth-order methods is proposed for locating multiple roots of a nonlinear equation. We investigate convergence analysis and computational properties for the family. Special and simple cases are considered for real-life applications. Numerical experiments strongly verify the convergence behavior and the developed theory.

1. Introduction

In many scientific problems, it is often worth to develop a generic family of iterative methods for a given nonlinear equation $f(x)=0$. Such root-finding methods can be found in works done by Dong.[2], Li et al.[4-5], Neta et al.[6-8], Sharma[9], Victory et al.[10] and Zhou et al.[13]. Special attention is paid to the work of Zhou et al. who have recently carried out an analysis on developing a class of fourth-order optimal multiple root-finders shown below by (1.1):

$$
\left\{\begin{array}{l}
y_{n}=x_{n}-\gamma \cdot \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.1}\\
x_{n+1}=x_{n}-Q\left(\frac{f^{\prime}\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right) \cdot \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{array}\right.
$$

where $\gamma \in \mathbb{R}$ and $Q(\cdot) \in \mathbf{C}^{2}(\mathbb{R})$ with $\mathbf{C}^{2}(\mathbb{R})$ as a class of functions whose derivatives exist up to the second order and are continuous on \mathbb{R}.

DEFINITION 1.1. (Error equation, asymptotic error constant, order of convergence)
Let $x_{0}, x_{1}, \cdots, x_{n}, \cdots$ be a sequence of numbers converging to α. Let $e_{n}=x_{n}-\alpha$ for $n=0,1,2, \cdots$. If constants $p \geq 1, c \neq 0$ exist in such a way that $e_{n+1}=c e_{n}^{p}+O\left(e_{n}\right)^{p+1}$ called the error equation, then p and

[^0]$\eta=|c|$ are said to be the order of convergence and the asymptotic error constant, respectively. It is easy to find $c=\lim _{n \rightarrow \infty} \frac{e_{n+1}}{e_{n} p}$. Some authors call c the asymptotic error constant.

It has been shown that (1.1) defines an optimal fourth-order methods with $\gamma=\frac{2 m}{m+2}$ and requirements

$$
\left\{\begin{array}{l}
Q(u)=m \tag{1.2}\\
Q^{\prime}(u)=-\frac{1}{4} m^{3-m}(m+2)^{m} \\
Q^{\prime \prime}(u)=\frac{1}{4} m^{4}\left(\frac{m}{m+2}\right)^{-2 m}
\end{array}\right.
$$

where $u=\left(\frac{m}{m+2}\right)^{m-1}$. The treatment, unfortunately, has not investigated the corresponding error equation for (1.1), whose information is usually very valuable for the complete analysis of convergence order.

In this paper, we concern ourselves with the extension of (1.1) by developing a more general family of fourth-order methods which are of optimal order in the sense of Kung-Traub[11]. Assuming that the multiplicity m of a root α is known for a nonlinear equation $f(x)=0$, we propose a general class of two-point optimal fourth-order methods for locating multiple roots in the following form:

$$
\left\{\begin{array}{l}
y_{n}=x_{n}-\gamma \cdot \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.3}\\
x_{n+1}=y_{n}-K_{f}\left(h_{n}, v_{n}\right), h_{n}=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, v_{n}=\frac{f^{\prime}\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)},
\end{array}\right.
$$

where $\gamma \in \mathbb{R}$ and $K_{f}: \mathbb{C}^{2} \rightarrow \mathbb{C}:$ is analytic in a region containing $(0, \rho)$ with $\rho \in \mathbb{C}$ being a constant satisfying $\frac{f^{\prime}\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)}=\rho+O\left(e_{n}\right), e_{n}=$ $x_{n}-\alpha$. When $K_{f}(h, v)=h \cdot T_{f}(v)$ is chosen, observe that method (1.3) indeed reduces to (1.1) by taking $Q(v)=\gamma+T_{f}(v)$. By noting $\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=O\left(e_{n}\right), \frac{f^{\prime}\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)}=\rho+O\left(e_{n}\right)$, it is useful to develop $K_{f}(h, v)$ about $(0, \rho)$ up to fourth-order terms in order to design fourth-order methods. In the course of development, we will get as much information about the structure of K_{f} as possible. We will also derive explicitly the corresponding error equations for (1.3) in general terms.

Observe that proposed scheme (1.3) requires three new function evaluations for $f\left(x_{n}\right), f^{\prime}\left(x_{n}\right), f^{\prime}\left(y_{n}\right)$ at two points x_{n}, y_{n} per iteration. Consequently, it has an optimal convergence of order four. In the following section, further analysis with this observation will lead to the successful development of a new optimal family of fourth-order methods.

2. Method development and convergence analysis

The following Theorem 2.1 best describes the method development and convergence analysis regarding proposed scheme (1.3).

Theorem 2.1. Assume that $f: \mathbb{C} \rightarrow \mathbb{C}$ has a multiple root α of multiplicity m for a given $m \in \mathbb{N}$ and is analytic in a region containing α. Let $\kappa=\left(\frac{m}{m+2}\right)^{m}$ and $\Delta=f^{(m)}(\alpha)$ and $\theta_{j}=\frac{f^{(m+j)}(\alpha)}{f^{m}(\alpha)}$ for $j=1,2,3, \cdots$. Let $\theta_{1} \theta_{2} \theta_{3} \neq 0$ and x_{0} be an initial guess chosen in a sufficiently small neighborhood of α. Let $K_{f}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be analytic in a region containing $(0, \rho)$ with $\rho=\left(\frac{m}{m+2}\right)^{m-1}$. Let $K_{i j}=\left.\frac{1}{i!j!} \frac{\partial^{i+j} K_{f}(h, v)}{\partial h^{i} \partial v^{j}}\right|_{(h=0, v=\rho)}$ for $0 \leq i, j \leq 4$. If $K_{00}=K_{01}=K_{02}=K_{03}=K_{20}=K_{21}=K_{30}=$ $0, K_{10}=\frac{m^{2}}{2+m}, K_{11}=-\frac{m^{3}}{4 \kappa}, K_{12}=\frac{m^{4}}{8 \kappa^{2}}$, then iterative scheme (1.3) defines a family of fourth-order multipoint optimal methods satisfying the error equations below: for $n=0,1,2, \cdots$

$$
\begin{align*}
e_{n+1}=-\left(\frac{K_{40}}{m^{4}}\right. & +\frac{\theta_{1} \theta_{2}}{m(m+1)^{2}(m+2)}-\frac{m \theta_{3}}{(m+1)(m+2)^{3}(m+3)} \\
& \left.-\frac{4 K_{31} \theta_{1} \kappa}{m^{6}(m+1)}+\Omega\right) e_{n}^{4}+O\left(e_{n}^{5}\right) \tag{2.1}
\end{align*}
$$

