# WEAK SOLUTIONS OF GRADIENT FLOW OF LANDAU-DE GENNES ENERGY 

Jinhae Park*


#### Abstract

Taking into account the flexoelectric effects, we consider a gradient flow of Landau-de Gennes energy which generalizes the Oseen-Frank energy. In this article, we discuss existence of weak solutions of the gradient flow in an appropriate function space.


## 1. Introduction

Molecules in Nematic Liquid Crystals are described by a traceless symmetric second order tensor

$$
\begin{equation*}
\mathbf{Q}=\int_{\mathbb{S}^{2}} \ell \otimes \ell f(\ell) d \ell-\frac{1}{3} I \tag{1.1}
\end{equation*}
$$

where $f$ is a probability distribution function satisfying $f(\ell)=f(-\ell)$ for all $\ell \in \mathbb{S}^{2}$. Shapes of molecules are characterized by three eigenvalues of $\mathbf{Q}$ and the direction of a molecule is defined by the unit eigenvector whose corresponding eigenvalue has the largest magnitude. The order tensor $\mathbf{Q}$ is a measure of the local degree of orientational order in liquid crystals. The liquid crystal is said to be uniaxial if two eigenvalues of $\mathbf{Q}$ are equal, and it is biaxial when $\mathbf{Q}$ has three distinct eigenvalues. The tensor $\mathbf{Q}$ is zero in the isotropic phase. Since $\mathbf{Q}$ is a symmetric matrix, all eigenvalues of $\mathbf{Q}$ are real and expressed in term of $\mathbf{Q}$ as [4]

[^0]\[

\left\{$$
\begin{array}{l}
\lambda_{1}=\frac{2 \sqrt{\operatorname{tr} \mathbf{Q}^{2}}}{\sqrt{6}} \cos \alpha \\
\lambda_{2}=\frac{2 \sqrt{\operatorname{tr} \mathbf{Q}^{2}}}{\sqrt{6}}\left(-\frac{1}{2} \cos \alpha-\frac{\sqrt{3}}{2} \sin \alpha\right), \\
\lambda_{3}=\frac{2 \sqrt{\operatorname{tr} \mathbf{Q}^{2}}}{\sqrt{6}}\left(-\frac{1}{2} \cos \alpha+\frac{\sqrt{3}}{2} \sin \alpha\right),
\end{array}
$$\right.
\]

where

$$
\cos (3 \alpha)=-\frac{\sqrt{6} \operatorname{tr} \mathbf{Q}^{3}}{\operatorname{tr} \mathbf{Q}^{2} \sqrt{\operatorname{tr} \mathbf{Q}^{2}}}, \quad \sin (3 \alpha)=\sqrt{1-\frac{6\left(\operatorname{tr} \mathbf{Q}^{3}\right)^{2}}{\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{3}}}, \quad \alpha \in\left[0, \frac{\pi}{3}\right]
$$

It follows from $\operatorname{tr} \mathbf{Q}=0$ and $\mathbf{Q}=\mathbf{Q}^{T}$ that $6\left(\operatorname{tr} \mathbf{Q}^{3}\right)^{2} \leq\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{3}$. Moreover, $\mathbf{Q}$ has two distinct eigenvalues if and only if $6\left(\operatorname{tr} \mathbf{Q}^{3}\right)^{2}=\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{3}$. From (1.1), it can be easily seen that $-\frac{1}{3} \leq \lambda_{i} \leq \frac{2}{3}$ for $i=1,2,3$. It then follows that $\operatorname{tr} \mathbf{Q}^{2} \leq \frac{1}{6}$.

If $\mathbf{Q}$ is expressed by

$$
\mathbf{Q}=S_{1}\left(\mathbf{m} \otimes \mathbf{m}-\frac{1}{3} \mathbf{I}\right)+S_{2}\left(\mathbf{n} \otimes \mathbf{n}-\frac{1}{3} \mathbf{I}\right),
$$

where $\{\mathbf{m}, \mathbf{n}, \mathbf{m} \times \mathbf{n}\}$ is an orthonormal basis for $\mathbf{R}^{3}$ consisting of unit eigenvectors of $\mathbf{Q}$, then the eigenvalues are

$$
\frac{1}{3}\left(2 S_{1}-S_{2}\right), \quad-\frac{1}{3}\left(S_{1}+S_{2}\right), \quad \frac{1}{3}\left(2 S_{2}-S_{1}\right) .
$$

