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WEAK LAW OF LARGE NUMBERS FOR WEIGHTED
SUMS IN NONCOMMUTATIVE LORENTZ SPACE

Byoung Jin Choi* and Un Cig Ji**

Abstract. In this paper, we prove the weak law of large numbers
for weighted sums of noncommutative random variables in noncom-
mutative Lorentz space under weaker conditions than the conditions
in [7].

1. Introduction

Let {Xi} be a sequence of (classical) random variables. The law
of large numbers plays an important role in probability theory, which is
concerned with the convergence of (Sn−bn)/n, where Sn =

∑n
i=1 Xi and

{bn} is a sequence of real numbers. If (Sn−bn)/n converges in probability
(measure), then the convergence theorem is referred to the weak law
of large numbers (WLLN). The WLLN in a classical (commutative)
probability space has been extended to the WLLN in a noncommutative
probability space by several authors, e.g. Batty [2], Jajte [10], ÃLuczak
[14], Bercovici & Pata [3, 4], Lindsay & Pata [13], Stoica [21] and the
references cited therein.

A weighted sum of a sequence {Xi} of random variables is of the form

(1.1)
n∑

i=1

aniXi,

where the weighted sequence {ani | 1 ≤ i ≤ n} is a triangular array.
In classical probability theory, the law of large numbers for weighted

sums of classical random variables with scalar valued weights has been
studied by many authors [18, 19, 5, 23, 6, 22, 16, 8, 11], etc. Especially,
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in [6], the authors proved that if the weighted sequence {ani} satisfies
the following condition

max
1≤i≤n

|ani| = O(1/n)

then we have
∑n

i=1 aniXi −→ 0 a.s. as n →∞, where {Xi} is indepen-
dent, identically distributed random variables with mean 0.

The WLLN for weighted sums of noncommutative random variables
with scalar valued weighted sequences has been studied by Pata [17],
Balan & Stoica [1]. On the other hand, in [7], the authors proved the
WLLN for weighted sums of noncommutative random variables with von
Neumann algebra valued weighted sequences.

The main purpose of this paper is to prove the WLLN for weighted
sums of the forms (1.1) of noncommutative random variables {Xi} in
noncommutative Lorentz space under weaker conditions than the con-
ditions in [7].

This paper is organized as follows. In Section 2, we recall elementary
notions in noncommutative probability theory. In Section 3, we study
the WLLN for weighted sums of random variables in noncommutative
Lorentz space, and prove the main result (Theorem 3.2).

2. Noncommutative probability space

Let (M, τ) be a tracial W ∗-probability space (or noncommutative
probability space) with a von Neumann algebra M (with unit 1) and a
normal faithful tracial state τ on M.

Now, we recall the measure topology [15] of M given by the funda-
mental system of neighborhoods of 0: for any ε > 0 and δ > 0

N(ε, δ) = {X ∈M| there exists a projection P ∈M
with τ (1− P ) ≤ δ such that ‖XP‖ ≤ ε}.

We denote by M̃ the completion of M with respect to the measure
topology. Then the mappings

M×M 3 (X,Y ) 7→ X + Y, XY ∈M,

M3 X 7→ X∗ ∈M

have unique continuous extensions as mappings of M̃ × M̃ −→ M̃,
M̃ −→ M̃, respectively, with which M̃ becomes a topological ∗-algebra
(see [15]). For notational consistency, we denote by L0(M, τ) for M̃.



WLLN for weighted sums in noncommutative Lorentz Space 493

Then we have natural inclusions:

M≡ L∞(M, τ) ⊂ Lq(M, τ) ⊂ Lp(M, τ) ⊂ · · · ⊂ L0(M, τ) = M̃
for 1 ≤ p ≤ q < ∞, where Lp(M, τ) is a Banach space of all elements in
L0(M, τ) satisfying

(2.1) ‖X‖p = [τ (|X|p)]1/p

(
=

(∫ ∞

0
[µλ(X)]p dλ

)1/p
)

< ∞,

where µλ(X) is the generalized singular number of X which is defined
as in (3.1) (see [20, 15, 9]).

