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WEAK SOLUTIONS OF GRADIENT FLOW OF
LANDAU-DE GENNES ENERGY

JINHAE PARK*

ABSTRACT. Taking into account the flexoelectric effects, we con-
sider a gradient flow of Landau-de Gennes energy which generalizes
the Oseen-Frank energy. In this article, we discuss existence of weak
solutions of the gradient flow in an appropriate function space.

1. Introduction

Molecules in Nematic Liquid Crystals are described by a traceless
symmetric second order tensor

(1.1) Q= [ toef@ya—1r,
- 3

where f is a probability distribution function satisfying f(¢) = f(—¢)
for all £ € S%. Shapes of molecules are characterized by three eigenvalues
of Q and the direction of a molecule is defined by the unit eigenvector
whose corresponding eigenvalue has the largest magnitude. The order
tensor Q is a measure of the local degree of orientational order in liquid
crystals. The liquid crystal is said to be uniaxial if two eigenvalues of Q
are equal, and it is biaxial when Q has three distinct eigenvalues. The
tensor Q is zero in the isotropic phase. Since Q is a symmetric matrix,
all eigenvalues of Q are real and expressed in term of Q as [4]
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Al = 2 \t/%Q2 cos @,
)\_2 trQ2<_l V3
NG scosa — sina),
A3 = QV\t/%QQ (—%cosa—k @Sina) ,
where
tr Q3 tr Q3)2
cos(3a) = —M, sin(3a) = (/1 — M, a€ [0, E} :
tr Q2/trQ2 (tr Q?)3 3

It follows from trQ = 0 and Q = Q7 that 6(tr Q%)% < (tr Q?)3. More-
over, Q has two distinct eigenvalues if and only if 6(tr Q)2 = (tr Q?)3.
From (1.1), it can be easily seen that —% <\ < % fori =1,2,3. It
then follows that tr Q2 < %.
If Q is expressed by
Q=25 <m®m— ;I) + .5 <n®n—;1> ,

where {m,n, m x n} is an orthonormal basis for R? consisting of unit
eigenvectors of Q, then the eigenvalues are

1 1 1
g(QSl_SQ); _§(51+52), §<252—51).

In the Landau-de Gennes theory, neglecting the higher derivatives
and powers of Q the free energy density F for nematic liquid crystals is
given by

F(Q,VQ)

1
= 5 (LlQaﬁ,'yQaﬁ,'y + L2QaﬁﬂQa%7 + L3Qo¢ﬁ,’yQo¢'y,ﬁ) + fbulk(Q)7

where
A
Jouk(Q) = St Q? - gtr Q%+ % (tr Q2)2.

The bulk energy fpur is a potential function for uniaxial nematic liquid
crystals, meaning that fp,;; favors molecules to be uniaxial. In order
to study biaxial liquid crystals, we need to add higher powers of Q to
Sfouike- In liquid crystals, there exists a polarization induced by a splay
and bending distortion [2, 1]. Such a polarization is called flexoelectric
polarization which is analogous to piezoelectric polarization in solids.
The flexoelectric polarization can be written in terms of Q as
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Pf = (PlaPQaP3)7
P = €3Qij5 + €4QrQijx + €5Q4jQjp k. + higher order.
Due to the appearance of the flexoelectric polarization, the following

electrostatic equations (Maxwell’s equations) will be taken into account
in the system

(1.2) V- (e(QE)=-V-P/, VXE=0,
where €(Q) is the dielectric permittivity tensor given by

Q) = ol + €1Q + 2Q>.
Hence the electrostatic energy is
1

felec = _i(E(Q)E) E— Pf -E.

If we let 3 1
Q= 55(1‘1@“— §1)7
then
3
«(QE-E = (60 - %15 + %252) B+ 28 (q + %25) (n-E)?,
P/ =e;1(V-n)n+e33n x V x n,
3 3 9 3 3 9
= - —(2€5 — = - —(2€4 — .
e11 2635+ 4( €5 64)5 , €33 2635+ 4( €4 65)5
Then the permittivity ¢, and dielectric anisotropic constant ¢, are de-
fined by
€ € 3 €
eL:eo—Els—&—ZZSQ, Ea:§S(61+§2S).

2

3, we impose the

Now, since eigenvalues of Q are in between —% and
following condition for strong ellipticity of (1.2)

3€0 > €1 if €1 > 0, and 3€0 > —2€;1 if €1 <0.