In the Landau-de Gennes theory, neglecting the higher derivatives and powers of $\mathbf{Q}$ the free energy density $\mathcal{F}$ for nematic liquid crystals is given by

$$
\begin{aligned}
& \mathcal{F}(\mathbf{Q}, \nabla \mathbf{Q}) \\
& =\frac{1}{2}\left(L_{1} Q_{\alpha \beta, \gamma} Q_{\alpha \beta, \gamma}+L_{2} Q_{\alpha \beta, \beta} Q_{\alpha \gamma, \gamma}+L_{3} Q_{\alpha \beta, \gamma} Q_{\alpha \gamma, \beta}\right)+f_{b u l k}(\mathbf{Q}),
\end{aligned}
$$

where

$$
f_{\text {bulk }}(\mathbf{Q})=\frac{A}{2} \operatorname{tr} \mathbf{Q}^{2}-\frac{B}{3} \operatorname{tr} \mathbf{Q}^{3}+\frac{C}{4}\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2} .
$$

The bulk energy $f_{\text {bulk }}$ is a potential function for uniaxial nematic liquid crystals, meaning that $f_{\text {bulk }}$ favors molecules to be uniaxial. In order to study biaxial liquid crystals, we need to add higher powers of $\mathbf{Q}$ to $f_{\text {bulk }}$. In liquid crystals, there exists a polarization induced by a splay and bending distortion $[2,1]$. Such a polarization is called flexoelectric polarization which is analogous to piezoelectric polarization in solids. The flexoelectric polarization can be written in terms of $\mathbf{Q}$ as

$$
\begin{aligned}
\mathbf{P}^{f} & =\left(P_{1}, P_{2}, P_{3}\right) \\
P_{i} & =\epsilon_{3} Q_{i j, j}+\epsilon_{4} Q_{j k} Q_{i j, k}+\epsilon_{5} Q_{i j} Q_{j k, k}+\text { higher order. }
\end{aligned}
$$

Due to the appearance of the flexoelectric polarization, the following electrostatic equations (Maxwell's equations) will be taken into account in the system

$$
\begin{equation*}
\nabla \cdot(\boldsymbol{\epsilon}(\mathbf{Q}) \mathbf{E})=-\nabla \cdot \mathbf{P}^{f}, \quad \nabla \times \mathbf{E}=0 \tag{1.2}
\end{equation*}
$$

where $\epsilon(\mathbf{Q})$ is the dielectric permittivity tensor given by

$$
\epsilon(\mathbf{Q})=\epsilon_{0} \mathbf{I}+\epsilon_{1} \mathbf{Q}+\epsilon_{2} \mathbf{Q}^{2} .
$$

Hence the electrostatic energy is

$$
f_{\text {elec }}=-\frac{1}{2}(\epsilon(\mathbf{Q}) \mathbf{E}) \cdot \mathbf{E}-\mathbf{P}^{f} \cdot \mathbf{E}
$$

If we let

$$
\mathbf{Q}=\frac{3}{2} S\left(\mathbf{n} \otimes \mathbf{n}-\frac{1}{3} \mathbf{I}\right)
$$

then

$$
\begin{aligned}
& \epsilon(\mathbf{Q}) \mathbf{E} \cdot \mathbf{E}=\left(\epsilon_{0}-\frac{\epsilon_{1}}{2} S+\frac{\epsilon_{2}}{4} S^{2}\right)|\mathbf{E}|^{2}+\frac{3}{2} S\left(\epsilon_{1}+\frac{\epsilon_{2}}{2} S\right)(\mathbf{n} \cdot \mathbf{E})^{2}, \\
& \mathbf{P}^{f}=e_{11}(\nabla \cdot \mathbf{n}) \mathbf{n}+e_{33} \mathbf{n} \times \nabla \times \mathbf{n}, \\
& e_{11}=\frac{3}{2} \epsilon_{3} S+\frac{3}{4}\left(2 \epsilon_{5}-\epsilon_{4}\right) S^{2}, \quad e_{33}=\frac{3}{2} \epsilon_{3} S+\frac{3}{4}\left(2 \epsilon_{4}-\epsilon_{5}\right) S^{2} .
\end{aligned}
$$

Then the permittivity $\epsilon_{\perp}$ and dielectric anisotropic constant $\epsilon_{a}$ are defined by

$$
\epsilon_{\perp}=\epsilon_{0}-\frac{\epsilon_{1}}{2} S+\frac{\epsilon_{2}}{4} S^{2}, \quad \epsilon_{a}=\frac{3}{2} S\left(\epsilon_{1}+\frac{\epsilon_{2}}{2} S\right)
$$

Now, since eigenvalues of $\mathbf{Q}$ are in between $-\frac{1}{3}$ and $\frac{2}{3}$, we impose the following condition for strong ellipticity of (1.2)

$$
3 \epsilon_{0}>\epsilon_{1} \quad \text { if } \epsilon_{1}>0, \quad \text { and } \quad 3 \epsilon_{0}>-2 \epsilon_{1} \quad \text { if } \epsilon_{1} \leq 0
$$