An element of L0(M, τ) is called a random variable (or τ -measurable
operator). A densely defined closed operator X in H is said to be affil-
iated with the von Neumann algebra M ⊂ B(H) if U and the spectral
projections of |X| belong to M, where X = U |X| is the polar decom-
position of X and |X| = (X∗X)1/2. In fact, X is affiliated with the von
Neumann algebra M if and only if U∗XU = X for any unitary operator
U commuting with M. Note that M̃ is the set of all such operators X.
For a set S of densely defined closed operators in H, W ∗(S) denotes the
smallest von Neumann algebra to which each element of S is affiliated.
For the case of S = {X} with a densely defined closed operator X, we
write W ∗(X) ≡ W ∗(S) for simple notation. If S consists of bounded
operators on H, then W ∗(S) = (S ∪ S∗)′′ (double commutant), and
so, if X is a self-adjoint operator, then W ∗(X) is a commutative von
Neumann algebra.

A sequence {Xn} of random variables in M (or M̃) is said to be
pairwise τ -independent [13] (or simply, pairwise independent) if

τ(XY ) = τ(X)τ(Y ), X ∈ W ∗(Xi), Y ∈ W ∗(Xj)

for any pair (i, j) of distinct numbers.
For a sequence {Xn} ⊆ L0(M, τ) and X ∈ L0(M, τ), we say that

Xn converges to X in measure if Xn converges to X in the measure
topology, in this case, we write Xn

m−→ X as n → ∞. We now recall a
useful equivalent condition to the convergence in measure.

Theorem 2.1 ([24, 10]). Let {Xn} be a sequence in L0(M, τ). The
following conditions are equivalent:

(i) Xn
m−→ 0 as n →∞,

(ii) for any ε > 0, τ
(
e|Xn| ([ε,∞))

) → 0 as n →∞,

where eX(B) is the spectral projection of a self-adjoint operator X cor-
responding to the Borel subset B of R.
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3. WLLN for weighted sums in Lorentz space

In this section, we study the WLLN for weighted sums of random
variables in noncommutative Lorentz spaces. Let (M, τ) be a tracial
W ∗-probability space and X an element in L0(M, τ). For each λ ≥ 0,
we define the generalized singular number of X by

(3.1) µλ(X) = inf{u > 0 | τ
(
e|X|((u,∞))

) ≤ λ}.
For more detailed study of generalized singular numbers of τ -measurable
operators in the sense of Nelson [15], we refer to [9].

Let f be a concave C1-function from [0,∞) into itself such that f(0) =
0 and f(∞) = ∞. For X ∈ L0(M, τ), put

‖X‖f,q =
(∫ ∞

0
f ′(λ) [µλ(X)]q dλ

)1/q

, 1 ≤ q < ∞,

‖X‖f,∞ = sup
λ>0

{
1

f(λ)

∫ λ

0
µu(X)du

}
, q = ∞.

For each 1 ≤ q ≤ ∞, let Lf,q(M, τ), called a noncommutative Ciach
space (more generally, noncommutative Lorentz space), be the space of
all random variables X ∈ L0(M, τ) with ‖X‖f,q < ∞. For notational
convenience, for each 0 < λ < ∞, we put

‖X‖f,q,λ =
(∫ λ

0
f ′(s) [µs(X)]q ds

)1/q

,

‖X‖f,∞,λ = sup
{

1
f(u)

∫ u

0
µs(X)ds

∣∣∣∣ 0 < u ≤ λ

}
.

Theorem 3.1 ([7]). Let β > 1/2 be given. Let {Xi} be a sequence of
self-adjoint random variables in L0(M, τ) and {ani | 1 ≤ i ≤ n} be self-

adjoint elements of M such that max
1≤i≤n

‖ani‖ = O(1/nβ). If {Xi} and

{ani} satisfy the following conditions:

(i) for any n ≥ 1, {aniXi | 1 ≤ i ≤ n} is a pairwise independent se-
quence,

(ii) lim
λ→∞

λ1/β

(
sup

i
τ

(
e|Xi|([λ,∞))

))
= 0,

then
n∑

i=1

[
aniXi − τ

(
aniXie|Xi|([0, n

β))
)]

m−→ 0 as n −→∞.