Since some material can have e; > 0 and S > 0, we have to include
eo-term in order to satisfy solvability condition €, > |e,|. For a sake of
simplicity, we take €4 = €5 = 0 so that equations (1.2) become

(1.3) V. [(GOI +6Q+ €2Q2> ch] =-eV-(V-Q),

where V- Q = Q1j e, + Q2j €y + Q35 j€-, {€z,ey,e.} is a set of unit
vectors in x, ¥, z axes respectively, and ¢ is an electric potential function,
ie. E=Vo.
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By Maxwell’s equation, the electrostatic energy functional can be
written as

1
/ felecdr = — = / (V : Q) -Vpdx
Q 2 Jo
The total energy functional & is

£(Q,¢)
1 A B C 1
= /Q {2L|VQ|2 + §tI'Q2 — gtr Q3 + Z (tI‘Q2)2 — 563(v : Q) : VSO} dx.

In the absence of a flow, equations for dynamic problems are

2

(1.4) %? =LAQ—-AQ+B <Q2 — ”?I) —C(trQ?)Q
1 1 i
— 5 <V2g0 — 3AgpI> in Q.
subject to
(L5) V((QVg) =~V (V-Q) i,
and boundary conditions
(1.6) 8Qa(j’t) =0 onT, Q(z,t) =Qi(x) ondQ\T,
' p(,t) = @o(x) onl, 25D —0 ondQ\T,

where Q; is fixed.
From now on, we study existence of weak solutions of the system
(1.4)-(1.5) with the boundary conditions (1.6).

2. A priori estimates

In this section, we study a priori estimates for solutions which will
be used in the next section. Let us introduce

Wh2(Q:80) = {Q : |Qll2 () + [IVQIl2(0) < 00,Q : 2 — So},

o
&/—Oonaﬂ\F}.

For any p > 0, and t > 0, we denote by LP(0,¢;V) the space of all
functions Q : (0,¢) — V such that

HE(Q) = {¢ cH' (Q):=00nT,

t
/Hmwﬁ<m
0
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where V is a function space equipped with its norm || - ||y). We look for
a weak solution of the system (1.4),(1.5), and (1.6). In other words, the
problem is to find Q € L? (0,T; W?(Q;Sy)) and ¢ € L*(0,T; H'(2))
satisfying

(2.1)

Jo{(52 +1vQ+4Q - BQ* + C(rQ*)Q) - T} dx
= %63 fQ V(,O : (V : T) dx,
Jo (e(Q)Ve) - Vipda = [ (e(Q1) Vo -v) Y dA— [o(V- Q) Vi dz,
W =0 onT, Q(z,t) =Qi(x) ondQ\T,
o(x,t) = go(z) onT, w =0 on 00\ T,

for all T € Wh2(Q; Sp) and ¢ € HE(Q).

LEMMA 2.1. Let (Q, ) be a solution pair of functions to (1.4),(1.5),
and (1.6). Then

Q € L*(0,T; Wh2(Q;:80)) N L0, T; L4 (92 So)), ¢ € L*(0,T; H(Q)).

Proof. Let (Q, ) be a solution pair of functions to (1.4),(1.5), and
(1.6). Multiplying each equation in (1.4) by Q;; and integrating by parts
followed by summing up, we obtain

g f Qe [ (LVQP A Q? - BurQl+ Clur Q) de

(2.2) _ ;el/QVgo-(V-Q)dx.

Similarly, multiplying (1.5) by ¢ and integrating by parts yield

e3) [ @@V Vel = [ (V-Q)-Teds

Combining (2.2) with (2.3) we obtain
d
G L1azass [ (LvR 4oy + @@ ve) i

(2.4) :/ (-AtrQ® + Btr Q°) da.
Q

By Hélder inequality, choose 1 > 0 such that C — Bn? > 0 and

(2.5) /QtrQ?’ dx §/Q{?712trQ2+772(trQ2)2} dx.
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It follows from (2.4) and (2.5) that