where $\Omega=\frac{16 K_{22} \theta_{1}^{2} \kappa^{2}}{m^{8}(m+1)^{2}}-\frac{\theta_{1}^{3}\left(12 m^{5}-2 m^{6}+2 m^{7}+2 m^{8}+m^{9}+192 K_{13} \kappa^{3}\right)}{3 m^{10}(m+1)^{3}}+\frac{256 K_{04} \theta_{1}^{4} \kappa^{4}}{m^{12}(m+1)^{4}}$.
Proof. Taylor series expansion of $f\left(x_{n}\right)$ about α up to $(m+4)^{t h}$-order terms yields with $f(\alpha)=0$:

$$
\begin{equation*}
f\left(x_{n}\right)=\frac{\Delta e_{n}^{m}}{m!}\left\{1+A_{1} e_{n}+A_{2} e_{n}^{2}+A_{3} e_{n}^{3}+A_{4} e_{n}^{4}+O\left(e_{n}^{5}\right)\right\} \tag{2.2}
\end{equation*}
$$

where $A_{j}=\frac{m!\theta_{j}}{(m+j)!}$ for $j=1,2, \cdots$. With $B_{j}=\frac{m+j}{m} A_{j}$ for $j=1,2, \cdots$, we also find:

$$
\begin{equation*}
f^{\prime}\left(x_{n}\right)=\frac{\Delta e_{n}^{m-1}}{(m-1)!}\left\{1+B_{1} e_{n}+B_{2} e_{n}^{2}+B_{3} e_{n}^{3}+B_{4} e_{n}^{4}+O\left(e_{n}^{5}\right)\right\} \tag{2.3}
\end{equation*}
$$

For simplicity, e_{n} will be denoted by e throughout the proof. With the aid of symbolic computation of Mathematica, we have with $h_{n}=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$:

$$
\begin{gather*}
y_{n}=x_{n}-\gamma \cdot h_{n}=\alpha+t e+K_{1}(1-t) e^{2}+K_{2}(1-t) e^{3} \\
+K_{3}(1-t) e^{4}+K_{4}(1-t) e^{5}+O\left(e^{6}\right), \tag{2.4}
\end{gather*}
$$

where $t=1-\frac{\gamma}{m}, K_{1}=B_{1}-A_{1}, K_{2}=B_{2}-A_{2}-B_{1} K_{1}, K_{3}=$ $B_{3}-A_{3}-B_{2} K_{1}-B_{1} K_{2}, K_{4}=B_{4}-A_{4}-B_{3} K_{1}-B_{2} K_{2}-B_{1} K_{3}$.

In view of the fact that $f\left(y_{n}\right)=\left.f\left(x_{n}\right)\right|_{e_{n} \rightarrow\left(y_{n}-\alpha\right)}$, we get:

$$
\begin{aligned}
& f\left(y_{n}\right)= \frac{\Delta e^{m}}{m!}\left[t^{m}+t^{m-1}\left(A_{1} t^{2}+K_{1} m(1-t)\right) e+\frac{1}{2} t^{m-2}\left[K_{1}^{2} m(m-1)(-1+t)^{2}\right.\right. \\
&\left.-2 A_{1} K_{1}(m+1)(-1+t) t^{2}+2 t\left(A_{2} t^{3}+K_{2} m(1-t)\right)\right] e^{2} \\
&+\frac{1}{6} t^{m-3}[-K_{1}^{3} m(m-1)(m-2)(-1+t)^{3}+3 A_{1} K_{1}^{2} m(m+1)(-1+t)^{2} t^{2} \\
&-6 K_{1}(-1+t) t\left(A_{2}(m+2) t^{3}+K_{2} m(-1+m+t-m t)\right) \\
&\left.+6 t^{2}\left(K_{3} m(1-t)+t\left(-A_{1} K_{2}(m+1)(-1+t)+A_{3} t^{3}\right)\right)\right] e^{3} \\
&+\frac{1}{24} t^{m}\left[12 A_{2}(m+2)(-1+t)\left(K_{1}^{2}(m+1)(-1+t)-2 K_{2} t\right)\right. \\
&+\frac{1}{t^{4}}\left(K_{1}^{4} m(m-1)(m-2)(m-3)(-1+t)^{4}\right. \\
&-12 K_{1}^{2} K_{2} m(m-1)(m-2)(-1+t)^{3} t-4 A_{1} K_{1}^{3} m\left(m^{2}-1\right)(-1+t)^{3} t^{2} \\
&-24 K_{1}(-1+t) t^{2}\left(K_{3} m(-1+m+t-m t)+t\left(-A_{1} K_{2} m(m+1)(-1+t)\right.\right. \\
&\left.\left.+A_{3}(m+3) t^{3}\right)\right)+12 t^{2}\left(K_{2}^{2} m(m-1)(-1+t)^{2}\right. \\
&\left.\left.\left.\left.+2 t\left(K_{4} m(1-t)+t\left(-A_{1} K_{3}(m+1)(-1+t)+A_{4} t^{4}\right)\right)\right)\right)\right] e^{4}+O\left(e^{5}\right)\right] .
\end{aligned}
$$

Similarly, we can obtain $f^{\prime}\left(y_{n}\right)=\left.f^{\prime}\left(x_{n}\right)\right|_{e_{n} \rightarrow\left(y_{n}-\alpha\right)}$ in terms of Δ, m, t, A_{i}, K_{i}. It follows that

$$
\begin{align*}
v_{n}= & \frac{f^{\prime}\left(y_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
= & t^{m-1}+(-1+t) t^{m-2}\left(K_{1}(1-m)+B_{1} t\right) e \\
& +\frac{1}{2}(-1+t) t^{m-3}\left[K_{1}^{2}(m-1)(m-2)(-1+t)\right. \\
& +2 B_{1} K_{1} t(-1+m-m t)+2 t\left(K_{2}(1-m)\right. \\
& \left.\left.+t\left(-B_{1}^{2}+B_{2}(1+t)\right)\right)\right] e^{2}+\Psi_{3} e^{3}+\Psi_{4} e^{4}+O\left(e^{5}\right), \tag{2.6}
\end{align*}
$$