Since some material can have $\epsilon_{1}>0$ and $S>0$, we have to include $\epsilon_{2}$-term in order to satisfy solvability condition $\epsilon_{\perp}>\left|\epsilon_{a}\right|$. For a sake of simplicity, we take $\epsilon_{4}=\epsilon_{5}=0$ so that equations (1.2) become

$$
\begin{equation*}
\nabla \cdot\left[\left(\epsilon_{0} \mathbf{I}+\epsilon_{1} \mathbf{Q}+\epsilon_{2} \mathbf{Q}^{2}\right) \nabla \varphi\right]=-\epsilon_{3} \nabla \cdot(\nabla \cdot \mathbf{Q}) \tag{1.3}
\end{equation*}
$$

where $\nabla \cdot \mathbf{Q}=Q_{1 j, j} \mathbf{e}_{x}+Q_{2 j, j} \mathbf{e}_{y}+Q_{3 j, j} \mathbf{e}_{z},\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$ is a set of unit vectors in $x, y, z$ axes respectively, and $\varphi$ is an electric potential function, i.e. $\mathbf{E}=\nabla \varphi$.

By Maxwell's equation, the electrostatic energy functional can be written as

$$
\int_{\Omega} f_{e l e c} d x=-\frac{1}{2} \int_{\Omega}(\nabla \cdot \mathbf{Q}) \cdot \nabla \varphi d x
$$

The total energy functional $\mathcal{E}$ is
$\mathcal{E}(\mathbf{Q}, \varphi)$
$=\int_{\Omega}\left\{\frac{1}{2} L|\nabla \mathbf{Q}|^{2}+\frac{A}{2} \operatorname{tr} \mathbf{Q}^{2}-\frac{B}{3} \operatorname{tr} \mathbf{Q}^{3}+\frac{C}{4}\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}-\frac{1}{2} \epsilon_{3}(\nabla \cdot \mathbf{Q}) \cdot \nabla \varphi\right\} d x$.
In the absence of a flow, equations for dynamic problems are

$$
\begin{align*}
\frac{\partial \mathbf{Q}}{\partial t}= & L \Delta \mathbf{Q}-A \mathbf{Q}+B\left(\mathbf{Q}^{2}-\frac{\operatorname{tr} \mathbf{Q}^{2}}{3} \mathbf{I}\right)-C\left(\operatorname{tr} \mathbf{Q}^{2}\right) \mathbf{Q}  \tag{1.4}\\
& -\frac{1}{2} \epsilon_{3}\left(\nabla^{2} \varphi-\frac{1}{3} \Delta \varphi \mathbf{I}\right) \text { in } \Omega
\end{align*}
$$

subject to

$$
\begin{equation*}
\nabla \cdot(\epsilon(\mathbf{Q}) \nabla \varphi)=-\epsilon_{3} \nabla \cdot(\nabla \cdot \mathbf{Q}) \quad \text { in } \Omega \tag{1.5}
\end{equation*}
$$

and boundary conditions

$$
\begin{cases}\frac{\partial \mathbf{Q}(x, t)}{\partial \nu}=\mathbf{0} & \text { on } \Gamma, \quad \mathbf{Q}(x, t)=\mathbf{Q}_{1}(x) \quad \text { on } \partial \Omega \backslash \Gamma,  \tag{1.6}\\ \varphi(x, t)=\varphi_{0}(x) & \text { on } \Gamma, \quad \frac{\partial \varphi(x, t)}{\partial \boldsymbol{\nu}}=0 \quad \text { on } \partial \Omega \backslash \Gamma,\end{cases}
$$

where $\mathbf{Q}_{1}$ is fixed.
From now on, we study existence of weak solutions of the system (1.4)-(1.5) with the boundary conditions (1.6).

## 2. A priori estimates

In this section, we study a priori estimates for solutions which will be used in the next section. Let us introduce

$$
\begin{aligned}
& W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)=\left\{\mathbf{Q}:\|\mathbf{Q}\|_{L^{2}(\Omega)}+\|\nabla \mathbf{Q}\|_{L^{2}(\Omega)}<\infty, \mathbf{Q}: \Omega \rightarrow \mathcal{S}_{0}\right\} \\
& H_{\Gamma}^{1}(\Omega)=\left\{\psi \in H^{1}(\Omega): \psi=0 \text { on } \Gamma, \quad \frac{\partial \psi}{\partial \boldsymbol{\nu}}=0 \text { on } \partial \Omega \backslash \Gamma\right\}
\end{aligned}
$$