~ 1
/ QP des [ (LIVQP+Cr QY2 + 5 (@) - V) do
< M|Ql|2 + D,
where C = C — % and M =—-A+ n%' Hence we get

d
5 /IQIL: < MlIQI[7: + D,

and Grownwall’s inequality leads us to have

(2.7) ||Q(t)|]%2 < ||Q(0)|‘%2€Mt n % (eMt B 1) ‘

This implies that

D
sup [[Q()I[72 < IQUO)IIF2eMT + 0 (M7= 1),
0<t<T

and integrating (2.6) with respect to ¢ yields

/ / <L|VQ’2+C(“Q2 ( (QV )~w> da dt < o,

Since (¢(Q)V) - Vo > A||Vip||? for some A > 0, by Poincare inequality
we have
Q € L*(0, T; W (9 80)) N L0, T; LY (92 S0)), o € L*(0,T5 H' ().
O

3. Existence of weak solution

THEOREM 3.1. For any given T > 0, Qo € L?(Q;Sy), there exists
a solution pair (Q,¢) to (2.1) such that Q € L0, T; W'2(;Sy) and
o € L*0,T; H(Q)). Moreover, if Qy € W12(Q; Sp), then

0

Q € C(0. T W (; 80)NEH0, T3 LA §0)), BF € 120,73 (5% 60)).

Proof. We use the Galerkin Method [6] to obtain a weak solution
(Q, ) to (2.1). We first approximate W12(Q,Sy) and H'(Q) by in-
creasing sequences of finite dimensional subspaces X™ C W12(€,S),
and Y™ C H'(f) such that

Uy X7 = WH(Q,80), U V™ = H'(Q).
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For each m € N, let {x;}, and {y;}/*, be orthonormal bases for X™
and Y™, respectively. We first seek a solution pair (Q™, ¢"") in X™ x Y™
in the form

Q" (z,t) = Y pilt)xi(x), " (z,t) =) ai(t)yi(x).
i=1 i=1

Substituting (Q™,¢™) for (Q,¢) in (2.1), and taking T = x;,9 =
Yk, we obtain a system of nonlinear ordinary differential equations for
{pi(t),qi(t)}1*1. It follows from the standard theory of ODEs that the
new system has a unique solution on some interval [0, ] C [0,7]. By
lemma 2.1, we know that

sup {[|Q™ ()22, [le™ ()| 12} < oo
0<t<T

We extend Q™, ™ to the interval [0,7] by the standard continuation
method [3, 6]. Apply Lemma 2.1 again to show that {Q"}en is
bounded in L?(0,T; W12(; Sp)) N LA(0,T; L4(9; o)), and {0 }men is
bounded in L?(0,T; H(2)). Note that {(tr (Q™)?)Q™ }men is bounded
in L3((0,T) x Q)).

We can extract a subsequence (not relabeled) {(Q™, ¥™)}men such
that

Q™ — Q weakly in L2(0,T; Wh2(Q; Sp)),

Q™ — Q weakly in L*(0,T; L*(Q; So)),

(tr (Q™)2)Q™ — P weakly in L3((0,T) x ),
©™ — @ weakly in L%(0,T; H'(2)).

Using the Sobolev imbedding W12 C L*[5], we obtain imbeddings
L0, T; WH2(9;8)) = LA((0,T) x Q. 8),
L3((0,T) x 9 80) — L3 (0,T; [WH2(2; 8)]).

(3.1)

It follows that { 23" | s bounded in L3 (0, T3 [W'2(2: )] ). Since
me
{Q™} nen is bounded in L2(0, T; W2(Q; Sp)), Aubin’s compactness shows
that
Q™ — Q strongly in L*(0,T; L*(Q; Sy)).
This concludes that (tr Q*)Q = P, and therefore (Q, ) is a weak solu-

tion pair. ]

COROLLARY 1. There exists a weak solution pair (Q, ) which be-
longs to L?(0, 00; W12(Q; Sp) x L2(0, 00; HY(Q)) to (1.4),(1.5), and (1.6).
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Proof. As in the proof of lemma 2.1, multiplying (1.4),(1.5) by Q and
 followed by integration by parts we obtain

(3.2)
/ <L|VQ|2 +AtrQ? — BtrQ® + C(tr Q*)? + % (e(Q)Ve) - V(p) dx
Q

d 9,
+dt/Q|Q| dr =20

Since C' > 0, there exists D such that Atr Q? — Btr Q3 + C(tr Q%)% >
—D. It follows from (3.2) and the Poincare inequality that

d
/ |Q!2dw+/\/l/ Q2 de < DI,
dt Jo Q

where M = % > 0 with the Poincare constant . By Grownwall’s
inequality we have

DI
1Rz < Q)2+ Do (1 ety

% and the proof is complete. O]

Therefore supg<; [|Q(E)][12 <

Next, we prove that such a weak solution is unique and it converges
to an equilibrium solution of the energy functional £.