where $\Psi_{3}=\frac{1}{6}(-1+t) t^{m-4}\left[-K_{1}^{3}(m-1)(m-2)(m-3)(-1+t)^{2}+\right.$ $3 B_{1} K_{1}^{2}(m-1)(2+m(-1+t))(-1+t) t+K_{3}(1-m)+B_{1}^{3} t+B_{3} t(1+$ $\left.\left.t+t^{2}\right)-B_{1}\left(K_{2}(1+m(-1+t))+B_{2} t(2+t)\right)\right)+6 K_{1} t\left(K_{2}(m-1)(m-\right.$ $\left.\left.2)(-1+t)+t\left(B_{1}^{2}(1+m(-1+t))+B_{2}\left(m-1-(m+1) t^{2}\right)\right)\right)\right]$, $\Psi_{4}=\frac{1}{24} t^{m-5}\left[K_{1}^{4}(m-1)(m-2)(m-3)(m-4)(-1+t)^{3}-4 B_{1} K_{1}^{3}(m-\right.$ 1) $(m-2)(3+m(-1+t))(-1+t)^{2} t+24 K_{1} t^{2}\left(K_{3}(m-1)(m-2)(-1+t)+\right.$ $B_{1}^{3} t(-1+m-m t)+B_{3} t\left(m-1-(m+2) t^{3}\right)+B_{1}\left(K_{2}(m-1)(2+m(-1+\right.$ $\left.\left.t))(-1+t)+B_{2} t\left(2+t^{2}+m\left(-2+t+t^{2}\right)\right)\right)\right)+12 t^{2}\left(K_{2}^{2}(m-1)(m-2)(-1+\right.$ $t)+2 K_{2} t\left(B_{1}^{2}(1+m(-1+t))+B_{2}\left(m-1-(m+1) t^{2}\right)\right)+2 t\left(K_{4}(1-m)-\right.$ $B_{1}^{4} t+B_{1}^{2} B_{2} t(3+t)+t(1+t)\left(-B_{2}^{2}+B_{4}\left(1+t^{2}\right)\right)-B_{1}\left(K_{3}(1+m(-1+\right.$ $\left.\left.\left.t))+B_{3} t\left(2+t+t^{2}\right)\right)\right)\right)+12 K_{1}^{2}(-1+t) t\left(-K_{2}(m-1)(m-2)(m-3)(-1+\right.$ $\left.\left.t)+t\left(-B_{1}^{2}(m-1)(2+m(-1+t))+B_{2}\left(-2+m\left(3-m+(1+m) t^{2}\right)\right)\right)\right)\right]$.

By use of the fact that $O\left(t^{m-1}\right)=O(h)=O(e)$, Taylor expansion of $K_{f}(h, v)$ about ($0, t^{m-1}$) up to the fourth-order terms in both variables yields: after removing terms of degree higher than 4 in e by setting $K_{\ell j}=0$ for all ℓ, j satisfying $\ell+j \geq 5$

$$
\begin{aligned}
K_{f}(h, v)= & K_{00}+K_{01}\left(v-t^{m-1}\right)+K_{02}\left(v-t^{m-1}\right)^{2}+K_{03}\left(v-t^{m-1}\right)^{3} \\
& +K_{04}\left(v-t^{m-1}\right)^{4}+\left[K_{10}+K_{11}\left(v-t^{m-1}\right)+K_{12}\left(v-t^{m-1}\right)^{2}\right. \\
& \left.+K_{13}\left(v-t^{m-1}\right)^{3}\right] h+\left[K_{20}+K_{21}\left(v-t^{m-1}\right)+K_{22}\left(v-t^{m-1}\right)^{2}\right] h^{2} \\
& +\left[K_{30}+K_{31}\left(v-t^{m-1}\right)\right] h^{3}+K_{40} h^{4}+O\left(e^{5}\right)
\end{aligned}
$$

By use of (2.2), (2.3) and (2.6) with $K_{f}\left(h_{n}, v_{n}\right)$, we obtain x_{n+1} in (1.3) as follows:

$$
\begin{align*}
x_{n+1}=\alpha & -K_{00}+\left[-\frac{K_{10}}{m}+t-K_{01}(-1+t) t^{m-2}\left(K_{1}(1-m)+B_{1} t\right)\right] e \\
& +\phi_{2} e^{2}+\phi_{3} e^{3}+\phi_{4} e^{4}+O\left(e^{5}\right) \tag{2.7}
\end{align*}
$$

where ϕ_{i} is a multivariate function in $t, m, A_{j}, B_{j}, K_{j}, K_{j k}$ denoted by $\phi_{i}\left(t, m, A_{j}, B_{j}, K_{j}, K_{j k}\right)$ with $2 \leq j, k \leq 4$ for $2 \leq i \leq 4$. Identifying $e_{n+1}=x_{n+1}-\alpha$ in (2.7), we first set $K_{00}=0$ and $-\frac{K_{10}}{m}+t-K_{01}(-1+$ $t) t^{m-2}\left(K_{1}(1-m)+B_{1} t\right)=0$, together with $\phi_{2}=\phi_{3}=0$ to obtain fourth-order convergence. As a result, we find that

$$
\begin{equation*}
K_{10}=m t-\frac{K_{01}(-1+t) t^{m-2}(m(-1+t)+1+t)}{m+1} \theta_{1} \tag{2.8}
\end{equation*}
$$

Substituting $A_{1}, A_{2}, B_{1}, B_{2}, K_{1}, K_{2}$ and (2.8) with $K_{00}=0$ into $\phi_{2}=0$ yields after simplifications:

$$
\begin{gather*}
-\frac{K_{20}}{m^{2}}+\frac{m+K_{11}(1-t) t^{m-2}(m(-1+t)+1+t)}{m^{2}(m+1)} \theta_{1} \\
+\frac{K_{01} t^{m-2}\left(2-2 m+3 m t-(2+m) t^{3}\right)}{m(m+1)(m+2)(m(t-1)+1+t)} \theta_{2}+\psi \cdot(t-1) t^{m-3} \cdot \theta_{1}^{2}=0 \tag{2.9}
\end{gather*}
$$

with $\psi=\frac{K_{01}\left(2+m\left(m-3-5(m-1) t+4(1+m) t^{2}\right)\right)-2 K_{02}(-1+t) t^{m-1}(m(-1+t)+1+t)^{2}}{2 m^{2}(m+1)^{2}}$.
For Eqn.(2.9) to hold independently of θ_{1}, θ_{2}, we must have:

$$
\begin{align*}
& K_{11}=\frac{m t^{2-m}}{(t-1)(1+m(t-1)+t)} \\
& K_{20}=K_{01}=K_{02}=0, K_{10}=m t \tag{2.10}
\end{align*}
$$

Similarly by substituting $A_{1}, A_{2}, B_{1}, B_{2}, K_{1}, K_{2},(2.8)$ and (2.10) with $K_{00}=0$ into $\phi_{3}=0$, we find after simplifications:

$$
-\frac{K_{30}}{m^{3}}-\frac{K_{21}(-1+t) t^{m-2}(m(-1+t)+1+t)}{m^{3}(m+1)} \theta_{1}
$$

$$
\begin{equation*}
+\frac{t(m-(2+m) t)}{m(m+1)(m+2)} \theta_{2}+\psi_{1} \cdot \theta_{1}^{2}+\psi_{2} \cdot \theta_{1}^{3}=0 \tag{2.11}
\end{equation*}
$$

with $\psi_{1}=\frac{2 K_{12}(t-1)^{2} t^{2 m-3}(m(t-1)+1+t)^{3}+m\left(3 m-2-m^{2}+(m-1)(3 m+2) t-2(m+1)^{2} t^{2}\right)}{2 t m^{3}(m+1)^{2}(m(t-1)+t+1)}$, $\psi_{2}=\frac{K_{03}(t-1)^{3} t^{3 m-7}(m(t-1)+t+1)^{3}}{m^{3}(m+1)^{3}}$.