With above setting we have the following main theorem.
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Theorem 3.2. Let β > 1/2 be given. Let {Xi} be a sequence
of self-adjoint random variables in Lf,q(M, τ). For each n ≥ 1, let
{ani | 1 ≤ i ≤ n} be a finite sequence of self-adjoint elements of M
such that max

1≤i≤n
‖ani‖ = O(1/nβ) and {aniXi | 1 ≤ i ≤ n} are pairwise

independent. If one of the following two conditions is satisfied:

(i) in case of 1 ≤ q < ∞, there exist C0, C1 > 0, α > max{1/β, q}
and 0 ≤ r < 1 such that

(
r + 1

α

)
q ≤ 1 and

Mq,λ ≡ sup
i
‖Xi‖f,q,λ ≤ C0λ

r, f(λ) ≥ C1λ
(r+ 1

α)q, λ > 0,

(ii) in case of q = ∞, there exist C2, C3 > 0, α > max{1/β, 1} and
0 ≤ r < 1 such that r + 1

α ≤ 1 and

M∞,λ ≡ sup
i
‖Xi‖f,∞,λ ≤ C2λ

r, f(λ) ≤ C3λ
1−(r+ 1

α), λ > 0,

then
n∑

i=1

[
aniXi − τ

(
aniXie|Xi|([0, n

β))
)]

m−→ 0 as n −→∞.

Proof. Since {Xi} ⊂ Lf,q(M, τ) ⊂ L0(M, τ), we only prove that
{Xi} satisfies the condition (ii) in Theorem 3.1. First, we consider the
case of 1 ≤ q < ∞. Then for any i ≥ 1 and λ > 0, since λ 7→ µλ(Xi) is
decreasing for each i, by condition (i) we obtain that

Cq
0λrq ≥ M q

q,λ ≥
∫ λ

0
f ′(s) [µs(Xi)]

q ds ≥ [µλ(Xi)]
q
∫ λ

0
f ′(s)ds(3.2)

= f(λ) [µλ(Xi)]
q ≥ C1λ

(r+ 1
α)q [µλ(Xi)]

q ,

where for the third inequality, we used the fact that [µs(Xi)]
q is decreas-

ing in the variable s. In the case of q = ∞, for any i ≥ 1 and λ > 0, by
condition (ii) we obtain that

C2λ
r ≥ M∞,λ ≥ 1

f(λ)

∫ λ

0
µs(Xi)ds ≥ 1

f(λ)
λµλ(Xi)(3.3)

≥ 1
C3

λ(r+ 1
α)µλ(Xi).

Therefore, by (3.2) and (3.3), for any 1 ≤ q ≤ ∞ we have

(3.4) µλ(Xi) ≤ Cλ−1/α, i ≥ 1, λ > 0

for some constants C > 0. Then, by the definition of µλ(Xi), the in-
equality (3.4) implies that

τ
(
e|Xi|([λ,∞))

) ≤ (C/λ)α, i ≥ 1, λ > 0
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(see [21]). Consequently, for any 1 ≤ q ≤ ∞ we prove that

lim
λ→∞

λ1/β

(
sup

i
τ

(
e|Xi|([λ,∞))

))
= 0

and so the proof follows from Theorem 3.1.

Note that in Theorem 3.2, if for any λ > 0 we take r = 0, then {Xi}
are uniformly bounded, i.e., supi ‖Xi‖f,q < ∞, 1 ≤ q ≤ ∞. Therefore,
we have the following Corollary.

Corollary 3.3. Let β > 1/2 be given. Let {Xi} be a sequence
of self-adjoint random variables in Lf,q(M, τ). For each n ≥ 1, let
{ani | 1 ≤ i ≤ n} be a finite sequence of self-adjoint elements of M
such that max

1≤i≤n
‖ani‖ = O(1/nβ) and {aniXi | 1 ≤ i ≤ n} are pairwise

independent. If one of the following two conditions is satisfied:

(i) {Xi} are uniformly bounded in Lf,q(M, τ) and there exist C1 > 0
and α > max{1/β, q} such that

(3.5) f(λ) ≥ C1λ
q
α for λ > 0,

(ii) {Xi} are uniformly bounded in Lf,∞(M, τ) and there exist C2 > 0
and α > max{1/β, 1} such that

f(λ) ≤ C2λ
1− 1

α for λ > 0,

then
n∑

i=1

[
aniXi − τ

(
aniXie|Xi|([0, n

β))
)]

m−→ 0 as n −→∞.

