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BOUNDEDNESS IN PERTURBED NONLINEAR
DIFFERENTIAL SYSTEMS

Yoon Hoe Goo*

Abstract. In this paper, we investigate bounds for solutions of
perturbed nonlinear differential systems.

1. Introduction

The behavior of solutions of a perturbed system is determined in
terms of the behavior of solutions of an unperturbed system. There
are three useful methods for showing the qualitative behavior of the
solutions of perturbed nonlinear system : Lyapunov’s second method,
the method of variation of constants formula, and the use of inequalities.

The notion of h-stability (hS) was introduced by Pinto [11, 12] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. That is, Pinto extended the study of ex-
ponential asymptotic stability to a variety of reasonable systems called
h-systems.

The main conclusion to be drawn from this paper is that the use of
inequalities provides a powerful tool for obtaining bounds for solutions.
To do this we need some integral inequalities.

2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and
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is continuous on R+ × Rn and f(t, 0) = 0. For x ∈ Rn, let |x| =
(
∑n

j=1 x2
j )

1/2. For an n × n matrix A, define the norm |A| of A by
|A| = sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) =
x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.2)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.3)

The fundamental matrix Φ(t, t0, x0) of (2.3) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.2).
We recall some notions of h-stability [12].

Definition 2.1. The system (2.1)(the zero solution x = 0 of (2.1))
is called an h-system if there exist a constant c ≥ 1, and a positive
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough(here h(t)−1 = 1
h(t)).

Definition 2.2. The system (2.1) (the zero solution x = 0 of (2.1))
is called h-stable(hS) if there exists δ > 0 such that (2.1) is an h-system
for |x0| ≤ δ and h is bounded.

Let M denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[6].

Definition 2.3. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(2.4)

for some S(t) ∈ N .
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The notion of t∞-similarity is an equivalence relation in the set of
all n × n continuous matrices on R+, and it preserves some stability
concepts [6].

We give some related properties that we need in the sequal.

Lemma 2.4. [13] The linear system

x′ = A(t)x, x(t0) = x0,(2.5)

where A(t) is an n×n continuous matrix, is an h-system(respectively h-
stable) if and only if there exist c ≥ 1 and a positive continuous(repectively
bounded) function h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(2.6)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (2.5).

We need Alekseev formula to compare between the solutions of (2.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.7)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.7) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.5. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.6. [3] If the zero solution of (2.1) is hS, then the zero
solution of (2.2) is hS.

Theorem 2.7. [4] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (2.2) is hS, then the solution z = 0 of (2.3) is hS.

Lemma 2.8. (Bihari-type inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c +
∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,
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where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ(s)ds ∈ domW−1
}

.

Lemma 2.9. [2] Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u. Suppose that for some c > 0,

u(t) ≤ c+
∫ t

t0

λ1(s)w(u(s))ds+
∫ t

t0

λ2(s)(
∫ s

t0

λ3(τ)w(u(τ))dτ)ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) ,u > 0, u0 > 0, W−1(u) is the inverse of W (u)

and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds ∈ domW−1
}

.

3. Main results

In this section, we investigate bounds for the nonlinear differential
systems.

Theorem 3.1. Let a, k, u, w ∈ C(R+), w(u) be nondecreasing in u
and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that the solution x = 0 of

(2.1) is hS with a nondecreasing function h and the perturbed term g in
(2.7) satisfies

|Φ(t, s, z)g(t, z)| ≤ a(s)(w(|z|) +
∫ s

t0

k(τ)w(|z|)dτ), t ≥ t0 ≥ 0,

where
∫∞
t0

k(s)ds < ∞. Then any solution y(t) = y(t, t0, y0) of (2.7) is

bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

a(s)(1 +
∫ s

t0

k(τ)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.8 and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

a(s)(1 +
∫ s

t0

k(τ)dτ)ds ∈ domW−1
}

.
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.7), respectively. Applying Lemma 2.5 and the increasing
property of the function h, we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))g(s, y(s))|ds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

a(s)
[
w(|y(s)|) +

∫ s

t0

k(τ)w(|y(τ)|)dτ
]
ds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

a(s)h(t)w(
|y(s)|
h(s)

)ds

+
∫ t

t0

a(s)
∫ s

t0

h(t)k(τ)w(
|y(τ)|
h(τ)

)dτds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.9, we have

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

a(s)(1 +
∫ s

t0

k(τ)dτ
]
, t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. The above estimation yields the desired result
since the function h is bounded, and the theorem is proved.

Remark 3.1. Letting k(t) = 0 in Theorem 3.1, we obtain the same
result as that of Theorem 3.1 in [9].

Also, we examine the bounded property for the perturbed system

(3.1) y′ = f(t, y) +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0, of (2.1).