For Eqn.(2.11) to be independently of θ_{1}, θ_{2}, we get with $\kappa=\left(\frac{m}{m+2}\right)^{m}$:

$$
\begin{equation*}
t=\frac{m}{m+2}, K_{03}=0, K_{21}=0, K_{30}=0, K_{12}=\frac{m^{4}}{8 \kappa^{2}} \tag{2.12}
\end{equation*}
$$

Finally by substituting $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, K_{1}, K_{2}, K_{3}$, (2.8), (2.10) and(2.12) with $K_{00}=0$ into ϕ_{4}, we find after simplifications:

$$
\begin{align*}
\phi_{4}=- & \frac{K_{40}}{m^{4}}-\frac{\theta_{1} \theta_{2}}{m(1+m)^{2}(2+m)}+\frac{m \theta_{3}}{(m+1)(m+2)^{3}(m+3)}+\frac{4 K_{31} \theta_{1} \kappa}{m^{6}(m+1)} \\
& -\frac{16 K_{22} \theta_{1}^{2} \kappa^{2}}{m^{8}(m+1)^{2}}-\frac{256 K_{04} \theta_{1}^{4} \kappa^{4}}{m^{12}(m+1)^{4}} \\
& +\frac{\theta_{1}^{3}\left(12 m^{5}-2 m^{6}+2 m^{7}+2 m^{8}+m^{9}+192 K_{13} \kappa^{3}\right)}{3 m^{10}(m+1)^{3}} \tag{2.13}
\end{align*}
$$

Consequently, (2.7) now implies $e_{n+1}=\phi_{4} e_{n}^{4}+O\left(e_{n}^{5}\right)$, yielding the desired equation (2.1). Since the proposed methods require one-function and two-derivative evaluation per iteration, they are optimal in the sense of Kung-Traub. This completes the proof.

3. Special cases of fourth-order methods

In this section, some special cases of fourth-order methods are presented from $K_{f}(h, v)$ of proposed methods (1.3). They include the existing optimal methods that have been developed by many researchers. As requirements for the fourth-order convergence of $K_{f}(h, v)$ described in Theorem 2.1, the relations

$$
\begin{gather*}
K_{00}=K_{01}=K_{02}=K_{03}=K_{20}=K_{21}=K_{30}=0 \\
K_{10}=\frac{m^{2}}{m+2}, K_{11}=-\frac{m^{3}}{4 \kappa}, K_{12}=\frac{m^{4}}{8 \kappa^{2}} \tag{3.1}
\end{gather*}
$$

easily determine the exact form of each special case with $\gamma=\frac{2 m}{m+2}, \kappa=$ $\left(\frac{m}{m+2}\right)^{m}$.

Case 1:

$$
\begin{equation*}
K_{f}(h, v)=T_{f}(v) \cdot h \text { with } T_{f}(v)=\frac{a_{1} v^{2}+a_{2} v+a_{3}}{b_{1} v^{2}+b_{2} v+b_{3}} \tag{3.2}
\end{equation*}
$$

Parameters:

$$
\left\{\begin{array}{l}
a_{3}=\kappa \frac{-a_{2} m(2+m)^{2}\left(4+2 m+m^{2}\right)-\left(-16 b_{1} m^{2}+a_{1}(2+m)\left(48+40 m+20 m^{2}+6 m^{3}+m^{4}\right) \kappa\right.}{m^{3}(2+m)^{2}} \\
b_{2}=\frac{-2 a_{2} m(2+m)-2\left(2 a_{1}(2+m)(3+m)+b_{1} m^{2}\left(-2+2 m+m^{2}\right) \kappa\right.}{m^{4}} \\
b_{3}=\kappa \frac{2 a_{2} m(2+m)^{2}+\left(b_{1} m^{2}\left(-8+8 m+6 m^{2}+m^{3}\right)+4 a_{1}\left(16+18 m+7 m^{2}+m^{3}\right)\right) \kappa}{m^{4}(2+m)}
\end{array}\right.
$$

Three coefficients can be determined in terms of remaining three coefficients.

Asymptotic error Constants:

$$
\eta=\phi_{4}=\lambda \theta_{1}^{3}-\frac{1}{m(m+1)^{2}(m+2)} \theta_{1} \theta_{2}+\frac{m}{(m+1)(m+2)^{3}(m+3)} \theta_{3}
$$

where $\lambda=\frac{a_{2} m(2+m)^{2}\left(-2+2 m+2 m^{2}+m^{3}\right)+2\left(-2 b_{1} m^{2}\left(-2+5 m+2 m^{2}+m^{3}\right)+a_{1} \nu\right) \kappa}{3 m^{4}(1+m)^{3}\left(a_{2} m(2+m)^{2}+2\left(-2 b_{1} m^{2}+a_{1}\left(12+14 m+6 m^{2}+m^{3}\right)\right) \kappa\right)}$ with $\nu=\left(-48-16 m+40 m^{2}+50 m^{3}+28 m^{4}+8 m^{5}+m^{6}\right)$.

We also find the weighting function $Q(v)=\gamma+T_{f}(v)$ with $\gamma=\frac{2 m}{m+2}$ in the second step of (1.1). Among many subcases of Case 1, we consider some useful subcases with each subcase number abbreviated by S.C. In Table 1, a summary of eight subcases of Case 1 is well displayed with specific forms of $T_{f}(v)=\frac{a_{1} v^{2}+a_{2} v+a_{3}}{b_{1} v^{2}+b_{2} v+b_{3}}$ and $Q(v)=\gamma+T_{f}(v)$ as well as asymptotic error constants $\eta=\lambda_{1} \theta_{1}^{3}+\lambda_{2} \theta_{1} \theta_{2}+\lambda_{3} \theta_{3}$. The results of the first five subcases are in agreement with those of five cases studied by Zhou et al.[13]. Especially Subcase 3 implies the optimal fourthorder iterative methods developed by Sharma et al.[9]. Both Subcase 4 and Subcase 6 imply also the optimal fourth-order iterative methods developed by Li et al.[4-5].

Case 2:

$$
\begin{equation*}
K_{f}(h, v)=\left(\frac{a_{2}+a_{3} v^{3}}{a_{1}+v^{2}}\right) h \tag{3.3}
\end{equation*}
$$

Parameters:

$$
\begin{gathered}
a_{1}=-\frac{\left(m^{3}+4 m^{2}+4 m-8\right) \kappa^{2}}{m^{2}(m+4)}, a_{2}=\frac{\left(m^{4}+6 m^{3}+22 m^{2}+48 m+64\right) \kappa^{2}}{3(m+2)(m+4)}, \\
a_{3}=-\frac{m^{3}\left(m^{2}+2 m-2\right)}{3(m+2)^{2}(m+4) \kappa}
\end{gathered}
$$

Asymptotic error Constants:

$$
\eta=\lambda_{1} \theta_{1}^{3}-\frac{1}{m(m+1)^{2}(m+2)} \theta_{1} \theta_{2}+\frac{m}{(m+1)(m+2)^{3}(m+3)} \theta_{3},
$$

with $\lambda_{1}=\frac{m^{8}+10 m^{7}+44 m^{6}+106 m^{5}+140 m^{4}+64 m^{3}-72 m^{2}-32 m+128}{3 m^{5}(m+1)^{3}(m+2)^{2}\left(m^{2}+4 m+6\right)}$.