THEOREM 3.2. If ¢ = €2 = 0 in (1.5), then there exists a unique
weak solution to (1.4),(1.5), and (1.6).

Proof. Let (Q1, 1) and (Qg, ¢2) be two weak solutions. Then

d
%% /Q 1Q|? dx: -1-/9 [LIVQP + (fur(Q1) — frun(Q2)) - Q]

— 54 [ Ve (V- Qe

/ (V) - Vipda = —cs / (V- Q) Vidz,
Q Q

where Q = Q1 — Q2, ¢ = 1 — 2. Plugging the second equation into
the first one, we get

2dt/§;’Q’ dw+/Q (L!VQ\ +260|V<p\ > dx

_ /Q [(Fruar(Q1) = Fru(Q2) - Q] da

< M/ |Q|? dz for some M > 0.
Q
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Hence ||Ql[z2 < [|Q(0)|[2¢" = 0 so that Q1 = Q2 and 1 = ¢a. O

THEOREM 3.3. If Qy € WH2(Q,Sy), then there is a subsequence
of solutions to (1.4) which converges to a solution of the steady state
problem as t — oo.

Proof. Multiplying individual equation by aggj and integrating by
parts followed by summing up, we obtain

/ ]Qt]2:—i [L]VQQ—FAUQQ—BtrQ3+C(trQ2)2 dx

d
+63/V-Qt-V<pd:v—/|ch\2dx
Q dt Jo

—63/V'Qt'vgodl‘.
Q

Then
/|Qt|2
Q
d L 2 2 3 2)2 2
= §|VQ! +ArQ? - Btr Q® + C (tr Q?)” + | V|| da
Q
and

T
/ /yQﬂdazdt
0 Q

:_/[§|VQIQ+AtrQ2—BtrQ3+C(trQ2)2+’v¢|2] o
Q

t=T

L
+/ [QWQ|2+AtrQ2—BtrQ3—|—C(trQ2)2+|Vga|2] dx
Q t=0

L
g/ [2|VQ|2+AtrQ2—BtrQ3+C’(trQ2)2+|Vgo|2] dx
Q t=0
+ M9,

where M is the minimum value of Atr Q?> — BtrQ?® + C (tr QQ)Q.
Hence we obtain Q; € L%(0, 00; L?(2; Sp)). This shows that

/ Qi ) dx — 0 s i — oo,
Q

for almost all sequence {t;};cn satisfying t; — oo as i — oo. Further-
more, we also get

(VQ, V) € L>(0, 00; L?(£; Sp)) x L*°(0, 00; L*(Q)).
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By Poincare inequality, we have
(Q. ) € L(0, 00, W2(9; 59)) x L=(0, 003 W2(02))
and there is a sequence {t; };en with ¢; — 0o as i — oo such that
(Q(z, 1), p(z, ;) — (Q, ¢) weakly in W2 as t; — oo.

Since (Q, ¢) is a weak solution pair,

<%—?, Q> + <LVQ + AQ — BtrQ? + C(rQ?)Q, vQ>
+e <Vg0, V- Q> =0,
[ (V- Vi) + V- Q- V) d = 0,

for all Q € Wh2(Q,Sp),1 € WH2(Q). Passing to the limit as t; — oo,
we obtain

Jo (LVQ+AQ - Btr Q2+ C(rQ%)Q) - VQ
—I—efQng-(V-Q)d:E:O,
Jo (V@-V¢+V'Q~V¢)) dx = 0.
This completes the proof. O

References

[1] G. BARBERO AND L. R. EVANGELISTA, An elementary course on the continuum
theory for mematic liquid crystals, World Scientific, 2001.

[2] P. G. DE GENNES, The Physics Of Liquid Crystals, Oxford, 1974.

[3] R. MCOWEN, Partial Differential Equations, Prentice Hall, 1995.

[4] J. PARK, Ezistence of periodic solutions in ferroelectric liquid crystals, J. of
Chungcheong Math. Soc. 23 (2010), 571-588.

[6] M. TAYLOR, Partial Differential Equations III, nonlinear equations, Springer-
Verlag, New York, Berlin, Heidelberg.

[6] R. TEMAM, Navier-Stokes Equations, theory and numerical analysis, AMS
Chelsea, 2001.

*

Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: jhpark2003@gmail.com