For any $p>0$, and $t>0$, we denote by $L^{p}(0, t ; \mathcal{V})$ the space of all functions $\mathbf{Q}:(0, t) \rightarrow \mathcal{V}$ such that

$$
\int_{0}^{t}\|\mathbf{Q}\|_{\mathcal{V}} d t<\infty
$$

where $\mathcal{V}$ is a function space equipped with its norm $\|\cdot\| \mathcal{V}$. We look for a weak solution of the system (1.4),(1.5), and (1.6). In other words, the problem is to find $\mathbf{Q} \in L^{2}\left(0, T ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right)$ and $\varphi \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$ satisfying
for all $\mathbf{T} \in W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)$ and $\psi \in H_{\Gamma}^{1}(\Omega)$.
Lemma 2.1. Let $(\mathbf{Q}, \varphi)$ be a solution pair of functions to (1.4),(1.5), and (1.6). Then
$\mathbf{Q} \in L^{2}\left(0, T ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right) \cap L^{4}\left(0, T ; L^{4}\left(\Omega ; \mathcal{S}_{0}\right)\right), \quad \varphi \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$.
Proof. Let $(\mathbf{Q}, \varphi)$ be a solution pair of functions to (1.4),(1.5), and (1.6). Multiplying each equation in (1.4) by $Q_{i j}$ and integrating by parts followed by summing up, we obtain

$$
\begin{aligned}
\frac{d}{d t} \int_{\Omega}|\mathbf{Q}|^{2} d x+ & \int_{\Omega}\left(L|\nabla \mathbf{Q}|^{2}+A \operatorname{tr} \mathbf{Q}^{2}-B \operatorname{tr} \mathbf{Q}^{3}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}\right) d x \\
2) & =\frac{1}{2} \epsilon_{1} \int_{\Omega} \nabla \varphi \cdot(\nabla \cdot \mathbf{Q}) d x
\end{aligned}
$$

Similarly, multiplying (1.5) by $\varphi$ and integrating by parts yield

$$
\begin{equation*}
\int_{\Omega}(\epsilon(\mathbf{Q}) \nabla \varphi) \cdot \nabla \varphi d x=-\epsilon_{3} \int_{\Omega}(\nabla \cdot \mathbf{Q}) \cdot \nabla \varphi d x \tag{2.3}
\end{equation*}
$$

Combining (2.2) with (2.3) we obtain

$$
\begin{gathered}
\frac{d}{d t} \int_{\Omega}|\mathbf{Q}|^{2} d x+\int_{\Omega}\left(L|\nabla \mathbf{Q}|^{2}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}+\frac{1}{2}(\epsilon(\mathbf{Q}) \nabla \varphi) \cdot \nabla \varphi\right) d x \\
\text { 4) } \quad=\int_{\Omega}\left(-A \operatorname{tr} \mathbf{Q}^{2}+B \operatorname{tr} \mathbf{Q}^{3}\right) d x
\end{gathered}
$$

By Hölder inequality, choose $\eta>0$ such that $C-B \eta^{2}>0$ and

$$
\begin{equation*}
\int_{\Omega} \operatorname{tr} \mathbf{Q}^{3} d x \leq \int_{\Omega}\left\{\frac{1}{\eta^{2}} \operatorname{tr} \mathbf{Q}^{2}+\eta^{2}\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}\right\} d x \tag{2.5}
\end{equation*}
$$

It follows from (2.4) and (2.5) that

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega}|\mathbf{Q}|^{2} d x+\int_{\Omega}\left(L|\nabla \mathbf{Q}|^{2}+\tilde{C}\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}+\frac{1}{2}(\epsilon(\mathbf{Q}) \nabla \varphi) \cdot \nabla \varphi\right) d x \\
& \leq \mathcal{M}\|\mathbf{Q}\|_{L^{2}}+\mathcal{D} \tag{2.6}
\end{align*}
$$

where $\tilde{C}=C-\frac{1}{\eta^{2}}$, and $\mathcal{M}=-A+\frac{B}{\eta^{2}}$. Hence we get

$$
\frac{d}{d t}\|\mathbf{Q}\|_{L^{2}}^{2} \leq \mathcal{M}\|\mathbf{Q}\|_{L^{2}}^{2}+\mathcal{D}
$$

and Grownwall's inequality leads us to have

$$
\begin{equation*}
\|\mathbf{Q}(t)\|_{L^{2}}^{2} \leq\|\mathbf{Q}(0)\|_{L^{2}}^{2} e^{\mathcal{M} t}+\frac{\mathcal{D}}{\mathcal{M}}\left(e^{\mathcal{M} t}-1\right) \tag{2.7}
\end{equation*}
$$

This implies that

$$
\sup _{0 \leq t \leq T}\|\mathbf{Q}(t)\|_{L^{2}}^{2} \leq\|\mathbf{Q}(0)\|_{L^{2}}^{2} e^{\mathcal{M} T}+\frac{\mathcal{D}}{\mathcal{M}}\left(e^{\mathcal{M} T}-1\right)
$$

and integrating (2.6) with respect to $t$ yields

$$
\int_{0}^{T} \int_{\Omega}\left(L|\nabla \mathbf{Q}|^{2}+\tilde{C}\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}+\frac{1}{2}(\epsilon(\mathbf{Q}) \nabla \varphi) \cdot \nabla \varphi\right) d x d t<\infty
$$