4. Algorithm, numerical results, and discussions

By use of Mathematica[12] program, we have performed numerical experiments with 500 precision digits, being large enough to minimize round-off errors. For accurate computation of asymptotic error constants and asymptotic order of convergence, the zero α, however, was given with 550 significant digits, whenever its exact value is not known; the error bound $\epsilon=\frac{1}{2} \times 10^{-200}$ was used. All numerical experiments have been carried out on a personal computer equipped with an AMD 3.1 Ghz dual-core processor and Windows 32-bit XP operating system.

Iterative methods associated with current numerical experiments are identified as follows:

$$
\begin{aligned}
& \text { Method NET: } x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{a_{1} f^{\prime}\left(x_{n}\right)+a_{2} f^{\prime}\left(y_{n}\right)+a_{3} f^{\prime}\left(\eta_{n}\right)}, \\
& y_{n}=x_{n}-a \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \eta_{n}=x_{n}-b \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}-c \frac{f\left(x_{n}\right)}{f^{\prime}\left(y_{n}\right)},
\end{aligned}
$$

with $a, b, c, a_{1}, a_{2}, a_{3}$ as constant real parameters.
Method SHA: $x_{n+1}=y_{n}-T_{f}\left(v_{n}\right) h_{n}$, with $y_{n}=x_{n}-\gamma h_{n}$ and $T_{f}(v)$ chosen as Subcase 3 of Case 1.

Method ZCS: $x_{n+1}=y_{n}-T_{f}\left(v_{n}\right) h_{n}$, with $y_{n}=x_{n}-\gamma h_{n}$ and $T_{f}(v)$ chosen as Subcase 4 of Case 1.

Method YK1: $x_{n+1}=y_{n}-T_{f}\left(v_{n}\right) h_{n}$, with $y_{n}=x_{n}-\gamma h_{n}$ and $T_{f}(v)$ chosen as Subcase 8 of Case 1 .

Method YK2: $x_{n+1}=y_{n}-K_{f}\left(h_{n}, v_{n}\right)$, with $y_{n}=x_{n}-\gamma h_{n}$ and $K_{f}(h, v)$ chosen as Case 2.

Note that Method NET is not optimal requiring one-function and threederivative evaluation per iteration. It employs the following parameters in the current experiments:

$$
a=\frac{m}{2}, b=\left\{\begin{array}{l}
-2^{m-1} c+2 m \text { for } m \neq 3 ; \tag{4.1}\\
\frac{12}{5}-4 c \text { for } m=3 .
\end{array}\right.
$$

TABLE 1. Forms of $T_{f}(v), Q(v)$ of each subcase for Case 1

S.C.	$T_{f}(v)=\frac{a_{1} v^{2}+a_{2} v+a_{3}}{b_{1} v^{2}+b_{2} v+b_{3}}$		$Q(v)=\gamma+T_{f}(v)$
1	$a_{1} v^{2}+a_{2} v+a_{3}$		$A v^{2}+B v+C$
	$\begin{aligned} & a_{1}=\frac{m^{4}}{8 \kappa^{2}} \\ & a_{2}=-\frac{m^{3}(m+3)}{4 \kappa} \\ & a_{3}=\frac{m^{2}\left(m^{3}+8 m^{2}+20 m+24\right)}{8(m+2)} \end{aligned}$	$\begin{aligned} & b_{1}=0 \\ & b_{2}=0 \\ & b_{3}=1 \end{aligned}$	$\begin{aligned} & A=a_{1} \\ & B=a_{2} \\ & C=\frac{m\left(m^{3}+6 m^{2}+8 m+8\right)}{8} \end{aligned}$
2	$a_{1} v+a_{2}+\frac{a_{3}}{v}$		$A+\frac{B}{v}+C$
	$\begin{aligned} & a_{1}=\frac{m^{4}}{8 \kappa} \\ & a_{2}=-\frac{m^{3}\left(m^{2}+5 m+8\right)}{4(m+2)} \\ & a_{3}=\frac{1}{8} m(m+2)^{3} \kappa \end{aligned}$	$\begin{aligned} & b_{1}=0 \\ & b_{2}=1 \\ & b_{3}=0 \end{aligned}$	$\begin{aligned} & A=a_{1} \\ & B=a_{3} \\ & C=-\frac{\left(m^{3}+3 m^{2}+2 m-4\right)}{4} \end{aligned}$
3	$a_{1}+\frac{a_{2}}{v}+\frac{a_{3}}{v^{2}}$		$A+\frac{B}{v}+\frac{C}{v^{2}}$
	$\begin{aligned} & a_{1}=\frac{m^{3}\left(m^{2}+2 m-4\right)}{8(m+2)} \\ & a_{2}=-\frac{(m+2)^{2} m(m-1) \kappa}{4}=\frac{1}{8} \\ & a_{3}=\frac{1}{8} m(m+2)^{3} \kappa^{2} \end{aligned}$	$\begin{aligned} & b_{1}=1 \\ & b_{2}=0 \\ & b_{3}=0 \end{aligned}$	$\begin{aligned} & A=\frac{m\left(m^{3}-4 m+8\right)}{8} \\ & B=a_{2} \\ & C=a_{3} \end{aligned}$
4	$\frac{a_{1} v^{2}+a_{2} v+a_{3}}{b 1 v^{2}+b 2 v}$		$\frac{A}{v}+\frac{1}{B+C v}$
	$\begin{aligned} & a_{1}=-\frac{2 m^{2} \beta}{(m+2) \kappa} \\ & a_{2}=-\frac{m^{2}(m+4)\left(m^{2}-8\right) \beta}{2(m+2)} \\ & a_{3}=\frac{(m-2)(m+2)^{3} \beta \kappa}{2} \end{aligned}$	$\begin{gathered} b_{1}=\frac{m^{2} \beta}{\kappa} \\ b_{2}=-\frac{\left(m^{3}-4 m+8\right) \beta}{m} \\ b_{3}=0 \end{gathered}$	$\begin{aligned} & A=\frac{(m-2) m(m+2)^{3} \kappa}{2\left(m^{3}-4 m+8\right)} \\ & B=b_{2} \\ & C=b_{1} \end{aligned}$
5	$\frac{a_{2} v+a_{3}}{b_{2} v+1}$		$\frac{B+C v}{1+A v}$
	$\begin{aligned} & a_{1}=0 \\ & a_{2}=-\frac{m^{3}}{2(m+2) \kappa} \\ & a_{3}=-\frac{m\left(m^{2}+2 m+4\right)}{2(m+2)} \end{aligned}$	$\begin{gathered} b_{1}=0 \\ b_{2}=-\frac{1}{\kappa} \\ b_{3}=1 \end{gathered}$	$\begin{aligned} & A=-\frac{1}{\kappa} \\ & B=-\frac{m^{2}}{2} \\ & C=\frac{m(m-2)}{2 \kappa} \end{aligned}$
6	$\frac{v+a_{3}}{b_{2} v+b_{3}}=\frac{1}{b_{2}}\left(1+\frac{a_{3}-b_{3} / b_{2}}{v+b_{3} / b_{2}}\right)$		$A+\frac{1}{B+C v}$
	$\begin{aligned} & a_{1}=0 \\ & a_{2}=1 \\ & a_{3}=-\frac{\left(m^{2}+2 m+4\right) \kappa}{m^{2}} \end{aligned}$	$\begin{gathered} b_{1}=0 \\ b_{2}=-\frac{2(m+2)}{m^{3}} \\ b_{3}=\frac{2(m+2) \kappa}{m^{3}} \end{gathered}$	$\begin{aligned} & A=-\frac{m(m-2}{2} \\ & B=-\frac{1}{m} \\ & C=\frac{1}{m \kappa} \end{aligned}$
7	$\frac{a_{2} v+a_{3}}{v^{2}+b_{3}}$		$\frac{2 m}{m+2}+\frac{B v+C}{v^{2}+A}$
	$\begin{aligned} & a_{1}=0 \\ & a_{2}=-\frac{m\left(m^{2}+2 m-4\right) \kappa}{m+2} \\ & a_{3}=\frac{m\left(m^{3}+6 m^{2}+14 m+16\right) \kappa^{2}}{(m+2)^{2}} \end{aligned}$	$\begin{gathered} b_{1}=1 \\ b_{2}=0 \\ b_{3}=-\frac{\left(m^{2}+2 m-4\right) \kappa^{2}}{m(m+2)} \end{gathered}$	$\begin{aligned} & A=b_{3} \\ & B=a_{2} \\ & C=a_{3} \end{aligned}$
8	$\frac{a_{1} v^{2}+a_{3}}{v^{2}+b_{3}}=a 1+\frac{a_{3}-a_{1} b_{3}}{v^{2}+b_{3}}$		$A+\frac{C}{v^{2}+B}$
	$\begin{aligned} & a_{1}=-\frac{m^{2}\left(m^{2}+2 m-2\right)}{2(m+2)(m+3} \\ & a_{2}=0 \\ & a_{3}=\frac{(m+2)\left(m^{2}+2 m+6\right) \kappa^{2}}{2(m+3)} \end{aligned}$	$\begin{gathered} b_{1}=1 \\ b_{2}=0 \\ b_{3}=-\frac{(m-1)(m+2)^{2} \kappa^{2}}{m^{2}(m+3)} \end{gathered}$	$\begin{aligned} & A=-\frac{m\left(m^{2}-6\right)}{2(m+3)} \\ & B=b_{3} \\ & C=\frac{2(m+2)^{3} \kappa^{2}}{(m+3)^{2}} \end{aligned}$

