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WEAK SOLUTIONS OF GRADIENT FLOW OF
LANDAU-DE GENNES ENERGY

Jinhae Park*

Abstract. Taking into account the flexoelectric effects, we con-
sider a gradient flow of Landau-de Gennes energy which generalizes
the Oseen-Frank energy. In this article, we discuss existence of weak
solutions of the gradient flow in an appropriate function space.

1. Introduction

Molecules in Nematic Liquid Crystals are described by a traceless
symmetric second order tensor

(1.1) Q =
∫

S2
`⊗ `f(`) d`− 1

3
I,

where f is a probability distribution function satisfying f(`) = f(−`)
for all ` ∈ S2. Shapes of molecules are characterized by three eigenvalues
of Q and the direction of a molecule is defined by the unit eigenvector
whose corresponding eigenvalue has the largest magnitude. The order
tensor Q is a measure of the local degree of orientational order in liquid
crystals. The liquid crystal is said to be uniaxial if two eigenvalues of Q
are equal, and it is biaxial when Q has three distinct eigenvalues. The
tensor Q is zero in the isotropic phase. Since Q is a symmetric matrix,
all eigenvalues of Q are real and expressed in term of Q as [4]
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



λ1 = 2
√

trQ2
√

6
cosα,

λ2 = 2
√

trQ2
√

6

(
−1

2 cosα−
√

3
2 sinα

)
,

λ3 = 2
√

trQ2
√

6

(
−1

2 cosα +
√

3
2 sinα

)
,

where

cos(3α) = −
√

6trQ3

trQ2
√

trQ2
, sin(3α) =

√
1− 6(trQ3)2

(trQ2)3
, α ∈

[
0,

π

3

]
.

It follows from trQ = 0 and Q = QT that 6(trQ3)2 ≤ (trQ2)3. More-
over, Q has two distinct eigenvalues if and only if 6(trQ3)2 = (trQ2)3.
From (1.1), it can be easily seen that −1

3 ≤ λi ≤ 2
3 for i = 1, 2, 3. It

then follows that tr Q2 ≤ 1
6 .

If Q is expressed by

Q = S1

(
m⊗m− 1

3
I
)

+ S2

(
n⊗ n− 1

3
I
)

,

where {m,n,m × n} is an orthonormal basis for R3 consisting of unit
eigenvectors of Q, then the eigenvalues are

1
3
(2S1 − S2), −1

3
(S1 + S2),

1
3
(2S2 − S1).

In the Landau-de Gennes theory, neglecting the higher derivatives
and powers of Q the free energy density F for nematic liquid crystals is
given by

F(Q,∇Q)

=
1
2

(L1Qαβ,γQαβ,γ + L2Qαβ,βQαγ,γ + L3Qαβ,γQαγ,β) + fbulk(Q),

where

fbulk(Q) =
A

2
trQ2 − B

3
trQ3 +

C

4
(
trQ2

)2
.

The bulk energy fbulk is a potential function for uniaxial nematic liquid
crystals, meaning that fbulk favors molecules to be uniaxial. In order
to study biaxial liquid crystals, we need to add higher powers of Q to
fbulk. In liquid crystals, there exists a polarization induced by a splay
and bending distortion [2, 1]. Such a polarization is called flexoelectric
polarization which is analogous to piezoelectric polarization in solids.
The flexoelectric polarization can be written in terms of Q as
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Pf = (P1, P2, P3),
Pi = ε3Qij,j + ε4QjkQij,k + ε5QijQjk,k + higher order.

Due to the appearance of the flexoelectric polarization, the following
electrostatic equations (Maxwell’s equations) will be taken into account
in the system

∇ · (ε(Q)E) = −∇ ·Pf , ∇×E = 0,(1.2)

where ε(Q) is the dielectric permittivity tensor given by

ε(Q) = ε0I + ε1Q + ε2Q2.

Hence the electrostatic energy is

felec = −1
2
(ε(Q)E) ·E−Pf ·E.

If we let
Q =

3
2
S(n⊗ n− 1

3
I),

then

ε(Q)E ·E =
(
ε0 − ε1

2
S +

ε2
4

S2
)
|E|2 +

3
2
S

(
ε1 +

ε2
2

S
)

(n ·E)2,

Pf = e11(∇ · n)n + e33n×∇× n,

e11 =
3
2
ε3S +

3
4
(2ε5 − ε4)S2, e33 =

3
2
ε3S +

3
4
(2ε4 − ε5)S2.

