AN AFFINE MODEL OF $X_{0}(p q)+q$

SoYoung Chor*

Abstract. In this article, we show that the modular equation $\Phi_{p}^{T_{q}}(X, Y)$ of Thompson series T_{q} corresponding to $\Gamma_{0}(q)+q$ gives an affine model of a modular curve $X_{0}(p q)+q$.

1. Introduction

Let $T_{(n)}$ be the fundamental Thompson series corresponding to $\Gamma_{0}(n)$. Chen and Yui [1] constructed the modular polynomial $\Phi_{m n}(X, Y) \in$ $\mathbb{Z}[X, Y]$ for $T_{(n)}$ and investigated their properties, where m is any positive integer coprime to n. The author and Koo [2] showed that the modular polynomial $\Phi_{n m}(X, Y)$ for $T_{(n)}$ gives an affine model of the modular curve $X_{0}(m n)$ defined over \mathbb{Q}.

Let $\Gamma_{0}(q)+q$ be the group generated by a Hecke group $\Gamma_{0}(q)$ and a Frike involution $\left(\begin{array}{cc}0 & -1 \\ q & 0\end{array}\right)$ and let $\Gamma_{0}(p q)+q$ be the group generated by a Hecke group $\Gamma_{0}(p q)$ and an Atkin-Lehner involution $\left(\begin{array}{cc}q & 1 \\ x p q & y q\end{array}\right)$. Let T_{q} be the fundamental Thompson series corresponding to $\Gamma_{0}(q)+q$. Chen and Yui [1] also constructed the modular polynomial $\Phi_{p}^{T_{q}}(X, Y) \in$ $\mathbb{Z}[X, Y]$, where p, q are distinct primes. Let $X_{0}(p q)+q$ be a modular curve $\Gamma_{0}(p q)+q \backslash \mathfrak{H}^{*}$.

In this article, we show that the modular equation $\Phi_{p}^{T_{q}}(X, Y)$ gives an affine model of modular curve $X_{0}(p q)+q$ over \mathbb{Q} (Theorem 2.4).

Throughout this article, we adopt the following notations:

- $q \in\{3,5,7,11,13,17,19,23,29,31,41,47,59,71\}$
- p : a prime number coprime to q
- $x, y \in \mathbb{Z}$ such that $y q-x p=1$

Received July 01, 2013; Accepted July 24, 2013.
2010 Mathematics Subject Classification: Primary 11F11, 14H50, 11R37.
Key words and phrases: affine model.
*This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2012R1A1A3011711).

- \mathfrak{H} : the upper half complex plane
- \mathfrak{H}^{*} : the extended upper half complex plane
- $\Gamma_{0}(q)+q$: the group generated by a Hecke group $\Gamma_{0}(q)$ and a Frike involution $\left(\begin{array}{cc}0 & -1 \\ q & 0\end{array}\right)$
- $\Gamma_{0}(p q)+q$: the group generated by a Hecke group $\Gamma_{0}(p q)$ and an Atkin-Lehner involution ($\left.\begin{array}{cc}q & 1 \\ x p q & y q\end{array}\right)$
- $X_{0}(p q)+q$: a modular curve $\Gamma_{0}(p q)+q \backslash \mathfrak{H}^{*}$
- $K\left(X_{0}(p q)+q\right)$: the function field of $X_{0}(p q)+q$
- T_{q} : the fundamental Thompson series corresponding to $\Gamma_{0}(q)+q$
- $q_{h}=e^{2 \pi i z / h}(z \in \mathfrak{H})$

2. An affine model of $X_{0}(p q)+q$

At first, we show that $T_{q}(z)$ and $T_{q}(p z)$ generate the function field of $X_{0}(p q)+q$. We need the following two Lemmas.

Lemma 2.1. The coset $\Gamma_{0}(p q)\left(\begin{array}{cc}q & 1 \\ x p q & y q\end{array}\right)$ has no parabolic element.
Proof. Let $\gamma=\left(\begin{array}{cc}a & b \\ c p q & d\end{array}\right)$ be any element of $\Gamma_{0}(p q)$. If $\gamma\left(\begin{array}{cc}q & 1 \\ x p q & y q\end{array}\right)$ is parabolic element, then $(q a+b x p q+p q c+d y q)^{2}=4 q$, from where we have $q=2$. This is a contradiction. Thus we have the result.

Lemma 2.2. $\{\infty, 1 / q\}$ is the set of representatives of all $\Gamma_{0}(p q)+q$ inequivalent cusps.