Since $(\epsilon(\mathbf{Q}) \nabla \varphi) \cdot \nabla \varphi \geq \lambda\|\nabla \varphi\|^{2}$ for some $\lambda>0$, by Poincare inequality we have

$$
\mathbf{Q} \in L^{2}\left(0, T ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right) \cap L^{4}\left(0, T ; L^{4}\left(\Omega ; \mathcal{S}_{0}\right)\right), \varphi \in L^{2}\left(0, T ; H^{1}(\Omega)\right)
$$

## 3. Existence of weak solution

Theorem 3.1. For any given $T>0, \mathbf{Q}_{0} \in L^{2}\left(\Omega ; \mathcal{S}_{0}\right)$, there exists a solution pair $(\mathbf{Q}, \varphi)$ to (2.1) such that $\mathbf{Q} \in L^{( } 0, T ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)$ and $\varphi \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$. Moreover, if $\mathbf{Q}_{0} \in W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)$, then
$\mathbf{Q} \in \mathcal{C}\left(0, T ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right) \cap L^{4}\left(0, T ; L^{4}\left(\Omega ; \mathcal{S}_{0}\right)\right), \frac{\partial \mathbf{Q}}{\partial t} \in L^{2}\left(0, T ; L^{2}\left(\Omega ; \mathcal{S}_{0}\right)\right)$.
Proof. We use the Galerkin Method [6] to obtain a weak solution $(\mathbf{Q}, \varphi)$ to (2.1). We first approximate $W^{1,2}\left(\Omega, \mathcal{S}_{0}\right)$ and $H^{1}(\Omega)$ by increasing sequences of finite dimensional subspaces $\mathcal{X}^{m} \subset W^{1,2}\left(\Omega, \mathcal{S}_{0}\right)$, and $\mathcal{Y}^{m} \subset H^{1}(\Omega)$ such that

$$
\cup_{m=1}^{\infty} \mathcal{X}^{m}=W^{1,2}\left(\Omega, \mathcal{S}_{0}\right), \quad \cup_{m=1}^{\infty} \mathcal{Y}^{m}=H^{1}(\Omega)
$$

For each $m \in \mathbb{N}$, let $\left\{\mathbf{x}_{i}\right\}_{i=1}^{m}$ and $\left\{y_{i}\right\}_{i=1}^{m}$ be orthonormal bases for $\mathcal{X}^{m}$ and $\mathcal{Y}^{m}$, respectively. We first seek a solution pair $\left(\mathbf{Q}^{m}, \varphi^{m}\right)$ in $\mathcal{X}^{m} \times \mathcal{Y}^{m}$ in the form

$$
\mathbf{Q}^{m}(x, t)=\sum_{i=1}^{m} p_{i}(t) \mathbf{x}_{i}(x), \quad \varphi^{m}(x, t)=\sum_{i=1}^{m} q_{i}(t) y_{i}(x) .
$$

Substituting $\left(\mathbf{Q}^{m}, \varphi^{m}\right)$ for $(\mathbf{Q}, \varphi)$ in (2.1), and taking $\mathbf{T}=\mathbf{x}_{j}, \psi=$ $y_{k}$, we obtain a system of nonlinear ordinary differential equations for $\left\{p_{i}(t), q_{i}(t)\right\}_{i=1}^{m}$. It follows from the standard theory of ODEs that the new system has a unique solution on some interval $\left[0, t_{m}\right] \subset[0, T]$. By lemma 2.1, we know that

$$
\sup _{0 \leq t \leq T}\left\{\left\|\mathbf{Q}^{m}(t)\right\|_{L^{2}},\left\|\varphi^{m}(t)\right\|_{L^{2}}\right\}<\infty .
$$

We extend $\mathbf{Q}^{m}, \varphi^{m}$ to the interval $[0, T]$ by the standard continuation method [3, 6]. Apply Lemma 2.1 again to show that $\left\{\mathbf{Q}^{m}\right\}_{m \in \mathbb{N}}$ is bounded in $L^{2}\left(0, T ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right) \cap L^{4}\left(0, T ; L^{4}\left(\Omega ; \mathcal{S}_{0}\right)\right)$, and $\left\{\varphi^{m}\right\}_{m \in \mathbb{N}}$ is bounded in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$. Note that $\left\{\left(\operatorname{tr}\left(\mathbf{Q}^{m}\right)^{2}\right) \mathbf{Q}^{m}\right\}_{m \in \mathbb{N}}$ is bounded in $\left.L^{\frac{4}{3}}((0, T) \times \Omega)\right)$.