$$
\left\{\begin{array}{l}
a_{1}=\frac{-2^{m} c(m-1)(m-2)+6 m\left(4 m^{2}-3 m-2\right)}{24 m^{2}\left(m^{2}-2 m-2\right)}, a_{2}=\frac{2^{m-4}\left[2^{m} c(m-1)(m-2)-32 m(m+1)\right]}{3 m^{2}\left(m^{2}-2 m-2\right)} \tag{4.2}\\
a_{3}=-\frac{(-1)^{-m}(m-2)}{12 m\left(m^{2}-2 m-2\right)} \text { for } m \neq 3 \\
a_{1}=-\frac{1}{24}-\frac{25 c}{27}, a_{2}=\frac{4(12+25 c)}{27}, a_{3}=-\frac{125}{72} \text { for } m=3
\end{array}\right.
$$

$$
\begin{cases}c=-\frac{2^{1-m} m\left(9 m^{2}-12 m+7 \pm \sqrt{33 m^{4}-168 m^{3}+318 m^{2}+72 m-239}\right)}{(m-1)(m-2)(m-3)} & \text { for } m>3, \tag{4.3}\\ c=\text { free real constant } & \text { for } m=3, \\ c=\frac{264}{19} & \text { for } m=2, \\ c=18 & \text { for } m=1\end{cases}
$$

REMARK 4.1. Observe that the values of c, a_{1}, a_{2}, a_{3} can be more generally determined in terms of m by selecting a special form of b and exhibit better selections than those values suggested by Neta[6].

Definition 4.2. (Asymptotic Convergence Order)
Assume that the asymptotic error constant $\eta=\lim _{n \rightarrow \infty} \frac{\left|e_{n}\right|}{\left|e_{n-1}\right|^{p}}$ is known as described in Definition 1.1. Then we can define the asymptotic convergence order $p_{a}=\lim _{n \rightarrow \infty} \frac{\log \left|e_{n} / \eta\right|}{\log \left|e_{n-1}\right|}$, being abbreviated by A.C.O.

In order to verify the fourth-order convergence of (1.3) to be seen in Table 2, four test functions $F_{1}(x)-F_{2}(x)$ are presented below:

$$
\left\{\begin{array}{l}
F_{1}(x)=\left[\cos \frac{\pi x}{2}+2 x-\pi\right]^{5} ; \quad \alpha \approx 2.06795083703446, m=5 \tag{4.4}\\
F_{2}(x)=\left[\cos x^{2}-x \log \left(1+x^{2}-\pi\right)+1\right]^{2}\left(x^{2}-\pi\right) ; \alpha=\sqrt{\pi}, m=3
\end{array}\right.
$$

where $\log z(z \in \mathbb{C})$ represents a principal analytic branch such that $-\pi \leq \operatorname{Im}(\log z)<\pi$. Tables 2 lists iteration indexes n, approximate zeros x_{n}, residual errors $\left|f\left(x_{n}\right)\right|$, errors $\left|e_{n}\right|=\left|x_{n}-\alpha\right|$ and computational asymptotic error constants $\eta_{n}=\left|\frac{e_{n}}{e_{n-1}{ }^{4}}\right|$ as well as the theoretical asymptotic error constant η and computational asymptotic convergence order $p_{n}=\frac{\log \left|e_{n} / \eta\right|}{\log \left|e_{n-1}\right|}$. Initial guesses x_{0} were selected close to α not only to guarantee the convergence of (1.3) and but also to clearly observe the convergence of the computed asymptotic error constants requiring smallnumber divisions. Computational asymptotic error constants agree up to 10 significant digits with theoretical ones.