Then the permittivity ε⊥ and dielectric anisotropic constant εa are de-
fined by

ε⊥ = ε0 − ε1
2

S +
ε2
4

S2, εa =
3
2
S

(
ε1 +

ε2
2

S
)

.

Now, since eigenvalues of Q are in between −1
3 and 2

3 , we impose the
following condition for strong ellipticity of (1.2)

3ε0 > ε1 if ε1 > 0, and 3ε0 > −2ε1 if ε1 ≤ 0.

Since some material can have ε1 > 0 and S > 0, we have to include
ε2-term in order to satisfy solvability condition ε⊥ > |εa|. For a sake of
simplicity, we take ε4 = ε5 = 0 so that equations (1.2) become

∇ · [(ε0I + ε1Q + ε2Q2
)∇ϕ

]
= −ε3∇ · (∇ ·Q),(1.3)

where ∇ ·Q = Q1j,jex + Q2j,jey + Q3j,jez, {ex, ey, ez} is a set of unit
vectors in x, y, z axes respectively, and ϕ is an electric potential function,
i.e. E = ∇ϕ.
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By Maxwell’s equation, the electrostatic energy functional can be
written as ∫

Ω
felec dx = −1

2

∫

Ω
(∇ ·Q) · ∇ϕdx

The total energy functional E is

E(Q, ϕ)

=
∫

Ω

{
1
2
L|∇Q|2 +

A

2
trQ2 − B

3
trQ3 +

C

4
(
trQ2

)2 − 1
2
ε3(∇ ·Q) · ∇ϕ

}
dx.

In the absence of a flow, equations for dynamic problems are

∂Q
∂t

= L∆Q−AQ + B

(
Q2 − trQ2

3
I
)
− C(trQ2)Q(1.4)

− 1
2
ε3

(
∇2ϕ− 1

3
∆ϕI

)
in Ω.

subject to

∇ · (ε(Q)∇ϕ) = −ε3∇ · (∇ ·Q) in Ω,(1.5)

and boundary conditions
{

∂Q(x,t)
∂ν = 0 on Γ, Q(x, t) = Q1(x) on ∂Ω \ Γ,

ϕ(x, t) = ϕ0(x) on Γ, ∂ϕ(x,t)
∂ν = 0 on ∂Ω \ Γ,

(1.6)

where Q1 is fixed.
From now on, we study existence of weak solutions of the system

(1.4)-(1.5) with the boundary conditions (1.6).

2. A priori estimates

In this section, we study a priori estimates for solutions which will
be used in the next section. Let us introduce

W 1,2(Ω;S0) =
{
Q : ||Q||L2(Ω) + ||∇Q||L2(Ω) < ∞,Q : Ω → S0

}
,

H1
Γ(Ω) =

{
ψ ∈ H1(Ω) : ψ = 0 on Γ,

∂ψ

∂ν
= 0 on ∂Ω \ Γ

}
.

For any p > 0, and t > 0, we denote by Lp(0, t;V) the space of all
functions Q : (0, t) → V such that

∫ t

0
||Q||V dt < ∞,
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where V is a function space equipped with its norm || · ||V . We look for
a weak solution of the system (1.4),(1.5), and (1.6). In other words, the
problem is to find Q ∈ L2

(
0, T ;W 1,2(Ω;S0)

)
and ϕ ∈ L2(0, T ;H1(Ω))

satisfying





∫
Ω

{(
∂Q
∂t + L∇Q + AQ−BQ2 + C(trQ2)Q

)
·T

}
dx

= 1
2ε3

∫
Ω∇ϕ · (∇ ·T) dx,∫

Ω (ε(Q)∇ϕ) · ∇ψ dx =
∫
Γ (ε(Q1)∇ϕ0 · ν) ψ dA− ∫

Ω(∇ ·Q) · ∇ψ dx,
∂Q(x,t)

∂ν = 0 on Γ, Q(x, t) = Q1(x) on ∂Ω \ Γ,

ϕ(x, t) = ϕ0(x) on Γ, ∂ϕ(x,t)
∂ν = 0 on ∂Ω \ Γ,

(2.1)

for all T ∈ W 1,2(Ω;S0) and ψ ∈ H1
Γ(Ω).