We can extract a subsequence (not relabeled) $\left\{\left(\mathbf{Q}^{m}, \varphi^{m}\right)\right\}_{m \in \mathbb{N}}$ such that

$$
\left\{\begin{array}{l}
\mathbf{Q}^{m} \rightharpoonup \overline{\mathbf{Q}} \text { weakly in } L^{2}\left(0, T ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right),  \tag{3.1}\\
\mathbf{Q}^{m} \rightharpoonup \overline{\mathbf{Q}} \text { weakly in } L^{4}\left(0, T ; L^{4}\left(\Omega ; \mathcal{S}_{0}\right)\right), \\
\left.\left(\operatorname{tr}\left(\mathbf{Q}^{m}\right)^{2}\right) \mathbf{Q}^{m} \rightharpoonup \mathbf{P} \text { weakly in } L^{\frac{4}{3}}((0, T) \times \Omega)\right), \\
\varphi^{m} \rightharpoonup \bar{\varphi} \text { weakly in } L^{2}\left(0, T ; H^{1}(\Omega)\right) .
\end{array}\right.
$$

Using the Sobolev imbedding $W^{1,2} \subset L^{4}[5]$, we obtain imbeddings

$$
\begin{aligned}
& L^{4}\left(0, T ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right) \hookrightarrow L^{4}\left((0, T) \times \Omega ; \mathcal{S}_{0}\right), \\
& L^{\frac{4}{3}}\left((0, T) \times \Omega ; \mathcal{S}_{0}\right) \hookrightarrow L^{\frac{4}{3}}\left(0, T ;\left[W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right]^{\prime}\right) .
\end{aligned}
$$

It follows that $\left\{\frac{\partial \mathbf{Q}^{m}}{\partial t}\right\}_{m \in \mathbb{N}}$ is bounded in $L^{\frac{4}{3}}\left(0, T ;\left[W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right]^{\prime}\right)$. Since $\left\{\mathbf{Q}^{m}\right\}_{m \in \mathbb{N}}$ is bounded in $L^{2}\left(0, T ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right)$, Aubin's compactness shows that

$$
\mathbf{Q}^{m} \rightarrow \overline{\mathbf{Q}} \text { strongly in } L^{2}\left(0, T ; L^{2}\left(\Omega ; \mathcal{S}_{0}\right)\right) .
$$

This concludes that $\left(\operatorname{tr} \overline{\mathbf{Q}}^{2}\right) \overline{\mathbf{Q}}=\mathbf{P}$, and therefore $(\overline{\mathbf{Q}}, \bar{\varphi})$ is a weak solution pair.

Corollary 1. There exists a weak solution pair $(\mathbf{Q}, \varphi)$ which belongs to $L^{2}\left(0, \infty ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right) \times L^{2}\left(0, \infty ; H^{1}(\Omega)\right)\right.$ to (1.4),(1.5), and (1.6).

Proof. As in the proof of lemma 2.1, multiplying (1.4),(1.5) by $\mathbf{Q}$ and $\varphi$ followed by integration by parts we obtain

$$
\begin{align*}
& \int_{\Omega}\left(L|\nabla \mathbf{Q}|^{2}+A \operatorname{tr} \mathbf{Q}^{2}-B \operatorname{tr} \mathbf{Q}^{3}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}+\frac{1}{2}(\epsilon(\mathbf{Q}) \nabla \varphi) \cdot \nabla \varphi\right) d x  \tag{3.2}\\
& +\frac{d}{d t} \int_{\Omega}|\mathbf{Q}|^{2} d x=0
\end{align*}
$$

Since $C>0$, there exists $\mathcal{D}$ such that $A \operatorname{tr} \mathbf{Q}^{2}-B \operatorname{tr} \mathbf{Q}^{3}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2} \geq$ $-\mathcal{D}$. It follows from (3.2) and the Poincare inequality that

$$
\frac{d}{d t} \int_{\Omega}|\mathbf{Q}|^{2} d x+\mathcal{M} \int_{\Omega}|\mathbf{Q}|^{2} d x \leq \mathcal{D}|\Omega|
$$

where $\mathcal{M}=\frac{L}{\mathcal{K}}>0$ with the Poincare constant $\mathcal{K}$. By Grownwall's inequality we have

$$
\|\mathbf{Q}(t)\|_{L^{2}} \leq\|\mathbf{Q}(0)\|_{L^{2}} e^{-\mathcal{M} t}+\frac{\mathcal{D}|\Omega|}{\mathcal{M}}\left(1-e^{-\mathcal{M} t}\right)
$$

Therefore $\sup _{0 \leq t<\infty}\|\mathbf{Q}(t)\|_{L^{2}} \leq \frac{\mathcal{D}|\Omega|}{\mathcal{M}}$ and the proof is complete.
Next, we prove that such a weak solution is unique and it converges to an equilibrium solution of the energy functional $\mathcal{E}$.

ThEOREM 3.2. If $\epsilon_{1}=\epsilon_{2}=0$ in (1.5), then there exists a unique weak solution to (1.4), (1.5), and (1.6).