Additional test functions are given below:

$$
\left\{\begin{array}{lr}
f_{1}(x)=\left(\sin ^{2} x-x^{2}+1\right)^{2} ; & \alpha \approx 1.40449164821534, m=2 \\
f_{2}(x)=\left(x-\pi+\sin x \log x^{2}+1\right)^{2} ; & \alpha=\pi, m=2 \\
f_{3}(x)=\left(2 x+e^{-x}+\sin x^{2}-3\right)^{6} ; & \alpha \approx 0.924463112118051, m=6 \\
f_{4}(x)=\left(x^{10}-\sqrt{3} x^{3} \cos \frac{\pi x}{6}+\frac{1}{x^{2}+1}\right)(x-1)^{4} ; & \alpha=1, m=5 \\
f_{5}(x)=\cos \left(x^{2}-2 x+\frac{52}{49}\right)-\log \left(x^{2}-2 x+\frac{101}{49}\right)-1 ; \alpha=1+i \frac{\sqrt{3}}{7}, i=\sqrt{-1}, m=1,
\end{array}\right.
$$

where $\log z(z \in \mathbb{C})$ represents a principal analytic branch such that $-\pi \leq \operatorname{Im}(\log z)<\pi$.

The values of $\left|x_{n}-\alpha\right|$ for additional test functions are listed in Table 3 for fourth-order methods NET, SHA, ZCS and YK1, YK2. As Table 3 suggests, proposed methods show favorable performance as compared with NET. Under the same order of convergence, one should note that the speed of local convergence of $\left|x_{n}-\alpha\right|$ is dependent on c_{j},

Table 2. Convergence for sample test functions $F_{1}(x)-$ $F_{2}(x)$ with methods YK1 - YK2

$\binom{$ MT }{$F_{i}}$	n	x_{n}	$\left\|f\left(x_{n}\right)\right\|$	$\left\|e_{n}\right\|$	$\left.\frac{e_{n}}{e_{n-1}{ }^{4}} \right\rvert\,$	η	p_{n}
$\binom{\mathrm{YK1}}{F_{1}}$	0	1.98	0.000194797	0.0879508		0.5782727709	$\begin{aligned} & 3.88425 \\ & 4.00001 \\ & 4.00000 \end{aligned}$
	1	2.06799668257943	9.68×10^{-21}	4.58×10^{-5}	0.7661913267		
	2	2.06795083703446	5.19×10^{-87}	2.55×10^{-18}	0.5781901293		
	3	2.06795083703446	4.32×10^{-352}	2.46×10^{-71}	0.5782727709		
	4	2.06795083703446	2.05×10^{-1412}	2.12×10^{-283}			
$\binom{\mathrm{YK2}}{\mathrm{~F}_{2}}$	0	1.8	0.00265039	0.0275461		3.532062747	3.95213 4.00000 4.00000
	1	1.77245143577374	1.97×10^{-15}	2.41×10^{-6}	4.194664758		
	2	1.77245385090552	2.42×10^{-64}	1.20×10^{-22}	3.532011206		
	3	1.77245385090552	5.59×10^{-260}	7.36×10^{-88}	3.532062747		
	4	1.77245385090552	1.57×10^{-1042}	1.03×10^{-348}			

MT:Method; $p_{n}=\frac{\log \left|e_{n} / \eta\right|}{\log \left|e_{n-1}\right|}, e_{n}=x_{n}-\alpha$.

Table 3. Comparison of $\left|x_{n}-\alpha\right|$ for $f_{1}(x)-f_{6}(x)$ among fourth-order methods

f	x_{0}	$\left\|x_{n}-\alpha\right\|$	NET	SHA	ZCS	YK1	YK2
f_{1}	1.45	$\left\|x_{1}-\alpha\right\|$	2.99e-6*	3.43e-6	$2.99 \mathrm{e}-6$	3.10e-6	2.94e-6
		$\left\|x_{2}-\alpha\right\|$	$6.49 \mathrm{e}-23$	$1.29 \mathrm{e}-22$	$6.49 \mathrm{e}-23$	$7.80 \mathrm{e}-23$	$5.99 \mathrm{e}-23$
		$\left\|x_{3}-\alpha\right\|$	$1.44 \mathrm{e}-89$	2.63e-88	$1.44 \mathrm{e}-89$	3.11e-89	1.02e-89
		$\left\|x_{4}-\alpha\right\|$	$3.53 \mathrm{e}-356$	$4.33 \mathrm{e}-351$	3.53e-356	$7.93 \mathrm{e}-355$	$8.84 \mathrm{e}-357$
f_{2}	3.00	$\left\|x_{1}-\alpha\right\|$	3.02e-4	$3.19 \mathrm{e}-4$	3.02e-4	3.06e-4	$3.00 \mathrm{e}-4$
		$\left\|x_{2}-\alpha\right\|$	$3.15 \mathrm{e}-15$	$4.15 \mathrm{e}-15$	$3.15 \mathrm{e}-15$	$3.38 \mathrm{e}-15$	$3.05 \mathrm{e}-15$
		$\left\|x_{3}-\alpha\right\|$	$3.75 \mathrm{e}-59$	1.18e-58	3.75e-59	5.00e-59	3.27e-59
		$\left\|x_{4}-\alpha\right\|$	$7.53 \mathrm{e}-235$	7.62e-233	$7.53 \mathrm{e}-235$	$2.40 \mathrm{e}-234$	$4.33 \mathrm{e}-235$
f_{3}	0.875	$\left\|x_{1}-\alpha\right\|$	$5.11 \mathrm{e}-6$	$2.34 \mathrm{e}-6$	$2.34 \mathrm{e}-6$	$2.34 \mathrm{e}-6$	$2.34 \mathrm{e}-6$
		$\left\|x_{2}-\alpha\right\|$	$2.13 \mathrm{e}-21$	1.83e-23	$1.83 \mathrm{e}-23$	$1.83 \mathrm{e}-23$	$1.83 \mathrm{e}-23$
		$\left\|x_{3}-\alpha\right\|$	$6.48 \mathrm{e}-83$	6.91e-92	6.89e-92	6.89e-92	$6.88 e-92$
		$\left\|x_{4}-\alpha\right\|$	$5.50 \mathrm{e}-329$	$1.39 \mathrm{e}-365$	1.38e-365	$1.37 \mathrm{e}-365$	$1.37 \mathrm{e}-365$
f_{4}	1.08	$\left\|x_{1}-\alpha\right\|$	$2.76 \mathrm{e}-3$	$2.59 \mathrm{e}-4$	$2.55 \mathrm{e}-4$	$2.53 \mathrm{e}-4$	$2.52 \mathrm{e}-4$
		$\left\|x_{2}-\alpha\right\|$	$1.98 \mathrm{e}-8$	$7.07 \mathrm{e}-14$	$6.48 \mathrm{e}-14$	$6.30 \mathrm{e}-14$	6.15e-14
		$\left\|x_{3}-\alpha\right\|$	5.01e-29	$3.90 \mathrm{e}-52$	2.71e-52	2.40e-52	2.18e-52
		$\left\|x_{4}-\alpha\right\|$	$2.05 \mathrm{e}-111$	3.61e-205	8.32e-206	5.14-206	$3.45 e-206$
		$\left\|x_{5}-\alpha\right\|$	$5.80 \mathrm{e}-441$				
f_{5}	$\begin{gathered} \hline 0.97+ \\ 0.22 i \end{gathered}$	$\left\|x_{1}-\alpha\right\|$	$2.91 \mathrm{e}-5$	4.10e-5	1.20e-4	4.10e-5	$3.68 \mathrm{e}-5$
		$\left\|x_{2}-\alpha\right\|$	$6.32 \mathrm{e}-18$	$3.36 \mathrm{e}-17$	$6.28 \mathrm{e}-15$	$3.36 \mathrm{e}-17$	$1.97 \mathrm{e}-17$
		$\left\|x_{3}-\alpha\right\|$	$1.38 \mathrm{e}-68$	1.51e-65	$4.70 \mathrm{e}-56$	1.51e-65	$1.63 e-66$
		$\left\|x_{4}-\alpha\right\|$	$3.17 \mathrm{e}-271$	$6.27 \mathrm{e}-259$	$1.48 \mathrm{e}-220$	$6.27 \mathrm{e}-259$	7.66e-263