Lemma 2.1. Let (Q, ϕ) be a solution pair of functions to (1.4),(1.5),
and (1.6). Then

Q ∈ L2(0, T ;W 1,2(Ω;S0))∩L4(0, T ; L4(Ω;S0)), ϕ ∈ L2(0, T ;H1(Ω)).

Proof. Let (Q, ϕ) be a solution pair of functions to (1.4),(1.5), and
(1.6). Multiplying each equation in (1.4) by Qij and integrating by parts
followed by summing up, we obtain

d

dt

∫

Ω
|Q|2 dx+

∫

Ω

(
L|∇Q|2 + A trQ2 −B trQ3 + C(trQ2)2

)
dx

=
1
2
ε1

∫

Ω
∇ϕ · (∇ ·Q) dx.(2.2)

Similarly, multiplying (1.5) by ϕ and integrating by parts yield
∫

Ω
(ε(Q)∇ϕ) · ∇ϕdx = −ε3

∫

Ω
(∇ ·Q) · ∇ϕdx.(2.3)

Combining (2.2) with (2.3) we obtain

d

dt

∫

Ω
|Q|2 dx+

∫

Ω

(
L|∇Q|2 + C(trQ2)2 +

1
2

(ε(Q)∇ϕ) · ∇ϕ

)
dx

=
∫

Ω

(−A trQ2 + B trQ3
)

dx.(2.4)

By Hölder inequality, choose η > 0 such that C −Bη2 > 0 and
∫

Ω
trQ3 dx ≤

∫

Ω

{
1
η2

trQ2 + η2(trQ2)2
}

dx.(2.5)
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It follows from (2.4) and (2.5) that

d

dt

∫

Ω
|Q|2 dx+

∫

Ω

(
L|∇Q|2 + C̃(trQ2)2 +

1
2

(ε(Q)∇ϕ) · ∇ϕ

)
dx

≤M||Q||L2 +D,(2.6)

where C̃ = C − 1
η2 , and M = −A + B

η2 . Hence we get

d

dt
||Q||2L2 ≤M||Q||2L2 +D,

and Grownwall’s inequality leads us to have

(2.7) ||Q(t)||2L2 ≤ ||Q(0)||2L2e
Mt +

D
M

(
eMt − 1

)
.

This implies that

sup
0≤t≤T

||Q(t)||2L2 ≤ ||Q(0)||2L2e
MT +

D
M

(
eMT − 1

)
,

and integrating (2.6) with respect to t yields
∫ T

0

∫

Ω

(
L|∇Q|2 + C̃(trQ2)2 +

1
2

(ε(Q)∇ϕ) · ∇ϕ

)
dx dt < ∞.

Since (ε(Q)∇ϕ) · ∇ϕ ≥ λ||∇ϕ||2 for some λ > 0, by Poincare inequality
we have

Q ∈ L2(0, T ; W 1,2(Ω;S0)) ∩ L4(0, T ; L4(Ω;S0)), ϕ ∈ L2(0, T ; H1(Ω)).

3. Existence of weak solution

Theorem 3.1. For any given T > 0, Q0 ∈ L2(Ω;S0), there exists

a solution pair (Q, ϕ) to (2.1) such that Q ∈ L(0, T ;W 1,2(Ω;S0) and
ϕ ∈ L2(0, T ; H1(Ω)). Moreover, if Q0 ∈ W 1,2(Ω;S0), then

Q ∈ C(0, T ; W 1,2(Ω;S0))∩L4(0, T ; L4(Ω;S0)),
∂Q
∂t

∈ L2(0, T ; L2(Ω;S0)).

Proof. We use the Galerkin Method [6] to obtain a weak solution
(Q, ϕ) to (2.1). We first approximate W 1,2(Ω,S0) and H1(Ω) by in-
creasing sequences of finite dimensional subspaces Xm ⊂ W 1,2(Ω,S0),
and Ym ⊂ H1(Ω) such that

∪∞m=1Xm = W 1,2(Ω,S0), ∪∞m=1Ym = H1(Ω).
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For each m ∈ N, let {xi}m
i=1 and {yi}m

i=1 be orthonormal bases for Xm

and Ym, respectively. We first seek a solution pair (Qm, ϕm) in Xm×Ym

in the form

Qm(x, t) =
m∑

i=1

pi(t)xi(x), ϕm(x, t) =
m∑

i=1

qi(t)yi(x).