Proof. By Lemma 2.1, the cardinality of the set of representatives of all $\Gamma_{0}(p q)+q$-inequivalent cusps is half of that of the set of representatives of all $\Gamma_{0}(p q)$-inequivalent cusps (see [5, Proposition 1.37]). Thus the cardinality of the set of representatives of all $\Gamma_{0}(p q)+q$-inequivalent cusps is 2 . Now it suffices to show that ∞ and $1 / q$ are $\Gamma_{0}(p q)+q$ inequivalent. Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be any element of $\Gamma_{0}(p q)$. If $\gamma \infty=1 / q$, then $c= \pm q$ (which is a contradiction). If $\gamma\left(\begin{array}{cc}q & 1 \\ x p q & y q\end{array}\right) \infty=1 / q$, then p divides a (which is also a contradiction). Thus ∞ and $1 / q$ are $\Gamma_{0}(p q)+q$ inequivalent.

For a cusp x, take $\sigma \in S L_{2}(\mathbb{Z})$ such that $\sigma x=\infty$. Then there exists $h>0$ such that

$$
\sigma \Gamma_{0}(p q)_{x} \sigma^{-1} \cdot\{ \pm 1\}=\left\{ \pm\left(\begin{array}{cc}
1 & h \\
0 & 1
\end{array}\right)^{m}: m \in \mathbb{Z}\right\}
$$

We call h the width of a cusp x in $\Gamma_{0}(p q)$. By Lemma 2.1, the width of a cusp x in $\Gamma_{0}(p q)+q$ is equal to that in $\Gamma_{0}(p q)$ (see [4, page 41]). Thus, we have the following table.

Table 1

a cusp	∞	$1 / q$
the width	1	p

PROPOSITION 2.3. $K\left(X_{0}(p q)+q\right)=\mathbb{C}\left(T_{q}(z), T_{q}(p z)\right)$.
Proof. The following equations show that $T_{q}(z)$ and $T_{q}(p z)$ are invariant under the action of $\Gamma_{0}(p q)+q$.

$$
\begin{aligned}
& \left.T_{q}(z)\right|_{\left(\begin{array}{cc}
q & 1 \\
x p q & y q
\end{array}\right)}=\left.T_{q}(z)\right|_{\left(\begin{array}{cc}
0 & -1 \\
q & 0
\end{array}\right)\left(\begin{array}{cc}
x p & y \\
-q & -1
\end{array}\right)=\left.T_{q}(z)\right|_{\left(\begin{array}{cc}
x p & y \\
-q & -1
\end{array}\right)}=T_{q}(z), ~} ^{\text {a }} \\
& \left.T_{q}(p z)\right|_{\left(\begin{array}{cc}
q & 1 \\
x p q & y q
\end{array}\right)}=\left.T_{q}(z)\right|_{\left(\begin{array}{cc}
0 & -1 \\
q & 0
\end{array}\right)\left(\begin{array}{cc}
x p & y \\
-p q & -p
\end{array}\right)}=\left.T_{q}(z)\right|_{\left(\begin{array}{cc}
x & y \\
-q & -p
\end{array}\right)\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right)} \\
& =T_{q}(p z), \\
& \left.T_{q}(p z)\right|_{\left(\begin{array}{cc}
a & b \\
p q c & d
\end{array}\right)}=T_{q}\left(\frac{a(p z)+b p}{q c(p z)+d}\right)=T_{q}(p z) \quad \text { if } a d-b p q c=1 .
\end{aligned}
$$

Now, we observe the behavior of $T_{q}(z)$ and $T_{q}(p z)$ at cusps ∞ and $1 / q$.

- ∞ : Write $T_{q}(z)=\frac{1}{q_{1}}+\sum_{n \geq 1} b_{n} q_{1}^{n}\left(b_{n} \in \mathbb{Z}\right)$, then

$$
T_{q}(p z)=\frac{1}{q_{1}^{p}}+\sum_{n \geq 1} b_{n} q_{1}^{p n}
$$

- $1 / q:\left(\begin{array}{cc}1 & 0 \\ q & 1\end{array}\right)$ sends ∞ onto $1 / q$. Then we have $\left.T_{q}(z)\right|_{\left(\begin{array}{ll}1 & 0 \\ q & 1\end{array}\right)}=T_{q}(z)$ and

$$
\left.\left.T_{q}(p z)\right|_{\left(\begin{array}{ll}
1 & 0 \\
q & 1
\end{array}\right)}=\left.T_{q}(z)\right|_{\left(\begin{array}{c}
p-y \\
q
\end{array}-x\right.}-\frac{1}{1} \begin{array}{l}
y \\
0
\end{array}\right)=T_{q}\left(\frac{z+y}{p}\right)=\frac{b}{q_{p}}+\sum_{n \geq 1} b^{n} c_{n} q_{p}^{n}
$$

where b is a nonzero constant. Therefore, $T_{q}(z)$ and $T_{q}(p z)$ are modular functions of $\Gamma_{0}(p q)+q$ and the orders of $T_{q}(z)$ and $T_{q}(p z)$ at cusps ∞ and $1 / q$ are given as