namely $f(x)$ and α. Tables 3 and 4 well exhibit fourth-order convergence of proposed scheme (1.3). As can be seen in Table 5, the CPU times(measured in seconds) of NET are mostly increased by an approximate factor of between 3 and 6 , as compared with proposed methods

Table 4. Comparison of computational asymptotic convergence order $p_{n}=\frac{\log \left|e_{n} / \eta\right|}{\log \left|e_{n-1}\right|}$

f	x_{0}	p_{n}	NET	SHA	ZCS	YK1	YK2
f_{1}	1.45	p_{1}	4.04837	4.04850	4.04837	4.04831	4.04823
		p_{2}	4.00000	4.00000	4.00000	4.00000	4.00000
		p_{3}	4.00000	4.00000	4.00000	4.00000	4.00000
f_{2}	3.00	p_{1}	3.64910	3.64397	3.64910	3.64791	3.64989
		p_{2}	4.00017	4.00018	4.00017	4.00017	4.00017
		p_{3}	4.00000	4.00000	4.00000	4.00000	4.00000
f_{3}	0.875	p_{1}	4.43038	4.14855	4.14848	4.14846	4.14844
		p_{2}	3.99999	4.00000	4.00000	4.00000	4.00000
		p_{3}	4.00000	4.00000	4.00000	4.00000	4.00000
f_{4}	1.08	p_{1}	4.62467	4.35547	4.35699	4.35755	4.35801
		p_{2}	3.99308	4.00043	4.00042	4.00042	4.00042
		p_{3}	4.00000	4.00000	4.00000	4.00000	4.00000
		p_{4}	4.00000				
f_{5}	$\begin{gathered} \hline 0.97+ \\ 0.22 i \end{gathered}$	p_{1}	3.93551	3.92454	3.88212	3.92454	3.92753
		p_{2}	3.99998	3.99997	3.99985	3.99997	3.99997
		p_{3}	4.00000	4.00000	4.00000	4.00000	4.00000

Table 5. Comparison of CPU times among derivativefree eighth-order methods

f	x_{0}	NET	SHA	ZCS	YK1	YK2
f_{1}	1.45	0.032	$\mathbf{0 . 0 3 1}$	0.062	0.031	0.031
f_{2}	3.00	$\mathbf{0 . 0 4 7}$	0.094	0.141	0.094	0.078
f_{3}	0.875	0.203	0.078	0.109	$\mathbf{0 . 0 6 2}$	0.062
f_{4}	1.00	0.984	0.125	0.234	0.156	$\mathbf{0 . 1 1 0}$
f_{5}	$0.97+0.22 i$	0.172	0.047	0.125	$\mathbf{0 . 0 7 8}$	0.078

YK1-YK2. The least errors or CPU times are highlighted in boldface or italicized numbers in Tables 3 and 5 .

Although being limited to the current test functions, YK2 has shown best accuracy. Since computational accuracy generally depends on the iterative methods, the sought zeros and the test functions as well as close initial approximations, one should be aware that no iterative method always shows best accuracy for all the test functions. The efficiency indices for the proposed family of methods (1.3) are found to be $4^{1 / 3}$, being optimal in the sense of Kung-Traub and better than $4^{1 / 4}$ for nonoptimal scheme NET. The explicit form of error equation (2.1) ensures the convergence order of method (1.3). Efficient computing time ensures a better implementation of (1.3), from a practical point of view, as compared to existing methods NET, SHA, ZCS. The current analysis
can be extended to a development of higher-order multiple-root finders for nonlinear equations.

References

[1] L. V. Ahlfors, Complex Analysis, McGraw-Hill Book, Inc., 1979.
[2] C. Dong, A family of multipoint iterative functions for finding multiple roots of equations, Int. J. Comput. Math. 21 (1987)363-367.
[3] H. T. Kung and J. F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Mach. 21 (1974)643-651.
[4] S. Li, L. Cheng, and B. Neta, Some fourth-order nonlinear solvers with closed formulae for multiple roots, Comput. Math. Appl. 59, Issue 1(January 2010)126-135.
[5] S. Li, X. Liao, and L. Cheng, A new fourth-order iterative method for finding multiple roots of nonlinear equations, Appl. Math. Comput. 215 (2009)12881292.
[6] B. Neta and A. N. Johnson, High-order nonlinear solver for multiple roots, Comput. Math. Appl. 55 (2008)2012-2017.
[7] B. Neta, New third order nonlinear solvers for multiple roots, Appl. Math. Comput. 202 (2008)162-170.
[8] B. Neta, Extension of Murakamis high order nonlinear solver to multiple roots, Int. J. Comput. Math. 87 (2010)1023-1031.
[9] J. R. Sharma and R. Sharma, Modified Jarratt method for computing multiple roots, Appl. Math. Comput. 217, Issue 2(15 September 2010)878-881.
[10] H. D. Victory and B. Neta, A higher order method for multiple zeros of nonlinear functions, Int. J. Comput. Math. 12 (1983)329-335.
[11] J. F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, 1982.
[12] S. Wolfram, The Mathematica Book, 5th ed., Wolfram Media, 2003.
[13] X. Zhou, X. Chen, and Y. Song, Constructing higher-order methods for obtaining the multiple roots of nonlinear equations, J. Comput. Appl. Math. 235, Issue 14(15) May 2011)4199-4206.
*
Department of Applied Mathematics Dankook University
Cheonan 330-714, Republic of Korea
E-mail: yikbell@dankook.ac.kr

[^0]: Received July 12, 2013; Accepted July 30, 2013.
 2010 Mathematics Subject Classification: Primary 65H05, 65H99.
 Key words and phrases: fourth-order convergence, optimal order, asymptotic error constant, efficiency index, multiple roots.