Substituting (Qm, ϕm) for (Q, ϕ) in (2.1), and taking T = xj , ψ =
yk, we obtain a system of nonlinear ordinary differential equations for
{pi(t), qi(t)}m

i=1. It follows from the standard theory of ODEs that the
new system has a unique solution on some interval [0, tm] ⊂ [0, T ]. By
lemma 2.1, we know that

sup
0≤t≤T

{||Qm(t)||L2 , ||ϕm(t)||L2} < ∞.

We extend Qm, ϕm to the interval [0, T ] by the standard continuation
method [3, 6]. Apply Lemma 2.1 again to show that {Qm}m∈N is
bounded in L2(0, T ; W 1,2(Ω;S0))∩L4(0, T ;L4(Ω;S0)), and {ϕm}m∈N is
bounded in L2(0, T ; H1(Ω)). Note that {(tr (Qm)2)Qm}m∈N is bounded
in L

4
3 ((0, T )× Ω)).

We can extract a subsequence (not relabeled) {(Qm, ϕm)}m∈N such
that 




Qm ⇀ Q̄ weakly in L2(0, T ; W 1,2(Ω;S0)),
Qm ⇀ Q̄ weakly in L4(0, T ; L4(Ω;S0)),
(tr (Qm)2)Qm ⇀ P weakly in L

4
3 ((0, T )× Ω)),

ϕm ⇀ ϕ̄ weakly in L2(0, T ; H1(Ω)).

(3.1)

Using the Sobolev imbedding W 1,2 ⊂ L4[5], we obtain imbeddings

L4(0, T ; W 1,2(Ω;S0)) ↪→ L4((0, T )× Ω;S0),

L
4
3 ((0, T )× Ω;S0) ↪→ L

4
3 (0, T ;

[
W 1,2(Ω;S0)

]′).

It follows that
{

∂Qm

∂t

}
m∈N

is bounded in L
4
3 (0, T ;

[
W 1,2(Ω;S0)

]′). Since

{Qm}m∈N is bounded in L2(0, T ;W 1,2(Ω;S0)), Aubin’s compactness shows
that

Qm → Q̄ strongly in L2(0, T ;L2(Ω;S0)).

This concludes that (tr Q̄2)Q̄ = P, and therefore (Q̄, ϕ̄) is a weak solu-
tion pair.

Corollary 1. There exists a weak solution pair (Q, ϕ) which be-
longs to L2(0,∞; W 1,2(Ω;S0)×L2(0,∞; H1(Ω)) to (1.4),(1.5), and (1.6).
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Proof. As in the proof of lemma 2.1, multiplying (1.4),(1.5) by Q and
ϕ followed by integration by parts we obtain

∫

Ω

(
L|∇Q|2 + A trQ2 −B trQ3 + C(trQ2)2 +

1
2

(ε(Q)∇ϕ) · ∇ϕ

)
dx

(3.2)

+
d

dt

∫

Ω
|Q|2 dx = 0

Since C > 0, there exists D such that A trQ2 − B trQ3 + C(trQ2)2 ≥
−D. It follows from (3.2) and the Poincare inequality that

d

dt

∫

Ω
|Q|2 dx +M

∫

Ω
|Q|2 dx ≤ D|Ω|,

where M = L
K > 0 with the Poincare constant K. By Grownwall’s

inequality we have

||Q(t)||L2 ≤ ||Q(0)||L2e−Mt +
D|Ω|
M

(
1− e−Mt

)
.

Therefore sup0≤t<∞ ||Q(t)||L2 ≤ D|Ω|
M and the proof is complete.

Next, we prove that such a weak solution is unique and it converges
to an equilibrium solution of the energy functional E .

Theorem 3.2. If ε1 = ε2 = 0 in (1.5), then there exists a unique
weak solution to (1.4),(1.5), and (1.6).