Table 2

a cusp	∞	$1 / q$
the order of $T_{q}(z)$ at a cusp	-1	$-p$
the order of $T_{q}(p z)$ at a cusp	$-p$	-1

For any $f \in K\left(X_{0}(p q)+q\right)$, let $d(f)$ be the total degree of poles of f. Then $\left[K\left(X_{0}(p q)+q\right): \mathbb{C}(f)\right]=d(f)$ (see [5, Proposition 2.11]). Since
$T_{q}(z)$ and $T_{q}(p z)$ have no poles on the complex upper half plane, from Table 2 we obtain that
$d\left(T_{q}(z)^{2}+T_{q}(p z)\right)=3 p, \quad d\left(T_{q}(z)+T_{q}(p z)\right)=2 p, \quad d\left(T_{q}(z)\right)=p+1$.
Thus we have $\operatorname{gcd}\left(d\left(T_{q}(z)^{2}+T_{q}(p z)\right), d\left(T_{q}(z)+T_{q}(p z)\right), d\left(T_{q}(z)\right)\right)=1$, which implies that $K\left(X_{0}(p q)+q\right)=\mathbb{C}\left(T_{q}(z), T_{q}(p z)\right)$. Because $\left[K\left(X_{0}(p q)\right.\right.$ $\left.+q): \mathbb{C}\left(T_{q}(z), T_{q}(p z)\right)\right]$ divides $\left[K\left(X_{0}(p q)+q\right): \mathbb{C}\left(T_{q}^{2}(z)+T_{q}(p z)\right)\right]$, $\left[K\left(X_{0}(p q)+q\right): \mathbb{C}\left(T_{q}(z)+T_{q}(p z)\right)\right]$ and $\left[K\left(X_{0}(p q)+q\right): \mathbb{C}\left(T_{q}(z)\right)\right]$.

In [1], Chen-Yui construct the modular equation $\Phi_{p}^{T_{q}}(X, Y) \in \mathbb{Z}[X, Y]$ of $T_{q}(z)$ which is an irreducible symmetric polynomial in two variables X, Y such that

$$
\Phi_{p}^{T_{q}}\left(X, T_{q}\right)=\prod_{w \in \Omega(p)}\left(X-T_{q} \circ w\right),
$$

where $\Omega(p)=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a d=p, a>0,0 \leq b<d, \operatorname{gcd}(a, b, d)=1\right\}$. The fact that $\Phi_{p}^{T_{q}}\left(T_{q}(p z), T_{q}(z)\right)=0$ and Proposition 2.3 imply the following.

Theorem 2.4. The modular equation $\Phi_{p}^{T_{q}}(X, Y)$ of T_{q} gives an affine model of a modular curve $X_{0}(p q)+q$.

Finally we give several examples of the modular equation $\Phi_{p}^{T_{q}}(X, Y)$ using Mahler's explicit description of modular equations for "basic" S_{p-} series ([3, p.90-93]).

Example 2.5.

- $p=2, q=3$. $\Phi_{2}^{T_{3}}(X, Y)=X^{3}+\left(-Y^{2}+1566\right) X^{2}+(17343 Y+$ $741474) X+\left(Y^{3}+1566 Y^{2}+741474 Y+28166076\right)$ gives an affine model of $X_{0}(6)+3$.
- $p=2, q=7$. $\Phi_{2}^{T_{7}}(X, Y)=X^{3}+\left(-Y^{2}+102\right) X^{2}+(407 Y+3810) X+$ $\left(Y^{3}+102 Y^{2}+3810 Y+27100\right)$ gives an affine model of $X_{0}(14)+7$.
- $p=3, q=7$. $\Phi_{3}^{T_{7}}(X, Y)=X^{4}+\left(-Y^{3}+153 Y+612\right) X^{3}+\left(2043 Y^{2}+\right.$ $37080 Y+168507) X^{2}+\left(153 Y^{3}+37080 Y^{2}+652391 Y+2982276\right) X+$ $\left(Y^{4}+612 Y^{3}+168507 Y^{2}+2982276 Y+13600628\right)$ gives an affine model of $X_{0}(21)+7$.

References

[1] I. Chen and N. Yui, Singular values of Thompson series; Groups, Difference sets and Monster, de Gruyter, 255-326, 1995.
[2] S. Choi and J. Koo, An affine model of $X_{0}(m n)$, Bull. Korean Math. Soc. 44 (2007), no. 2, 379-383.
[3] K. Mahler, On a class of non-linear functional equations connected with modular functions, J. Austral. Math. Soc. Ser. A 22 (1976), no. 1, 65-118.
[4] T. Miyake, Modular Forms, Springer Verlag, 1989.
[5] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan, no. 11, Tokyo Prineton, 1971.
*
Department of Mathematics Education
Dongguk University-Gyeongju
Gyeongju 780-714, Republic of Korea
E-mail: young@dongguk.ac.kr