Proof. Let $\left(\mathbf{Q}_{1}, \varphi_{1}\right)$ and $\left(\mathbf{Q}_{2}, \varphi_{2}\right)$ be two weak solutions. Then

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega}|\mathbf{Q}|^{2} d x+\int_{\Omega}\left[L|\nabla \mathbf{Q}|^{2}+\left(f_{b u l k}^{\prime}\left(\mathbf{Q}_{1}\right)-f_{b u l k}^{\prime}\left(\mathbf{Q}_{2}\right)\right) \cdot \mathbf{Q}\right] \\
& \quad=\frac{1}{2} \epsilon_{3} \int_{\Omega} \nabla \varphi \cdot(\nabla \cdot \mathbf{Q}) d x \\
& \int_{\Omega}\left(\epsilon_{0} \nabla \varphi\right) \cdot \nabla \varphi d x=-\epsilon_{3} \int_{\Omega}(\nabla \cdot \mathbf{Q}) \cdot \nabla \varphi d x
\end{aligned}
$$

where $\mathbf{Q}=\mathbf{Q}_{1}-\mathbf{Q}_{2}, \quad \varphi=\varphi_{1}-\varphi_{2}$. Plugging the second equation into the first one, we get

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega}|\mathbf{Q}|^{2} d x+\int_{\Omega}\left(L|\nabla \mathbf{Q}|^{2}+\frac{1}{2} \epsilon_{0}|\nabla \varphi|^{2}\right) d x \\
& =\int_{\Omega}\left[\left(f_{b u l k}^{\prime}\left(\mathbf{Q}_{1}\right)-f_{b u l k}^{\prime}\left(\mathbf{Q}_{2}\right)\right) \cdot \mathbf{Q}\right] d x \\
& \leq M \int_{\Omega}|\mathbf{Q}|^{2} d x \text { for some } M>0
\end{aligned}
$$

Hence $\|\mathbf{Q}\|_{L^{2}} \leq\|Q(0)\|_{L^{2}} e^{t}=0$ so that $\mathbf{Q}_{1}=\mathbf{Q}_{2}$ and $\varphi_{1}=\varphi_{2}$.
Theorem 3.3. If $\mathbf{Q}_{0} \in W^{1,2}\left(\Omega, \mathcal{S}_{0}\right)$, then there is a subsequence of solutions to (1.4) which converges to a solution of the steady state problem as $t \rightarrow \infty$.

Proof. Multiplying individual equation by $\frac{\partial Q_{i j}}{\partial t}$ and integrating by parts followed by summing up, we obtain

$$
\begin{aligned}
\int_{\Omega}\left|\mathbf{Q}_{t}\right|^{2}= & -\frac{d}{d t} \int_{\Omega}\left[\frac{L}{2}|\nabla \mathbf{Q}|^{2}+A \operatorname{tr} \mathbf{Q}^{2}-B \operatorname{tr} \mathbf{Q}^{3}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}\right] d x \\
& +\epsilon_{3} \int_{\Omega} \nabla \cdot \mathbf{Q}_{t} \cdot \nabla \varphi d x-\frac{d}{d t} \int_{\Omega}|\nabla \varphi|^{2} d x \\
= & \epsilon_{3} \int_{\Omega} \nabla \cdot \mathbf{Q}_{t} \cdot \nabla \varphi d x
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{\Omega}\left|\mathbf{Q}_{t}\right|^{2} \\
& =-\frac{d}{d t} \int_{\Omega}\left[\frac{L}{2}|\nabla \mathbf{Q}|^{2}+A \operatorname{tr} \mathbf{Q}^{2}-B \operatorname{tr} \mathbf{Q}^{3}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}+|\nabla \varphi|^{2}\right] d x
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left|\mathbf{Q}_{t}\right|^{2} d x d t \\
&=-\int_{\Omega}\left[\frac{L}{2}|\nabla \mathbf{Q}|^{2}+A \operatorname{tr} \mathbf{Q}^{2}-B \operatorname{tr} \mathbf{Q}^{3}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}+|\nabla \varphi|^{2}\right]_{t=T} d x \\
&+\int_{\Omega}\left[\frac{L}{2}|\nabla \mathbf{Q}|^{2}+A \operatorname{tr} \mathbf{Q}^{2}-B \operatorname{tr} \mathbf{Q}^{3}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}+|\nabla \varphi|^{2}\right]_{t=0} d x \\
& \leq \int_{\Omega}\left[\frac{L}{2}|\nabla \mathbf{Q}|^{2}+A \operatorname{tr} \mathbf{Q}^{2}-B \operatorname{tr} \mathbf{Q}^{3}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}+|\nabla \varphi|^{2}\right]_{t=0} d x \\
& \quad+M|\Omega|
\end{aligned}
$$