Proof. Let (Q1, ϕ1) and (Q2, ϕ2) be two weak solutions. Then
1
2

d

dt

∫

Ω
|Q|2 dx +

∫

Ω

[
L|∇Q|2 +

(
f ′bulk(Q1)− f ′bulk(Q2)

) ·Q]

=
1
2
ε3

∫

Ω
∇ϕ · (∇ ·Q) dx,

∫

Ω
(ε0∇ϕ) · ∇ϕdx = −ε3

∫

Ω
(∇ ·Q) · ∇ϕdx,

where Q = Q1 −Q2, ϕ = ϕ1 − ϕ2. Plugging the second equation into
the first one, we get

1
2

d

dt

∫

Ω
|Q|2 dx +

∫

Ω

(
L|∇Q|2 +

1
2
ε0|∇ϕ|2

)
dx

=
∫

Ω

[(
f ′bulk(Q1)− f ′bulk(Q2)

) ·Q]
dx

≤ M

∫

Ω
|Q|2 dx for some M > 0.
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Hence ||Q||L2 ≤ ||Q(0)||L2et = 0 so that Q1 = Q2 and ϕ1 = ϕ2.

Theorem 3.3. If Q0 ∈ W 1,2(Ω,S0), then there is a subsequence
of solutions to (1.4) which converges to a solution of the steady state
problem as t →∞.

Proof. Multiplying individual equation by ∂Qij

∂t and integrating by
parts followed by summing up, we obtain∫

Ω
|Qt|2 = − d

dt

∫

Ω

[
L

2
|∇Q|2 + AtrQ2 −B trQ3 + C

(
trQ2

)2
]

dx

+ ε3

∫

Ω
∇ ·Qt · ∇ϕdx− d

dt

∫

Ω
|∇ϕ|2 dx

= ε3

∫

Ω
∇ ·Qt · ∇ϕ dx.

Then∫

Ω
|Qt|2

= − d

dt

∫

Ω

[
L

2
|∇Q|2 + AtrQ2 −B trQ3 + C

(
trQ2

)2 + |∇ϕ|2
]

dx

and∫ T

0

∫

Ω
|Qt|2 dx dt

= −
∫

Ω

[
L

2
|∇Q|2 + AtrQ2 −B trQ3 + C

(
trQ2

)2 + |∇ϕ|2
]

t=T

dx

+
∫

Ω

[
L

2
|∇Q|2 + AtrQ2 −B trQ3 + C

(
trQ2

)2 + |∇ϕ|2
]

t=0

dx

≤
∫

Ω

[
L

2
|∇Q|2 + AtrQ2 −B trQ3 + C

(
trQ2

)2 + |∇ϕ|2
]

t=0

dx

+ M |Ω|,
where M is the minimum value of AtrQ2 −B trQ3 + C

(
trQ2

)2.
Hence we obtain Qt ∈ L2(0,∞;L2(Ω;S0)). This shows that∫

Ω
|Qt(x, ti)|2 dx → 0 as i →∞,

for almost all sequence {ti}i∈N satisfying ti → ∞ as i → ∞. Further-
more, we also get

(∇Q,∇ϕ) ∈ L∞(0,∞; L2(Ω;S0))× L∞(0,∞;L2(Ω)).
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By Poincare inequality, we have

(Q, ϕ) ∈ L∞(0,∞; W 1,2(Ω;S0))× L∞(0,∞; W 1,2(Ω))

and there is a sequence {ti}i∈N with ti →∞ as i →∞ such that

(Q(x, ti), ϕ(x, ti)) ⇀ (Q̄, ϕ̄) weakly in W 1,2 as ti →∞.

Since (Q, ϕ) is a weak solution pair,



〈
∂Q
∂t , Q̃

〉
+

〈
L∇Q + AQ−BtrQ2 + C(trQ2)Q,∇Q̃

〉

+ε
〈
∇ϕ,∇ · Q̃

〉
= 0,∫

Ω (∇ϕ · ∇ψ +∇ ·Q · ∇ψ) dx = 0,

for all Q̃ ∈ W 1,2(Ω,S0), ψ ∈ W 1,2(Ω). Passing to the limit as ti → ∞,
we obtain





∫
Ω

(
L∇Q̄ + AQ̄−Btr Q̄2 + C(tr Q̄2)Q̄

) · ∇Q̃
+ε

∫
Ω∇ϕ̄ · (∇ · Q̃) dx = 0,∫

Ω

(∇ϕ̄ · ∇ψ +∇ · Q̄ · ∇ψ
)

dx = 0.

This completes the proof.
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