Theorem 3.2. Let a, b, k, u, w ∈ C(R+), w(u) be nondecreasing in u
and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0) is t∞-similar

to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0,
the solution x = 0 of (2.1) is hS with the increasing function h, and g in
(3.1) satisfies∣∣∣∣

∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ a(s)w(|y(s)|) + b(s)
∫ s

t0

k(τ)w(|y(τ)|)dτ,

where
∫∞
t0

a(s)ds < ∞ ,
∫∞
t0

b(s)ds < ∞ and
∫∞
t0

k(s)ds < ∞ . Then, any

solution y(t) = y(t, t0, y0) of (3.1) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
,
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where W , W−1 are the same functions as in Lemma 2.8 and

b1 = sup
{

t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds ∈ domW−1
}

.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solutions of
(2.1) and (3.1), respectively. By Theorem 2.6, since the solution x = 0
of (2.1) is hS, the solution v = 0 of (2.2) is hS. Therefore, by Theorem
2.7, the solution z = 0 of (2.3) is hS. Using two Lemma 2.4 and 2.5, we
have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t)a(s)w(
|y(s)|
h(s)

)ds

+
∫ t

t0

c2h(t)b(s)
∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτds.

since h is increasing. Set u(t) = |y(t)|h(t)−1. Now an application of
Lemma 2.9 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. The above estimation implies the boundedness
of y(t), and the proof is complete.

Remark 3.2. Letting k(t) = 0 in Theorem 3.2, we obtain the same
result as that of Theorem 3.2 in [9].

We need the lemma to prove the following theorem.

Lemma 3.3. Let u, p, q, w, r ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u and u ≤ w(u). Suppose that for some c ≥ 0,
(3.2)

u(t) ≤ c+
∫ t

t0

(
p(s)

∫ s

t0

(
q(τ)u(τ)+v(τ)

∫ τ

t0

r(a)w(u(a))da
)
dτ

)
ds, t ≥ t0.

Then
(3.3)

u(t) ≤ W−1
[
W (c)+

∫ t

t0

(
p(s)

∫ s

t0

(
q(τ)+v(τ)

∫ τ

t0

r(a)da
)
dτ

)
ds

]
, t0 ≤ t < b1,
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where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(
p(s)

∫ s

t0

(
q(τ)

+ v(τ)
∫ τ

t0

r(a)da
)
dτ

)
ds ∈ domW−1

}
.

Proof. Setting

z(t) = c +
∫ t

t0

(p(s)
∫ s

t0

(q(τ)u(τ) + v(τ)
∫ τ

t0

r(a)w(u(a))da)dτ)ds,

we have z(t0) = c and

(3.4)

z′(t) = p(t)
∫ t

t0

(
q(τ)u(τ) + v(τ)

∫ τ

t0

r(a)w(u(a))da
)
dτ

≤ p(t)
∫ t

t0

(
q(τ) + v(τ)

∫ τ

t0

r(a)da
)
w(u(τ))dτ

≤
[
p(t)

∫ t

t0

(
q(τ) + v(τ)

∫ τ

t0

r(a)da
)
dτ

]
w(z(t)), t ≥ t0,

since z(t) and w(u) are nondecreasing and u(t) ≤ z(t). Therefore, by
integrating on [t0, t], the function z satisfies

(3.5) z(t) ≤ c +
∫ t

t0

(
p(s)

∫ s

t0

(
q(τ) + v(τ)

∫ τ

t0

r(a)da
)
dτw(z(s))

)
ds.

It follows from Lemma 2.8 that (3.5) yields the estimate (3.3).

Theorem 3.4. Let w ∈ C(R+), w(u) be nondeacreasing in u, u ≤
w(u) , and 1

vw(u) ≤ w(u
v ) for some v > 0. Suppose that fx(t, 0) is t∞-

similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant
δ > 0. If the solution x = 0 of (2.1)is an h-system with a positive
continuous function h and g in (3.1) satisfies

(3.6) |g(t, y)| ≤ a(t)(|y(t)|+
∫ t

t0

k(s)w(|y(s)|)ds), t ≥ t0, y ∈ Rn

where a : R+ → R+ is continuous with∫ ∞

t0

1
h(s)

∫ s

t0

(a(τ)
(
h(τ) +

∫ τ

t0

h(r)k(r)dr
)
dτds < ∞,

for all t0 ≥ 0, then any solution y(t) = y(t, t0, y0) of (3.1) satisfies

|y(t)| ≤ h(t)W−1
[
W (c)+

∫ t

t0

c2

h(s)

∫ s

t0

a(τ)
(
h(τ)+

∫ τ

t0

h(r)k(r)dr
)
dτds

]
,
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t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 2.8
and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

c2

h(s)

∫ s

t0

a(τ)
(
h(τ)

+
∫ τ

t0

h(r)k(r)dr
)
dτds ∈ domW−1

}
.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0) be solutions of
(2.1) and (3.1), respectively. By Theorem 2.6, since the solution x = 0
of (2.1) is an h-system, the solution v = 0 of (2.2) is an h-system.
Therefore, by Theorem 2.7, the solution z = 0 of (2.3) is an h-system.
Applying Lemma 2.5 and (3.6) , we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

c2
h(t)
h(s)

(
∫ s

t0

h(τ)a(τ)
|y(τ)|
h(τ)

+
∫ s

t0

a(τ)
∫ τ

t0

h(r)k(r)w(
|y(r)|
h(r)

)dr)dτds.

Using Lemma 3.3 with u(t) = |y(t)|h(t)−1, we obtain

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

c2

h(s)

∫ s

t0

a(τ)
(
h(τ) +

∫ τ

t0

h(r)k(r)dr
)
dτds

]
,

t0 ≤ t < b1, where c = c1|y0|h(t0)−1. Hence, the proof is complete.

Remark 3.3. Letting k(s) = 0 in Theorem 3.4, we obtain the same
result as that of Theorem 2.5 in [10]
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