Remark 3.4. In Corollary 3.3, since the indefinite integrals of non-
negative functions preserve inequality, the condition (3.5) is weaker than

f ′(λ) ≥ λ−1+ q
α for λ > 0,

which is the condition (i) in Theorem 4.1 in [7].

For each 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, let Lp,q(M, τ) be the space of
all random variables X ∈ L0(M, τ) such that ‖X‖p,q < ∞, where

‖X‖p,q =
(∫ ∞

0
λ
−1+ q

p [µλ(X)]qdλ

)1/q

, 1 ≤ q < ∞,

‖X‖p,∞ = sup
λ>0

{
λ

1
p µλ(X)

}
, q = ∞.(3.6)

Remark 3.5. If p = q, then the noncommutative Lorentz space
Lp,p(M, τ) coincides with the noncommutative Lp space (see Corollary
1.5 in [12]).
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Remark 3.6. Let 1 ≤ p < ∞ and {Xi} be a uniformly bounded
sequence of self-adjoint random variables in Lp(M, τ), i.e., supi ‖Xi‖p <
∞. Then, for any i ≥ 1 and λ > 0, we obtain that

Cp ≥ ‖Xi‖p
p =

∫ ∞

0
[µλ(Xi)]

p dλ ≥
∫ λ

0
[µt(Xi)]

p dt ≥ λ [µλ(Xi)]
p ,

where C ≡ supi ‖Xi‖p < ∞. Therefore, we have

µλ(Xi) ≤ Cλ−1/p, i ≥ 1, λ > 0,

which implies that

τ
(
e|Xi|([λ,∞))

) ≤ (C/λ)p, i ≥ 1, λ > 0.

Therefore, for given β > 1/2, if p > 1/β then we have

lim
λ→∞

λ1/β

(
sup

i
τ

(
e|Xi|([λ,∞))

))
= 0,

which is the condition (ii) in Theorem 3.1.

The following theorem generalizes Theorem 4.3 in [7] and Proposition
2 in [21].

Theorem 3.7. Let β > 1/2 be given. Let {Xi} be a sequence of self-
adjoint, uniformly bounded random variables in Lp,q(M, τ). For each
n ≥ 1, let {ani | 1 ≤ i ≤ n} be a finite sequence of self-adjoint elements

of M such that max
1≤i≤n

‖ani‖ = O(1/nβ) and {aniXi | 1 ≤ i ≤ n} are

pairwise independent. If p > 1/β, then

n∑

i=1

[
aniXi − τ

(
aniXie|Xi|([0, nβ))

)]
m−→ 0

as n −→∞.

Proof. We first consider the case 1 ≤ q ≤ p < ∞. If p 6= q, put
f(λ) = (p/q)λq/p, then the concave function f satisfies the condition (i)
in Corollary 3.3, in fact, we can choose α = p and C1 = 1 in Corollary
3.3. Therefore, the proof is immediate from Corollary 3.3. If p = q, then
the proof follows from Remark 3.5, Remark 3.6 and Theorem 3.1.

Secondly, we consider the case 1 ≤ p < q ≤ ∞. If q < ∞, then by
direct computation, for λ > 0 we have

Cq
1 = sup

i
‖Xi‖q

p,q ≥
∫ λ

0
s
−1+ q

p [µs(Xi)]
qds ≥ p

q
λ

q
p [µλ(Xi)]

q ,

which implies that



498 Byoung Jin Choi and Un Cig Ji

µλ(Xi) ≤ C1

(
q

p

)1/q

λ
− 1

p , λ > 0.

In the case of q = ∞, the equation (3.4) is immediate from (3.6). In
fact, since

C2 = sup
i
‖Xi‖p,∞ ≥ λ

1
p µλ(Xi), λ > 0,

we obtain that
µλ(Xi) ≤ C2λ

− 1
p , λ > 0.

Therefore, the rest of the proof is same with the proof of Theorem 3.2.
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