where $M$ is the minimum value of $A \operatorname{tr} \mathbf{Q}^{2}-B \operatorname{tr} \mathbf{Q}^{3}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}$.
Hence we obtain $\mathbf{Q}_{t} \in L^{2}\left(0, \infty ; L^{2}\left(\Omega ; \mathcal{S}_{0}\right)\right)$. This shows that

$$
\int_{\Omega}\left|\mathbf{Q}_{t}\left(x, t_{i}\right)\right|^{2} d x \rightarrow 0 \text { as } i \rightarrow \infty
$$

for almost all sequence $\left\{t_{i}\right\}_{i \in \mathbb{N}}$ satisfying $t_{i} \rightarrow \infty$ as $i \rightarrow \infty$. Furthermore, we also get

$$
(\nabla \mathbf{Q}, \nabla \varphi) \in L^{\infty}\left(0, \infty ; L^{2}\left(\Omega ; \mathcal{S}_{0}\right)\right) \times L^{\infty}\left(0, \infty ; L^{2}(\Omega)\right)
$$

By Poincare inequality, we have

$$
(\mathbf{Q}, \varphi) \in L^{\infty}\left(0, \infty ; W^{1,2}\left(\Omega ; \mathcal{S}_{0}\right)\right) \times L^{\infty}\left(0, \infty ; W^{1,2}(\Omega)\right)
$$

and there is a sequence $\left\{t_{i}\right\}_{i \in \mathbb{N}}$ with $t_{i} \rightarrow \infty$ as $i \rightarrow \infty$ such that

$$
\left(\mathbf{Q}\left(x, t_{i}\right), \varphi\left(x, t_{i}\right)\right) \rightharpoonup(\overline{\mathbf{Q}}, \bar{\varphi}) \text { weakly in } W^{1,2} \text { as } t_{i} \rightarrow \infty
$$

Since $(\mathbf{Q}, \varphi)$ is a weak solution pair,

$$
\left\{\begin{array}{l}
\left\langle\frac{\partial \mathbf{Q}}{\partial t}, \tilde{\mathbf{Q}}\right\rangle+\left\langle L \nabla \mathbf{Q}+A \mathbf{Q}-B \operatorname{tr} \mathbf{Q}^{2}+C\left(\operatorname{tr} \mathbf{Q}^{2}\right) \mathbf{Q}, \nabla \tilde{\mathbf{Q}}\right\rangle \\
\quad+\epsilon\langle\nabla \varphi, \nabla \cdot \tilde{\mathbf{Q}}\rangle=0, \\
\int_{\Omega}(\nabla \varphi \cdot \nabla \psi+\nabla \cdot \mathbf{Q} \cdot \nabla \psi) d x=0,
\end{array}\right.
$$

for all $\tilde{\mathbf{Q}} \in W^{1,2}\left(\Omega, \mathcal{S}_{0}\right), \psi \in W^{1,2}(\Omega)$. Passing to the limit as $t_{i} \rightarrow \infty$, we obtain

$$
\left\{\begin{array}{l}
\int_{\Omega}\left(L \nabla \overline{\mathbf{Q}}+A \overline{\mathbf{Q}}-B \operatorname{tr} \overline{\mathbf{Q}}^{2}+C\left(\operatorname{tr} \overline{\mathbf{Q}}^{2}\right) \overline{\mathbf{Q}}\right) \cdot \nabla \tilde{\mathbf{Q}} \\
\quad+\epsilon \int_{\Omega} \nabla \bar{\varphi} \cdot(\nabla \cdot \tilde{\mathbf{Q}}) d x=0 \\
\int_{\Omega}(\nabla \bar{\varphi} \cdot \nabla \psi+\nabla \cdot \overline{\mathbf{Q}} \cdot \nabla \psi) d x=0
\end{array}\right.
$$

This completes the proof.

## References

[1] G. Barbero and L. R. Evangelista, An elementary course on the continuum theory for nematic liquid crystals, World Scientific, 2001.
[2] P. G. de Gennes, The Physics Of Liquid Crystals, Oxford, 1974.
[3] R. McOwen, Partial Differential Equations, Prentice Hall, 1995.
[4] J. Park, Existence of periodic solutions in ferroelectric liquid crystals, J. of Chungcheong Math. Soc. 23 (2010), 571-588.
[5] M. Taylor, Partial Differential Equations III, nonlinear equations, SpringerVerlag, New York, Berlin, Heidelberg.
[6] R. Temam, Navier-Stokes Equations, theory and numerical analysis, AMS Chelsea, 2001.
*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: jhpark2003@gmail.com


[^0]:    Received July 11, 2013; Accepted July 30,2013.
    2010 Mathematics Subject Classification: Primary 46T99, 34A34; Secondary 34K18, 49J99.

    Key words and phrases: weak solution, Landau-de Gennes, Q-tensor.
    *This study was financially supported by research fund of Chungnam National University in 2011.

